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Abstract: Rapid urbanization in the lower Yellow River basin has greatly contributed to the socio-
economic development of Northern China, but it has also exacerbated land use/land cover change,
with significant impacts on ecology. Ecological quality is a comprehensive spatial and temporal
measure of an ecosystem’s elements, structure and function, reflecting the ecological state under
external pressures. However, how land use/land cover change affects the ecological quality during
urbanization has rarely been explored. In this study, Jinan, a megacity in the lower Yellow River
basin, was taken as a typical region, and the response of ecological quality to the land use/land cover
change in 2000, 2010 and 2020 was retrieved using the remote sensing ecological index. For the mixed
land use/land cover change types, a type-decomposition and spatial heterogeneity quantification
method based on the abundance index was proposed, and the impact mechanisms of the land
use/land cover change on the ecological quality were revealed by coupling with GeoDetector. The
results show that: (1) Farmland and built-up areas, as the dominant land use/land cover types, were
the primary factors controlling the spatial pattern of ecological quality. (2) Urban expansion and
farmland protection policies resulted in the transfer of farmland and woodland to built-up areas as
well as the transfer of woodland and grassland to farmland, which intensified the degradation of
ecological quality. (3) Ecological protection policies prompted the transfer of farmland and grassland
to woodland and the transfer of farmland to grassland as the main cause for the improvement of
ecological quality. (4) Although ecological protection and urban development were implemented
in parallel, uneven land use/land cover changes resulted in a 1.4 times expanded area of poorer
ecological quality with increasingly serious spatial agglomeration effects. This study can provide
scientific references for the ecological conservation and high-quality, sustainable development of
cities in the lower Yellow River basin.

Keywords: land use/land cover change; remote sensing ecological index; ecological quality; GeoDe-
tector; Jinan City; Yellow River basin

1. Introduction

Rapid urbanization has brought about economic changes and dramatic changes in land
cover from natural landscapes to built-up areas due to increasing human activities [1,2].
This has led to a series of negative ecological effects [3], including land degradation [4],
urban heat island [5], droughts [6], flash floods [7], biodiversity reduction [1], ecosystem
cycle destruction [8] and ecosystem service decline [9], which have had significant impacts
and pressures on ecology [10]. The relationship between urbanization and ecology is a
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complex interaction and coupling process [2]. Ecological quality is a comprehensive spatial
and temporal measure of an ecosystem’s elements, structure and function, reflecting the
ecological state under external pressures and the suitability for human survival and sus-
tainable socio-economic development [11,12]. Therefore, carrying out dynamic monitoring
and evaluation of ecological quality is crucial to reveal the trigger mechanism of ecological
degradation in the context of urbanization, which will provide an important basis for
the realization of sustainable development goals [13] and the formulation of ecological
environmental protection policies.

As an important ecological function region in China [14], the Yellow River basin (YRB)
is also one of the most ecologically fragile regions in China [13]. In recent decades, urban-
ization has formed an impressive economic development belt and urban agglomeration
in the YRB [15]. However, in the process of urbanization, the YRB has also experienced
long-term disordered development and land use, resulting in many ecological and environ-
mental problems [16]. In particular, the downstream area, which has the highest level of
economic development in the YRB, has a high urban density, a large population and a high
intensity of land exploitation, and the urbanization level is now higher than 60% [6,17]. Its
rapid urbanization has greatly contributed to the socio-economic development of Northern
China but has also greatly exacerbated the land use/land cover change (LUCC), which has
particularly significant impacts on ecology [17,18]. Therefore, monitoring and evaluating
the quality of urban ecology in the context of urbanization and exploring the relationship
between urban development and ecological impacts in this region are essential for future
planning, management, conservation and high-quality development [16].

With the development of remote sensing theory and application in recent years, many
remote sensing parameters or indexes have been applied to ecological quality evaluation,
such as net primary productivity (NPP), the normalized difference vegetation index (NDVI),
land surface temperature (LST) [4,19,20], etc. However, ecological quality is the result of
the combined effect of regional pressure–state–response (PSR) frameworks. Therefore,
the single parameters or indexes above are not sufficient to reflect the state of regional
comprehensive ecological quality and its changes [6]. In 2006, the Chinese Ministry of Envi-
ronmental Protection designed a comprehensive ecological evaluation index (EI) [21,22].
This index integrates biological abundance, vegetation cover, water network density, land
degradation and environmental quality, reflecting the comprehensiveness, completeness
and hierarchy of ecological evaluation and is the most widely used standard by the Chi-
nese government [13]. However, the problems of difficult access to land degradation and
environmental indicators, difficult visualization and long data update cycles still limited
its practical application [3,13]. To address this issue, Xu [23] proposed a remote sensing
ecological index (RSEI) based on the PSR framework, which integrated greenness, wetness,
dryness and heat indicators and could be completely based on the same remote sensing
data. The basic indicators in RSEI are synthesized by principal component analysis (PCA),
which can avoid differences and errors in the subjective weighting of indicators and is
spatio–temporally scalable, visible and comparable [24]. Compared to EI, RSEI can also
characterize the regional ecological quality well in an integrated manner [8] and is simpler
to apply and easier to update [4].

The proposal of RSEI has extended the application of remote sensing in the assessment
of the ecological status of the land surface [25]. Furthermore, RSEI has been widely used
in recent years for rapid ecological quality evaluation on different scales, such as national
and provincial regions [26–28], urban agglomerations [2,29,30], cities [11,19,31], drainage
basins [6,32,33], lakes [3,34], islands [35,36], mining areas [37], protected areas [38], etc. In
addition, many scholars have also used RSEI to analyze the relationship between changes in
ecological quality and factors, such as urbanization [31], economic and industrial develop-
ment [39], land consolidation [40], population and impervious surfaces [28,41], ecosystem
services [12], natural climate change [42], landscape [43] and geological hazards [44], re-
vealing the drivers of ecological quality change. Many studies have shown that land
use and ecological composition are the main factors influencing the changes in ecological
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quality [3,19,25]. In particular, the regional land use/land cover (LULC) structure has
an important influence on the stability of the ecosystem structure and function [22] and
dominates changes in ecological quality [2,24]. However, there are currently few studies on
how regional LUCC affects the ecological quality changes.

To address the aforementioned issues, this study took Jinan, a megacity in the lower
reaches of the YRB, as a typical region, to study the impact of urban LUCC on the ecological
quality in the context of rapid urbanization and explore its driving mechanisms based
on Landsat image data in 2000, 2010 and 2020. The main objectives of this study are to
address the following questions: (1) How has LULC in Jinan changed from 2000 to 2020?
(2) What are the spatio–temporal responses of ecological quality to LUCC? (3) How does
LUCC drive changes in ecological quality, and how does it relate to land requirements
and policies? The results of this study can provide scientific references for the ecological
conservation and high-quality, sustainable development of cities in the lower YRB.

2. Materials and Methods
2.1. Study Area

Jinan City is located in the central part of Shandong Province, China (Figure 1a,b) and
covers an area of 10,244 km2. Jinan is bound by Mount Tai to the south and the Yellow
River to the north. It is at the intersection of the low hills in central-southern Shandong and
the alluvial plain in north-western Shandong, and the topography is high in the south and
low in the north (Figure 1c). Jinan has a warm temperate continental monsoon climate with
four distinct seasons, an average annual temperature of 13.6 ◦C and an average annual
precipitation of 614.0 mm.
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Jinan City is the political, economic, cultural, scientific, technological and educational
center of Shandong Province, containing ten districts and two counties (Figure 1d). Jinan
is at the intersection of many important development regions in China, with a prominent
strategic position and unique geographical location. In addition, as a megacity in the lower
YRB, Jinan is a typical representative of ecological protection and a core growth pole of
high-quality development in the YRB.

Jinan has urbanized very rapidly in recent years. The information released by Jinan
Municipal Government (http://www.jinan.gov.cn/col/col129/index.html (accessed on
19 August 2022)) shows that Jinan has experienced rapid urban expansion and a significant
increase in urbanization rate, with a built-up area of 760.6 km2. The 2021 Statistical Yearbook
(http://jntj.jinan.gov.cn/col/col27523/index.html (accessed on 19 August 2022)) released
by the Jinan Bureau of Statistics shows that the GDP in 2020 was CNY 1014.091 billion,
an increase of up to 66.24% from 2015. According to the data of the seventh national
census (2020) (http://www.stats.gov.cn/tjsj/pcsj/rkpc/7rp/zk/indexch.htm (accessed
on 19 August 2022)), the resident population of Jinan has reached 9,202,400. Like many
rapidly urbanizing cities, Jinan is facing ecological and environmental problems brought
about by urbanization.

2.2. Data

The datasets used in this study include Landsat images and land use/land cover data
interpreted based on Landsat images.

Landsat images have been widely used in the monitoring and assessment of LUCC
and ecological status, which can better meet the application requirements in terms of
temporal and spatial resolution. Vegetation cover is the most important influence factor in
ecological quality evaluation. Therefore, we tried to select the images from July to August
in summer, when the vegetation growth condition is the best. However, considering the
increased rainfall in summer, there is less high-quality available data with cloud cover less
than 5%, so we extended the available data range from June to October in the process of
data acquisition. As shown in Table 1, we acquired six Landsat images from the USGS
(https://glovis.usgs.gov/app (accessed on 7 August 2022)) for the years 2000, 2010 and
2020, all with less than 5% cloud coverage. Then, we preprocessed the images with ENVI
5.3 software for radiometric calibration, atmospheric correction, mosaic and clipping.

Table 1. Parameter information of Landsat images.

Year Sensor Types Strip Number Line Number Date Cloud Coverage

2000 Landsat7 ETM+
122 34 14 September 2000 0.49%
122 35 14 September 2000 0.15%

2010 Landsat7 ETM+
122 34 28 October 2010 0.00%
122 35 28 October 2010 0.01%

2020 Landsat8 OLI
122 34 28 August 2020 2.78%
122 35 28 August 2020 3.90%

To analyze the LUCC caused by urbanization in the study area in the past 20 years,
we conducted LULC interpretation using eCognition Developer 9.0 software based on
the previously acquired images. A total of 497 samples were labeled in the study area.
Most of the samples were obtained through visual interpretation, whereas a small number
of samples in the southern mountainous area were obtained from field survey data and
national geoinformation survey. The object-oriented classification method based on the
random forest model was used to classify the LULC of study area into woodland (WL),
grassland (GL), farmland (FL), water body (WB), unutilized land (UL) and built-up areas
(BA). The accuracy evaluation results show that the overall accuracy was 86.7%, which met
the application requirements of this study.

http://www.jinan.gov.cn/col/col129/index.html
http://jntj.jinan.gov.cn/col/col27523/index.html
http://www.stats.gov.cn/tjsj/pcsj/rkpc/7rp/zk/indexch.htm
https://glovis.usgs.gov/app
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2.3. Methods

The methodology used in this study contains three parts. First, the spatio–temporal
characteristics of LUCC in the study area were analyzed using transfer matrix and dynamic
degree index. Then, the RSEI was constructed from four indicators of greenness, wetness,
dryness and heat to evaluate the ecological quality of the study area and its changes. Finally,
the response mechanism of ecological quality to LUCC in the study area was revealed
using GeoDetector.

2.3.1. Analysis of LUCC

• LULC Transfer Matrix

The transfer matrix (Equation (1)) can be used to analyze the structure and orientation
of the LUCC, thus showing in detail the interconversion relationships and structural change
characteristics among the LULCs [45]:

Sij =


S11 S12 · · · S1n
S21 S22 · · · S21
· · · · · · · · · · · ·
Sn1 Sn2 · · · Snn

 (1)

where S denotes the area; n is the number of LULCs before and after the transfer; i, j
(i, j = 1, 2, . . . , n) denote the LULCs before and after the transfer, respectively; and Sij
denotes the area of type i transferred to type j. Each row element in the matrix denotes the
flow information of type i transferred to other types, and each column element denotes the
source information of other types transferred to type j.

• Dynamic Degree of LUCC

The dynamic degree of LUCC (Equation (2)) can quantitatively reflect the scale and
change rate of a certain LULC in a given period and facilitate the prediction of future
trends [46]:

K =
Ub −Ua

Ua
× 1

T
× 100% (2)

where K is the dynamic degree of LULC; Ua and Ub are the areas at the beginning and end
of the given period; T is the time span of the given period; and when the unit of T is year,
K is the annual change rate of the area.

2.3.2. Ecological Quality Evaluation

RSEI is widely used to evaluate the ecological quality status. Firstly, the four indi-
cators of greenness, humidity, dryness and heat, which can be intuitively perceived by
humans, were obtained through remote sensing inversion, and then the four indicators
were normalized and synthesized using principal component analysis [23]. Further, the
first principal component is taken to assess the ecological quality status of the region, and
if the eigenvalues of greenness and wetness, which have a positive impact on ecology, are
negative, the calculated results need to be reduced (Equation (3)). To facilitate comparison,
the results of the RSEI calculation are also usually normalized (Equation (4)), and the closer
the value is to 1, the better the ecological quality is, and vice versa, the worse it is.

RSEIo =

{
PC1[ f (G, W, T, D)], EVG, EVW > 0
1− PC1[ f (G, W, T, D)], EVG, EVW < 0

(3)

RSEIn =
RSEIo − RSEIo_min

RSEIo_max − RSEIo_min
, (4)

where G denotes greenness, W denotes wetness, T denotes heat, D denotes dryness, and
EVG, EVW are eigenvalues of the greenness and wetness.

• Greenness
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Vegetation cover has a significant effect on regional ecological quality. The NDVI
can visually reflect plant growth and density and is an important indicator of regional
vegetation cover. Hence, NDVI (Equation (5)) is used to characterize the greenness:

NDVI = (ρnir − ρred)/(ρnir + ρred) (5)

where ρnir denotes the near-infrared band, and ρred denotes the red band.

• Wetness

The wetness can reflect the water and heat balance of an area and, thus, has great
reference value for ecological variability. The wetness index is extracted from the remote
sensing images using tasseled cap transformation, which can better reflect the moisture
of soil and plants. There are differences in the conversion formulas for different types of
remote sensing images, and the specific formulas are as follows:

WETETM = 0.2626ρblue + 0.2141ρgreen + 0.0926ρred + 0.0656ρnir − 0.7629ρswir1 − 0.5388ρswir2 (6)

WETOLI = 0.1511ρblue + 0.1972ρgreen + 0.3283ρred + 0.3407ρnir − 0.7117ρswir1 − 0.4559ρswir2 (7)

where ρblue denotes the blue band, ρgreen denotes the green band, ρred denotes the red band,
ρnir denotes the near-infrared band, ρswir1 denotes the short-infrared band 1, and ρswir2
denotes the short-infrared band 2.

• Dryness

The land surface “dryness” is mainly reflected in buildings and bare soil in the regional
environment. Therefore, the dryness indicator (normalized difference built-up and soil
index, NDBSI) (Equation (8)) is synthesized from both the bare soil index (BSI) (Equation (9))
and the index-based built-up index (IBI) (Equation (10)):

NDBSI = (BSI + IBI)/2 (8)

BSI =
[(ρswir1 + ρred)− (ρnir + ρblue)]

[(ρswir1 + ρred) + (ρnir+]ρblue)]
(9)

IBI =

2ρswir1
ρswir1+ρnir

−
[

ρnir
ρnir+ρred

+
ρgreen

ρswir1+ρgreen

]
2ρswir1

ρswir1+ρnir
+
[

ρnir
ρnir+ρred

+
ρgreen

ρswir1+ρgreen

] (10)

where ρblue denotes the blue band, ρgreen denotes the green band, ρred denotes the red band,
ρnir denotes the near-infrared band, and ρswir1 denotes the short-infrared band 1.

• Heat

The LST can reflect the energy flow and material exchange in the soil–vegetation–
atmosphere system. Therefore, the heat indicator is expressed using the LST. It can be
retrieved using the atmospheric correction method.

The brightness of the thermal infrared radiation received by the satellite sensor is Lλ

(Equation (11)):
Lλ =

[
ε× B(LST) + (1− ε)L↓

]
× τ + L↑ (11)

where ε denotes the land surface emissivity, which needs to be calculated using vegetation
coverage; LST denotes the land surface temperature; B(LST) denotes the black-body
thermal radiation brightness; and L↑, L↓, τ denote the upward radiation, downward
radiation and transmittance of the atmosphere in the thermal infrared band, which can
be calculated using NASA atmospheric calculator to obtain the atmospheric profiles (http:
//atmcorr.gsfc.nasa.gov/ (accessed on 28 August 2022)).

http://atmcorr.gsfc.nasa.gov/
http://atmcorr.gsfc.nasa.gov/
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On this basis, the radiative brightness B(LST) of a blackbody at temperature T in the
thermal infrared band can be further obtained (Equation (12)). Then, the true LST can be
obtained according to the inverse function of Planck’s formula (Equation (13)):

B(LST) =
[
Lλ − L↑ − τ(1− ε)L↓

]
/(τ × ε) (12)

LST = K2/ ln
(

K1

B(LST)
+ 1
)
− 273 (13)

For ETM+, K1 = 666.09 W/
(
m2·µm·sr

)
, and K2 = 1282.71 K. For OLI Band 10,

K1 = 774.89 W/
(
m2·µm·sr

)
, and K2 = 1321.08 K.

2.3.3. Analysis of the Impact of LUCC on Ecological Quality

As a spatial statistical model, GeoDetector provides an approach to reveal the impact
factors and drivers behind the spatial differentiation of geographic phenomena without
making linear assumptions [47]. GeoDetector contains four modules: factor detection,
ecological detection, interaction detection and risk detection. In this study, the factor
detection module and the interaction detection module were coupled with the abundance
index-based spatial heterogeneity quantification method to reveal the impacts and driving
effects of LUCC on ecological quality.

• Factor Detection

The factor detection module mainly uses q-value (Equations (14)–(16)) to detect the
extent to which the impact factor explains the spatial differentiation of geographical phe-
nomena. The q ranges from [0, 1], and the larger the q, the stronger the explanatory power
of factor X for dependent variable Y and vice versa.

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(14)

SSW = ∑L
h=1 Nhσ2

h (15)

SST = Nσ2 (16)

where h = 1, . . . , L is the stratification of dependent variable Y or factor X; Nh and N
denote the number of cells in the stratification h and the whole region, respectively; σ2

h and
σ2 denote the variance of variables in the stratification h and the whole region, respectively;
and SSW and SST denote the sum of variance within stratifications and the total variance
of the whole region, respectively.

• Interaction Detection

The interaction detection module is designed to identify interactions between different
factors X, i.e., to assess whether two factors acting in synergy increase or decrease the
explanatory power on the dependent variable Y or whether the effects of these factors on
the dependent variable Y are independent of each other. The interaction types are shown
in Table 2.

Table 2. Interaction detection types.

Interaction Relations Interaction Types

q(X1 ∩ X2) < Min(q(X1), q(X2)) Nonlinear weaken
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Univariable weaken

q(X1 ∩ X2) > Max(q(X1), q(X2)) Bivariable enhanced
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhanced
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• Impact Factors and Discretization Method

In this study, six LULC types, FL, WL, GL, WB, UL and BA, were taken as the impact
factors X and RSEI as the dependent variable Y to detect the controlling effects of the spatial
distribution of different LULCs on the spatial pattern of ecological quality in Jinan City. In
addition, the mutual transfer among the six LULCs were taken as the impact factors X, and
the changes in RSEI were taken as the dependent variable Y to reveal the driving effects of
the spatial distribution of LUCC on the changes in ecological quality.

To achieve the above objectives, we need to decompose the mixed LULCs or LUCCs
into single types. However, the decomposed results only have spatial distribution and
not spatial heterogeneity. Therefore, here, we proposed a type decomposition and spatial
heterogeneity quantification method based on the abundance index. First, the study area
was divided into grids using a spatial up-scaling approach. Then, the abundance of the
factors X was numerically quantified by counting the area of LULCs or LUCCs within each
grid. In addition, a typological preprocessing of the abundance calculation results was
implemented as the impact factors input into GeoDetector were required to be typological
quantities. Here, the natural breaks method was used to reclassify the factor quantification
results into five levels to generate the hierarchy or classification. To eliminate the spatial
scale differences between the impact factors X and the variables Y, we completed the spatial
up-scaling using the same grid for the mean statistics of the variables Y. In this way, we
established the spatial pairwise correspondence between the factors and the variables using
the grid as the unit of analysis. Finally, they were input into GeoDetector for analysis. The
whole process is shown in Figure 2.
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cover change. X1, X2, . . . , Xn denote impact factors, which are single types decomposed from the
mixed LULC/ LUCC and are ultimately typological quantities. RSEI/RSEIC denote variables Y,
which are ecological quality or changes in ecological quality and are numerical quantities.
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3. Results
3.1. Spatio–Temporal Changes of LULC in Jinan City

The classification results (Figure 3) showed that the spatial pattern of LULCs in Jinan
is very distinct. The northern and eastern parts of the Yellow River are relatively flat and
mainly dominated by FL. In the southern parts of the Yellow River, the main LULCs are
BA, WL and GL. The constraining effects of the Yellow River and topography on the spatial
pattern of LULCs were significant. The structure of LULC in Jinan City has not changed
significantly in the past 20 years, in general, and is still dominated by FL and BA with
a proportion of over 70%, whereas the proportion of WL, GL, WB and other types with
significant ecological regulations was relatively low. However, the area of each LULC in
Jinan City has changed dramatically in the past 20 years. Of which, the areas of FL and GL
showed an obvious decreasing trend, whereas the areas of BA and WB showed a clearly
increasing trend. The area of WL decreased first and then increased, whereas the area of
UL showed the opposite, and both showed fluctuating changes.
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Figure 3. Classification results of land use/land cover in Jinan City: (a) is the land use/land cover
structure and spatial distribution in 2000; (b) is the land use/land cover structure and spatial
distribution in 2010; and (c) is the land use/land cover structure and spatial distribution in 2020.

In addition, the LULC in Jinan underwent very complex and uneven transfers in the
structural and spatial distribution in the last 20 years (Figures 4 and 5). Therein, urban
expansion occupied a large amount of FL, WL, GL and WB, resulting in a 47% increment in
the area of BA. The urban expansion was accompanied by the reclamation of WL, GL and
WB, and this occurred mainly in the southern mountainous areas where a large amount
of WL, GL and WB transferred to FL. However, after the introduction of the ecological
protection policy of “grain for green” in 2003, a lot of FL in the southern mountainous areas
transferred to WL and GL. In particular, the total area of WL has increased by 225.598 km2

in the last decade, of which 51% was contributed by the transfer of FL. Overall, urban
expansion intensified the transfer of surrounding FL to BA. The implementation of farmland
reclamation and ecological protection policies prompted WL, GL, WB and UL to exhibit a
high degree of dynamics.
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Figure 4. Transfer flow and dynamic degree of land use/land cover in Jinan. Yellow denotes farmland,
red denotes built-up areas, light green denotes grassland, blue denotes water body, brown denotes
unutilized land, and dark green denotes woodland.
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Figure 5. Spatial distribution of land use/land cover transfers in Jinan from 2000 to 2020: (a) shows
the transfer results in the first decade; (b) shows the transfer results in the second decade.

3.2. Response of Ecological Quality to LUCC in Jinan City

The PCA results (Tables 3–5) show that the contribution rate of the first principal compo-
nent is 82.10% in 2000, 83.44% in 2010 and 80.17% in 2020, which contains the information of
the most indicators and is effectively representative of the regional ecological quality status.
The calculation results of the first principal component for the three periods were normalized
to obtain the spatial distribution of RSEI in Jinan. Then, in order to facilitate the analysis
and evaluation, the RSEI was further divided into five levels: poor (0–0.2), fair (0.2–0.4),
moderate (0.4–0.6), good (0.6–0.8) and excellent (0.8–1).
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Table 3. Principal component analysis results of remote sensing ecological index in 2000.

PC1 PC2 PC3 PC4

NDVI 0.751 −0.189 0.360 0.520
WET 0.363 0.323 −0.854 0.184

NDBSI −0.548 0.058 −0.032 0.834
LST −0.061 −0.925 −0.374 0.011

Eigenvalue 0.259 0.029 0.026 0.002
Contribution rate (%) 82.10 9.20 8.10 0.60

Cumulative contribution rate (%) 82.10 91.30 99.40 100

Table 4. Principal component analysis results of remote sensing ecological index in 2010.

PC1 PC2 PC3 PC4

NDVI 0.699 0.169 −0.437 −0.539
WET 0.008 −0.148 −0.785 0.601

NDBSI −0.713 0.212 −0.435 −0.507
LST −0.035 −0.951 −0.052 −0.303

Eigenvalue 0.267 0.041 0.009 0.002
Contribution rate (%) 83.44 12.87 2.93 0.76

Cumulative contribution rate (%) 83.44 96.31 99.24 100

Table 5. Principal component analysis results of remote sensing ecological index in 2020.

PC1 PC2 PC3 PC4

NDVI 0.757 −0.181 0.338 0.529
WET 0.304 0.918 −0.250 0.039

NDBSI −0.555 0.307 0.539 0.555
LST −0.163 −0.172 −0.730 0.641

Eigenvalue 0.249 0.048 0.011 0.003
Contribution rate (%) 80.17 15.56 3.24 1.04

Cumulative contribution rate (%) 80.17 95.72 98.96 100

The results of the RSEI calculation in Jinan (Figure 6) show that the overall ecological
quality of Jinan City shows a decreasing trend from 2000 to 2020. Of which, the area
with excellent and good ecological quality declined sharply, reaching 25.4 and 23.7%,
respectively. The area with moderate ecological quality remained relatively stable, and the
area with fair ecological quality increased by 26.7%, whereas the area of poor ecological
quality in 2020 is 2.4 times of that in 2000. From the spatial distribution of RSEI in each year
(Figure 6a–c), it can be seen that the better ecological quality of Jinan is mainly distributed
in the southern mountainous area and the northern plain area, whereas the ecological
quality located in the central urban area and the town centers of counties and districts is
poor. The overall ecological quality in the central urban area of Jinan was increasingly
degraded and developed in an east–west strip, but the overall ecological quality in the
southern mountainous area was improved.

The spatial distribution of ecological quality in Jinan, which underwent obvious
relative changes between the two decades, is shown in Figure 7. The areas where ecological
quality declined from 2000 to 2010 were distributed throughout Jinan. Of these areas, the
degradation of ecological quality was particularly serious in the central part of Shanghe
County, whereas the ecological quality improved in the northern part of Shanghe County
and the eastern part of Laiwu District. From 2010 to 2020, the spatial differentiation of the
ecological quality change pattern in Jinan City was more obvious. The ecological quality in
the northern, southwestern and southeastern parts of Jinan was more severely degraded,
whereas the ecological quality in the northern part of the Yellow River, the contiguous areas
along the Yellow River and the southern mountainous areas were all improved. Collectively,
there was a strong spatial inconsistency between the changes in ecological quality in the
first and second decades of Jinan City. In addition, the statistical results (Figure 7) show
that the area of both improved and degraded ecological quality in Jinan City was increased,
and the trend of polarization intensified significantly.
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second decade.

3.3. Control Effects of LULC on the Spatial Pattern of Ecological Quality in Jinan City

The scale effects generated by the spatial upscaling method need to be considered in
the factor discretization process to seek the optimal analysis scale. Therefore, we conducted
experiments on the scale effects between 0.5 and 8 km using the factor detection module of
GeoDetector at 0.5 km intervals. The experimental results (Figure 8) show that the q-values
of the impact factors began to level off after 2 km and tended to fluctuate again after 4.5 km,
indicating the lack of adaptability of the scales outside [2–4.5] km. The results of significance
tests (p-values) within [2–4.5] km showed that the q-values of the two main LULCs, FL and
WL, were not significant after the scale of 3 km, and the q-values of each factor reached
the maximum at 3 km. Therefore, 3 km was adopted as the optimal analysis scale in this
study. Then, we performed factor and interaction detection of the ecological quality spatial
patterns after discretizing the RSEI and LULCs for 2000–2020 at the optimal scale.
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Figure 8. Scale effects of land use/land cover impact on ecological quality. p < 0.05 indicates a
significant detection result.

The results of the factor detection (Figure 9) show that the explanatory power of the
LULC distribution on the spatial pattern of ecological quality was slightly different in the
three years. In a comprehensive comparison, the order of the controlling effect of LULC
distribution on the spatial pattern of ecological quality in Jinan was BA > WL > GL > FL
> WB > UL. Of which, the area of BA occupied a considerable proportion and was the
main factor controlling the spatial pattern of ecological quality in Jinan. WL and GL have
important ecological service functions and were key factors in maintaining the ecological
quality of Jinan City. Although the anthropogenic intervention of FL was more intense,
crops have dense growth spacing and abundant biomass, which were also important factors
to maintain the ecological quality of Jinan City. In comparison, the area of WB and UL
were relatively small and had weaker impacts on the overall spatial pattern of ecological
quality in Jinan, but they were still factors that cannot be ignored in influencing regional
ecological quality. From the perspective of temporal development, the q-values of most of
the impact factors showed fluctuating change characteristics. However, the overall trend
showed that the controlling effects of BA and FL on the spatial pattern of ecological quality
tended to decrease over the last 20 years, whereas the influences of WL, GL, WB and UL
tended to increase.

The interaction detection results (Figure 10) show that most of the interactions among
LULCs in the three years were nonlinearly enhanced, and a few were bivariable-enhanced,
with no independent and weakened relationships. This indicates that the interactions among
the LULCs all have enhanced effects on the spatial pattern of ecological quality in Jinan, and
all of them are greater than the influence of each single LULC. Overall, BA ∩ WL had the
strongest explanatory power for the spatial pattern of ecological quality in Jinan, whereas
BA ∩ GL and BA ∩ FL hold the second and third positions, respectively. Next, FL ∩ GL
and FL ∩WL also had strong explanatory power, taking up the fourth and fifth positions,
respectively. The top five interaction types of explanatory power in the past 20 years
also showed fluctuating change characteristics, but the overall trend was decreasing. In
particular, the influence of the interaction between BA and other types on the spatial pattern
of ecological quality declined significantly. In contrast, the influences of interactions among
WL, GL, WB and UL on the spatial patterns of ecological quality increased significantly.
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Figure 9. Spatial distribution of impact factors and factor detection results: (a–f) are the spatial
distribution of impact factors and factor detection results in 2000; (g–l) are the spatial distribution of
impact factors and factor detection results in 2010; (m–r) are the spatial distribution of impact factors
and factor detection results in 2020. The rightmost column displays the variation in q-value of each
impact factor with years.
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Figure 10. Interaction detection results of factors affecting the spatial pattern of ecological quality:
(a) is the interaction detection result in 2000; (b) is the interaction detection result in 2010; and (c) is the
interaction detection result in 2020. The redder color in the figure indicates the stronger interaction
between the two impact factors and vice versa.

3.4. Driving Effects of LUCC on Ecological Quality Changes in Jinan City

To further reveal the driving effects of LUCC on ecological quality changes in Jinan,
we discretized LUCC and RSEI changes from 2000 to 2010 and 2010 to 2020, respectively,
based on an optimal analysis scale and conducted factor and interaction detection of this
change process again using GeoDetector.

The factor detection results are shown in Figures 11 and 12. From 2000 to 2010, the
order of factors that significantly drive ecological quality changes in Jinan was GL→FL >
FL→BA > GL→WL > FL→GL > BA→WB. From 2010 to 2020, the order was WL→FL >
GL→WL > FL→GL > FL→GL > FL→WL > WL→BA. However, we also found that the
driving effects of individual LUCCs on the ecological quality changes were all weak.

Subsequently, we selected the factors with positive and negative impacts on the
ecological quality changes separately for interaction detection. The results (Figure 13) show
that the interactions of all factors on the ecological quality changes were enhanced, and the
coupling of multiple LUCCs had strong driving effects on the ecological quality changes.
This indicates that the ecological quality changes in Jinan were the result of the co-action of
multiple LUCCs.

Therein, the interactions between GL→WL, FL→GL, FL→WL and BA→WB all had
stronger explanatory power for the improvement of ecological quality in the first decade
(Figure 13a). This indicates that the transfer of GL and FL to WL, the transfer of FL to
GL and the area increase in WB in some regions during the first decade enhanced the
greenness and wetness, which have collectively contributed to the development of a better
ecological quality. In addition, FL→BA ∩ GL→FL had the strongest explanatory power for
the ecological quality degradation during this period (Figure 13b). This suggests that the
occupation of large amounts of FL by urban expansion and the reclamation of large amounts
of GL into FL raised the regional heat and dryness, which exacerbated the degradation of
ecological quality during this period.

In comparison, GL→WL ∩ FL→WL had the strongest explanatory power for the
ecological quality improvement in the second decade (Figure 13c). This indicates that the
transfer of GL and FL to WL was still the main driver of ecological quality improvement
in this period. The interaction between the two greatly enhanced regional greenness and
contributed to the improvement of ecological quality. In addition, WL→FL ∩WL→BA had
the strongest explanatory power for ecological quality degradation in the second decade
(Figure 13d), and the transfer of WL to FL and BA reduced regional greenness and enhanced
regional dryness and heat, which cooperatively exacerbated ecological quality degradation.
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Figure 11. Factor detection results of ecological quality changes from 2000 to 2010: (a–φ) show
the spatial distribution of land use/land cover transfers from 2000 to 2010, respectively. The q and
p values in each figure indicate the explanatory power and significance of that spatial distribution on
ecological quality changes.
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Figure 12. Factor detection results of ecological quality changes from 2010 to 2020: (a–z) show the
spatial distribution of land use/land cover transfers from 2010 to 2020, respectively. The q and
p values in each figure indicate the explanatory power and significance of that spatial distribution on
ecological quality changes.
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4. Discussion
4.1. Coupled Impact of Land Requirements and Policies on LULC and Ecological Quality Changes
at Different Stages of Urbanization

The spatial distribution of LULC in Jinan had a distinct pattern and was dominated by
FL and BA, whereas LULCs with important ecological service functions, such as WL, GL
and WB, accounted for a relatively low proportion (Figure 3). The structure of LULCs in
Jinan did not greatly changed during the development process in the past 20 years, but more
complex transfers occurred among LULCs (Figures 4 and 5). This is mainly influenced
by the land requirements and policies at different stages of development in Jinan. In
the first decade, Jinan City was in a period of rapid urbanization. Urban construction
required a large amount of land supply in the surrounding areas, and, therefore, inevitably
occupied a large amount of FL [48]. At the same time, in order to maintain the FL area, the
“Requisition-Compensation Balance” [49,50] was maintained mainly by means of suburban
land reclamation, such as “reclaiming land from lakes”, “reclaiming land from riverbeds”
and “deforestation for farmland”. Although this “Requisition-Compensation Balance”
policy of FL is significant for maintaining food security, it also makes the new FL subject
to natural disasters and ecological risks such as soil erosion and flooding [50,51]. In the
second decade, the growth rate of Jinan’s urban expansion had slowed down, but it also
still occupied a considerable area of the surrounding FL. As a result, there was still a
large amount of WL, GL and WB transferred to FL to maintain its scale. In addition, as
the ecological protection and restoration projects were in the upper and middle Yellow
River basin [52–54], the ecological protection policy of “Grain for Green”, implemented by
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Jinan City, allowed a large amount of FL transferred to GL and WL in the past 20 years.
This policy has made an important contribution to the improvement of vegetation cover,
ecosystem function and biodiversity conservation in Jinan and the whole downstream of
the YRB.

With the changes in LULC in Jinan, the overall ecological quality showed a decreasing
trend in the past 20 years, and the area of poor ecological quality increased about 1.4 times.
Moreover, the spatial pattern of ecological quality in Jinan experienced a change from
fragmented heterogeneity to zonal heterogeneity. In particular, the spatial agglomeration
effect of ecological quality degradation in the central urban area of Jinan got more and more
serious and gradually showed an obvious east–west belt-shaped distribution (Figure 6). On
the one hand, this is because a large number of impervious surfaces were built during the
rapid urbanization [24,41], leading to the deterioration of ecological quality in the central
urban area. On the other hand, Jinan City is restricted by the “Ecological Protection Red
Line” of the Yellow River and the southern mountainous area during the urbanization
process and has implemented the urban spatial development strategy of “Expanding
Eastward and Advancing Westward”. Although, Ren et al. [17] argued that Jinan City
has a high coupling degree from the perspective of urbanization and eco-efficiency and
is basically sustainable, the spatial agglomeration effect of ecological quality degradation
will diminish the ecological service capacity of existing habitats and also increases the
resistance to ecological processes such as species migration. Therefore, while leading
the economic development of the lower reaches of the YRB, Jinan City also suffers from
declining ecological service capacity and blocked ecological process cycles and still faces
greater challenges in achieving SDG 11 and SDG 15, the sustainable development goals
advocated by the United Nations.

Compared with the spatial pattern of ecological quality, there was no obvious reg-
ularity in the spatial distribution of ecological quality improvement and degradation in
Jinan. However, it showed significant spatial inconsistency between the first and the sec-
ond decade, and the trend of polarization in the ecological quality in the second decade
strengthened obviously (Figure 7). Although, the response of ecological quality to LUCC
was more complex in both periods, there were obvious differences in the driving factors
involved behind it. In the first decade, the policy of “Grain for Green” was the main factor
for the ecological quality improvement in Jinan, whereas the occupation of FL by urban
expansion and the reclamation of GL were the main drivers of ecological quality degradation
(Figures 11 and 13). In the second decade, the policy of “Grain for Green” was still the main
factor for the ecological quality improvement, but the urban expansion and the transfer of
WL to FL became the major drivers of ecological quality degradation (Figures 12 and 13).
This is mainly due to the fact that the FL maintenance policy of “Requisition-Compensation
Balance” in the process of urban expansion has faced many challenges in its actual im-
plementation [48,49]. To guard the red line of FL protection, Jinan City implemented the
policy of “Returning Forest to Farming “, which resulted in the transfer of a large amount
of WL to high-quality FL. This is different from what has been advocated in the existing
study about adhering to the conservation red line of WL to maintain its ecological service
function and avoid WL reclamation [17]. Accordingly, the policy shift from the synergy of
“ecological conservation and farmland maintenance” to the synergy of “ecological conser-
vation and farmland protection” during urbanization has resulted in different ecological
quality response characteristics in Jinan over the two decades.

4.2. Proposals for Urban Land Development and Ecological Protection

It is foreseeable that the area of land available for afforestation and ecological restora-
tion will become more and more limited in the future. Therefore, the Jinan government
should seek a balance between urbanization and ecological protection by means of high-
quality land development and spatial layout optimization. For one thing, it is suggested
that Jinan City should strengthen the efficient and intensive utilization of land, strictly
control the expansion of production land and living land and improve the quality of devel-
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opment. This will reduce the occupation of FL, WL, GL and WB through the expansion of
BA, thus contributing to slowing down the further expansion of the spatial agglomeration
effect of ecological quality degradation. In addition, it is suggested that Jinan City adopts
the strategy of urban–rural gradient spatial zoning to strengthen the protection, restoration
and planning of blue–green ecological spaces, integrate the protection of WL, GL and WB
with urban construction and optimize the layout of urban ecological spaces. Firstly, the
exposure and ecological quality of existing blue and green spaces in urban areas to citizens
should be improved, which will help to reduce the urban heat island effect and improve
the equity of urban habitat quality [55,56]. Secondly, the construction of ecological infras-
tructure in urban–rural combination areas should be promoted, which will help to reduce
the ecological resistance of urban space [57] and promote the cyclic exchange of ecological
processes in urban–rural gradients [58,59]. Then, the restoration and planning of suburban
ecological reserves should be strengthened, which will clarify the spatial boundaries for
future urban development and maintain the spatial structure of overall ecological quality.

4.3. Limitations and Prospects

LULC is the direct factor that affects ecological quality. The physical properties of
different LULCs determine that their changes will alter the ecological covariates such as
greenness, wetness, dryness, and heat, which are directly related to human perceptions.
Therefore, this study focused on the LUCC and its ecological quality response relationships
during the urbanization of Jinan City and revealed the driving mechanisms of LUCC
on ecological quality changes arising from land requirement changes and policy impacts
in different periods. This will provide references for urban development quality assess-
ment studies in the lower YRB, land and ecological conservation policy studies and the
achievement of the United Nations Sustainable Development Goals (SDG 11 and SDG 15).
However, this study only explored the relationship of ecological quality in response to the
mutual transfer between the six LULCs, which may ignore the impact of changes in other,
more refined LULCs on ecological quality. For example, the southern region of Shanghe
County was always FL and did not transfer to BA, but a significant portion of the area
underwent severe ecological quality degradation (Figure 5). This is mainly because this
region is a special agricultural planting area in Shanghe County, with garlic mainly grown
on a large scale, and the size of the planting area expanded rapidly to 133 km2 after 2006. In
this region, garlic is harvested in May–June and sown in September–October. This results in
low surface vegetation cover in this region during the study period, and the final inversion
of RSEI is low due to the plastic mulch planting technique used, which reduces surface
wetness and increases surface temperature. Therefore, in future studies, we will include
more refined LULC or region-specific factors in the exploration of driving mechanisms.

In fact, LUCC will also change landscape patterns [60,61]. At a regional or mesoscopic
scale, changes in patch structure, shape, size and type will alter the antagonistic and
synergistic effects of different ecological covariates, which will indirectly affect the overall
ecological quality. For instance, the expansion of the central urban area of Jinan has caused
the structural simplification and spatial homogenization of regional patches to become
increasingly serious, which, in turn, triggers the spatial clustering effect of ecological quality
degradation (Figure 6). This has been confirmed in some of our research results. Likewise,
the fragmentation and heterogeneity of landscapes with important ecological services
can have important implications for changes in ecological quality. In this study, we only
partially analyzed and explored this aspect from a qualitative perspective. Therefore, our
next task will be to continue to study in-depth the influence mechanism and threshold
effect of urban landscape pattern changes on ecological quality changes in order to provide
a more comprehensive reference for decision-making on high-quality development and
ecological conservation in the YRB.
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5. Conclusions

Land use/land cover change is the most critical factor affecting ecological quality in
the urbanization process. Exploring its impact mechanism will be beneficial to the rational
formulation of urban development and ecological protection policies and strategies. In this
study, Jinan, a megacity, was selected as a typical region to explore the land use/land cover
change and its ecological impacts on cities in the lower Yellow River basin. The change in
the ecological quality in Jinan City was retrieved using the remote sensing ecological index
based on Landsat images in 2000, 2010 and 2020. Then, the mixed-type decomposition
and spatial heterogeneity quantification of land use/land cover change were addressed
using the abundance index. On this basis, the impact mechanism of land use/land cover
change on ecological quality in the past 20 years was revealed using GeoDetector. The
results show that: The spatial pattern of ecological quality was mainly controlled by
built-up areas and farmland. Changes in land requirements and policies during the last
20 years of urbanization led to very complex transfers between land use/land cover types,
which, in turn, led to very different spatio–temporal response characteristics of ecological
quality. In particular, urban expansion and farmland protection prompted the transfer of
farmland and woodland to built-up areas and the transfer of grassland and woodland
to farmland as the main factors that exacerbated the degradation of regional ecological
quality. Meanwhile, the introduction of ecological protection policies prompted the transfer
of farmland to woodland and grassland as the main reason for promoting the improvement
of regional ecological quality. Although, ecological protection policies were implemented,
in parallel with urban expansion, during the urbanization process, the uneven structure
and spatial distribution of land use/land cover changes led to a decreasing trend in overall
ecological quality and an increasingly serious spatial agglomeration effect. Therefore, it
is suggested to achieve the balance between urbanization and ecological conservation by
coupling and synergizing high-quality land development and spatial layout optimization.
In future research work, we will focus on the impact of landscape pattern changes on
ecological quality, with a view to providing a more comprehensive scientific reference
for the ecological conservation and high-quality, sustainable development of cities in the
Yellow River basin.
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