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Abstract: For the discrimination of false targets, the discrimination probability can be improved by
increasing the number of radar stations. However, that may result in a serious waste of equipment
resources when too many radars are involved. An asymptotic subset selection strategy based on target
positioning characteristics is proposed to address the above issues. Several effective strategies are
considered to select some transmitters and receivers to form a radar subset, such as the rapid shrinkage
method, global shrinkage method, and predetermined size method, which can guarantee the preset
discrimination performance of limited equipment resources and reduce the waste of resources. All of
the selected stations have good spatial distribution or strong discrimination capacity in multistatic
radar system. Compared with the exhaustive search, the proposed subset selection strategy affords a
significant reduction in terms of time complexity. The simulation results show that the radar subset
can maintain approximate discrimination performance with the original multistatic radar systems.
At the same time, the proposed method optimizes the number of radar stations and reduces data
processing time and required communication links, thus effectively saving operating costs.

Keywords: multistatic radar system; resource scheduling; false target discrimination; target position-
ing characteristics; subset selection strategy

1. Introduction

With the rapid advancement of modern electronic technology, electronic warfare rep-
resented by electronic jamming has brought severe challenges and threats to the detection
performance of radar systems [1,2]. Deception jammers generate false target information
on the radar signal receiving system through delay, modulation, and forwarding to cover
true targets, which prevents radar station from effectively completing target detection
or accurately estimating target parameters [3]. Therefore, a strong jamming countermea-
sure capability is an important guarantee for the survival of radar system under complex
electromagnetic interference conditions.

For deception jamming, monostatic radar can identify false targets utilizing transmis-
sion signal optimization [4,5], polarization information [6,7], inverse tracking [8], time-
frequency analysis [9], DRFM quantization error [10], and clustering discrimination [11].
However, the target detection process of monostatic radar has only one perspective, and
it is impossible to obtain rich environmental information. At the same time, jamming
countermeasures highly depend on the radar hardware to a large extent. It is only suitable
for some special jamming scenarios. Hence, in the case of high-fidelity deceptive false
targets, the anti-jamming effect of monostatic radar is not ideal, and it is difficult to deal
with the existing complex electronic jamming.

For the limitations of monostatic radar, multi-radar coordinated operations have
become a trend [12–14]. In the future battlefield, our various radars will form a multistatic
radar system with designated configurations and formations. The system must be equipped
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with several radars of the same type or different types to construct a large number of radar
groups. By connecting radars in different spatial distributions, the multistatic radar system
forms a networked detection system that occupies multiple observation angles, multiple
frequencies, and multiple working modes to obtain a high-density signal space [15–18].
Multi-platforms and multi-sensors can effectively improve the target detection performance
and parameter estimation accuracy, in contrast to monostatic radar system. [19–22].

In the fusion center of a multistatic radar system, the information collection and
processing require the signal sharing and fusion of each radar, which can effectively
distinguish interference and greatly improve the anti-jamming capability of the system.
Meanwhile, by managing and scheduling the working mode of each radar, the technical
complexity of unified jamming for the whole system is greatly increased.

Most of the existing anti-jamming methods detect targets separately in the multistatic
radar system; then, the preprocessed echo information is uniformly sent to the informa-
tion fusion center. According to the detection results from each radar station, the fusion
center obtains the final system detection results for the target based on certain distributed
detection criteria [23–25]. However, in non-ideal environments, such as a low signal to
noise ratio (SNR) or partial radar tracking loss, it is difficult for each radar to detect targets
independently. The fusion center cannot jointly process the detection results [26–28].

To deal with this problem, multistatic radar system needs to adopt the target joint de-
tection mode to ensure the overall detection probability. At this point, the radar system will
work as a whole. Each radar directly transmits the original target echo data to the system
information fusion center. In the fusion center, joint detection or parameter estimation is
carried out for the target, so as to achieve the optimal effect of jamming countermeasures.

The false target discrimination method based on parameter joint estimation is an
effective discrimination algorithm [29,30]. It can be proved that the number of radars is
an important parameter of performance, and increasing the number of transmitters or
receivers can effectively improve false target discrimination capability. However, as the
number of radars increases, communication requirements and computational complexity
increase, resulting in unnecessary consumption of equipment resources [31]. Therefore,
how to strike a balance between radar resources and identification performance becomes a
problem of resource scheduling. For multiple radar detection systems, resource scheduling
can be divided into radar layout and parameter selection. For layout optimization, Hana
proposed a performance-driven resource allocation scheme [32], and minimized the number
of transmitting and receiving radars employed in the estimation process. Hadi clustered
the sensor yield to the accuracy threshold and successfully applied a minimum number
of utilized sensors [33]. For transmitted parameter selection, Zheng selected an optimal
subset of sensors with the predetermined size and implemented the power allocation
and bandwidth strategies among them, which achieved better performance within the
same resource constraints [34]. Nil extended optimization to multi-target cases, and put
forward a joint power and bandwidth allocation strategy [35]. The posterior Cramer
Rao Lower Bound was suggested to minimize subarray utilization to a predetermined
tracking accuracy and minimized the total utilized power [36]. However, for anti-jamming
techniques, resource scheduling has not been further explored.

To solve the above problems, this paper proposes subset selection strategies of gradual
shrinkage for false target discrimination. For an existing multistatic radar system, on
the premise of satisfied preset false target discrimination performance or limited device
resources, multiple iteration screening can choose some transmitters or receivers with better
spatial distribution or discrimination ability to form the radar subset, so as to achieve the
approximate discrimination capability of the original system. The required equipment is
reduced. The amount of data that needs to be processed in the fusion center and the required
communication links are reduced. So, this strategy effectively reduces the operating costs
and optimizes the radar configuration.

The remainder of the paper is organized as follows. Section 2 introduces the signal
model for multistatic radar system with deception jamming. In Section 3, the shrinkage
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model for different situations is proposed, and the reduced time complexity is deduced.
Section 4 presents the simulation results, and conclusions are drawn in Section 5.

2. Signal Model
2.1. Construction of Multistatic Radar System Model

The target joint detection model based on a multistatic radar system is constructed of
M transmitters and N receivers. The transmitter Rt

l located at [xt
l , yt

l ], l = 1, 2, . . . , M, the
receiver Rr

k located at [xr
k, yr

k], k = 1, 2, . . . , N, and distribution are shown in Figure 1. Each
transmitter in the system transmits a set of orthogonal signals with effective bandwidth βk.
Additionally, each narrowband signal is expressed as sk(t), where β2

k/ f 2 � 1, and f is the
signal carrier frequency. It is assumed that the total power of the system remains constant
and each station transmits signals at the same power.

Figure 1. Multistatic radar system with range deception jamming.

When the jammer captures the signal, it modulates and resends a deception jamming signal
that is highly similar to the real target to form a false target. Whether the target is true or false, the
echo is an indistinguishable physical signal for the receiving station [26]. Therefore, we construct
a compatible target model in this paper. Assuming that echoes are generated on Swerling-I
model, the European distance of the transmitting signal from the l-th transmitter to the target
T = [x, y] and then to the k-th receiver can be expressed as dlk = ‖T−Rt

l‖2 + ‖T−Rr
k‖2. The

echo delay of the true target is τlk = dlk/c, where c is the speed of light.
Suppose the true target carries a self-defensive jammer, and the jammer generates dis-

tance deception jamming. The delay τlk of the jamming echo is the sum of the propagation
delay and retransmission delay, which can be represented as τlk = (dlk + ∆d)/c; ∆d is the
retransmission distance. Thus, the echo signal is uniformly structured as:

rk(t) =
M

∑
l=1

αlksk(t− τlk) + wlk(t) (1)

where wlk(t) is Gaussian noise with zero mean value, the autocorrelation function is σ2
wδ(τ),

and αlk is unknown complex amplitude.
In order to distinguish between true and false targets, deceptive distance can be uti-

lized as an important criterion. If the receiver receives the echo of a true target, it will be the
real physical location in space, and the deceptive distance ∆d is zero, while the false target
is formed by the jammer modulation retransmission, so ∆d is non-vanishing. Therefore,
deceptive distance can be used as an estimation parameter to effectively discriminate the
deceptive false targets and achieve the purpose of jamming countermeasures.

2.2. False Target Discrimination Method

Cramer Rao Lower Bound (CRLB) determines the lower bound for the variance of any
unbiased estimator. With the increase in SNR, the mean square error (MSE) of the estimated
parameter’s maximum likelihood estimator (MLE) approaches the CRLB. Ref. [37] proved
that MSE and CRLB are asymptotically close in the condition of high SNR. Therefore, CRLB
is used to indicate the MSE of the estimated parameter.
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For jamming discrimination, the unknown parameter vector of the target is u =

[x, y, ∆d, αR, αI ]
T, where αR= [αR

11, αR
21, . . . , αR

lk, . . . , αR
MN ], αI= [αI

11, αI
21, . . . , αI

lk, . . . , αI
MN ], αR

lk
and αI

lk are respectively the real and imaginary part of the target unknown complex am-
plitude, as αlk = αR

lk + jαI
lk, and its transmission channel is from transmitter l to receiver k,

and (·)T stands for matrix transpose. The unbiased estimate û of u satisfies

Eu[(û− u)(û− u)T] ≥ [J(u)]−1 (2)

where (·)−1 represents the inverse of the matrix, Eu[·] represents the expectation of u, and
J(u) is the Fischer information matrix (FIM) for estimating the parameter vector u, which is
specifically expressed as

J(u) = Er|u

{[
∂

∂u
log p(r |u )

][
∂

∂u
log p(r |u )

]T
}

(3)

where p(r |u ) is the joint probability density function (PDF) of r under the condition of
u, Er|u[·] is the conditional expectation of r for u, and r = [r1(t), r2(t), . . . , rM(t)]T is the
observation matrix.

Since the received signal (1) is the function of the time delays τlk and the complex
amplitudes αlk, we define a new estimation parameter vector as ψ = [τ, αR, αI ] with
τ = [τ11, τ12, · · · , τlk, · · · , τMN ]. The FIM, which is resorted by the chain rule, can be
represented as J(u) = PJ(ψ)PT, where the matrix J(ψ) is the FIM with respect to ψ. The
detailed derivation is presented in Appendix A.

At high SNR, the CRLB is infinitely close to the MLE, so it is used to represent the
MSE. The Cramer Rao matrix of the estimated parameter is the inverse of the FIM [29,30].

CCRLB = [J(u)]−1 (4)

The diagonal element in [CCRLB]3×3 is the lower bound of the estimated variance of
the parameters x, y and ∆d, so the estimation precision of ∆d is in the third row and the
third column of the matrix, as

σ2
∆d = [CCRLB](3,3) =

c2σ2
w

8π2β2
A11 A22 − A12 A21

|A| (5)

where (·)(3,3) represents the element in the third row and third column of the matrix. Ac-
cording to the definition of CRLB, for deceptive distance, the relationship between the
minimum limit of estimation accuracy C∆d and MSE σ2

∆d is C∆d ≤ σ2
∆d; when SNR is suffi-

ciently high, C∆d ≈ σ2
∆d [37]. Therefore, C∆d is used to represent the MSE of parameter ∆d.

The results for the final CRLB show that the estimation accuracy is inversely proportional
to the average effective bandwidth and SNR and is related to the matrix A, that is, the
estimation accuracy is related to the relative position of the target and the multistatic
radar system.

The jamming distance is used as the main feature to identify the jamming. H0: Suppose
the identified target is a true target, that is, the jamming distance ∆d is zero; H1: Suppose
the identified target is a false target, that is, the jamming distance ∆d is non-vanishing.

According to the Neyman–Pearson criterion, a discriminator is constructed [31]. Under
the condition that the true target discrimination probability is constant, the false target dis-
crimination is carried out, and the threshold is set as η = F−1

χ2
1
(PPT), where the discrimination

probability for the real target is PPT = P{H0|H0}. For the false target, the discrimination proba-
bility is PFT = P{H1|H1} = 1− Fχ2

1(∆d2/σ2
∆d)

(η), F−1
χ2

1
(·) is the inverse cumulative distribution

function of χ2
1, and Fχ2

1(∆d2/σ2
∆d)

(·) is the cumulative distribution function of χ2
1
(
∆d2/σ2

∆d
)
.

The discrimination performance of the discriminator has been verified by simulation, which
calculates that the MSE is close to the CRLB, as the SNR is above −15 dB.
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3. Shrinkage Model
3.1. Construction of Shrinkage Model

Based on the deceptive false target discrimination method for joint parameter esti-
mation, the number of radars in the system is an important parameter that affects the
discrimination probability. The more radars, the stronger the discrimination capability.
However, a large number of radars can easily cause equipment redundancy. Due to the
low utilization efficiency of certain sites, a waste of resources is unavoidable.

To settle this problem, the selection vectors qt and qr can be introduced to construct a
partial radar subset in which some transmitters/receivers are selected to replace the whole
system, where qt = [qt

1, qt
2, . . . , qt

M]
T
M×1, and qr = [qr

1, qr
2, . . . , qr

N ]
T
N×1. When the system

selects the l-th transmitter or the k-th receiver, qt
l and qr

k are set as 1, otherwise, they are set
as 0, so as to construct the extended design of C∆d.

For the final selected radar subset R =
{

Rt
l ∈ Rt, Rr

k ∈ Rr
∣∣qt

l = 1, qr
k = 1

}
, Rt and Rr

respectively contain all transmitting stations Rt
l or receiving stations Rr

k that can be selected.
So, CRLB of ∆d can be defined as CCRLB(qt

l ,q
r
k). In this paper, only the estimation accuracy

of jamming distance is applied, and ∆d’s MSE of radar subset R is shown as follows:

σ2
∆d(q

t,qr) = C∆d(qt,qr) =
M

∑
l′=1

N

∑
k′=1

qt
lq

r
k[J(u)]

−1
(3,3)

= c2σ2
w

8π2β2

M

∑
l=1

N

∑
k=1

M

∑
l′=1

N

∑
k′=1

qt
l q

r
kqt

l′ q
r
k′ (A11 A22−A21 A12)

M

∑
l=1

N

∑
k=1

M

∑
l′=1

N

∑
k′=1

M

∑
l′′=1

N

∑
k′′=1

qt
lq

r
kqt

l′ q
r
k′ q

t
l′′

qr
k′′


A11 A22 A33 + A21 A13 A32+
A12 A23 A31 − A13 A22 A31−
A21 A12 A33 − A23 A32 A11




(6)

When the l-th transmitter Rt
l(R

t
l ∈ Rt) and the k-th receiver Rr

k(R
r
k ∈ Rr) are selected,

the corresponding qt
l and qr

k in the selection vectors qt and qr are set to 1. Based on the partial
radars selected in the formula, the deceptive distance estimation accuracy can be calculated,
and the discrimination probability PFT(qt, qr) of the false target can be further improved.

In a given multistatic radar system, some transmitters and receivers contribute to
better jamming discrimination than others because of the different relative positions and
parameters for the target and each sensor.

The existing algorithm needs to search all combinations to find the best performing
subset. Such an exhaustive search method requires multiple iterations with high complexity.
Therefore, this paper proposes some subset selection methods to effectively reduce the
number of radar stations in the multistatic radar system. These algorithms reduce station
numbers and save communication resources on the premise that the deceptive target
discrimination performance meets the system requirements or the best discrimination
performance balances the limited equipment resources. In the meantime, compared with
the exhaustive search, the computational complexity is effectively reduced.

3.2. Rapid Shrinkage

For multistatic radar system, it is an asymptotic optimization problem to obtain the
preset discrimination index with the smallest number of stations. The target function is
set to the minimum number of radars, and the constraint condition is that the false target
discrimination performance reaches the preset value ηmax, as is shown in the formula:

minimize
qt

l ,q
r
k

M

∑
l=1

qt
l +

N

∑
k=1

qr
k

s.t. PFT(qt,qr) ≥ ηmax
qt

l = 0 or 1, l = 1, 2, . . . , M
qr

k = 0 or 1, k = 1, 2, .., N

(7)
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This section proposes a rapid shrinkage strategy for subset selection to obtain the
minimum number of devices under a given threshold of discrimination performance. To
reduce the time complexity of the screening process, we can select the radar combination
with the shortest target distance as the initial subset. Then, the radar station with the best
discrimination performance is selected in each round to form the radar subset. After many
iterations, the number of selected radars gradually increases. When the discrimination
probability PFT(Smin) reaches the preset threshold or all radars are selected, the iterative
process needs to be stopped, and the corresponding selection vectors q∗t and q∗r are obtained.
The operation is shown below, and the specific selection steps are shown in Algorithm 1.

Where ∪ represents the union of sets, \ represents the matrix deletion.
On the subset selection strategy of the rapid shrinkage method, for a M×N multistatic

radar system, the time complexity of finding the initial radar combination is ∼ O(M + N).
After that, in each round, one radar station is iteratively selected from the remaining radar
stations to join the radar subset, and the time complexity of each round is ∼ O(M + N).
Then, the total time complexity of the strategy is ∼ O(J(M + N)), where J is the total
number of radars in the final subset. The time complexity of exhaustive search is ∼
O
(
2M+N). A conclusion can be drawn that the time complexity is reduced from the

exponential order of exhaustive search to the linear order by the rapid shrinkage method.

3.3. Global Shrinkage

In the process of subset construction, the subsequent selection results can be directly
affected by the selection of the initial transmitters and receivers. The selection strategy of
rapid shrinkage method is proposed in Section 3.2 for the shrinkage model that can achieve
the lowest time complexity. However, the number of stations is only the local minimum,
which can not achieve the global optimum. Therefore, there may still be equipment
redundancy. This section considers the selection strategy of global shrinkage. Based on
Section 3.2, each branch can be scanned from MN channel pairs, and all local minimum
values need to be compared to obtain the subset with the best discrimination performance.
Although the complexity is increased, the local optimal problem is effectively alleviated.
Operations are shown as follows, and specific selection steps are shown in Algorithm 2.

Algorithm 1: Algorithm of Selection Strategy for Rapid Shrinkage
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Algorithm 1: Cont.
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Algorithm 2: Algorithm of Selection Strategy for Global Shrinkage
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end 
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end 
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end   
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Where ∈ represents a belonging relationship between sets.
Through the steps above, the global shrinkage subset selection strategy is obtained.

The exploratory shrinkage method reduces the time complexity to ∼ O(JMN(M + N)),
where J is the number of selected radars. According to MN different initial choices, all of
the unknown radar combinations in Section 3.2 can be obtained, so as to achieve the effect
of global optimal contraction.

3.4. Predetermined Size

In order to use limited resources reasonably, a balance needs to be achieved between
discrimination performance and equipment resources. Making full use of existing radars
is particularly meaningful for resource optimization, especially when utilization of the
system infrastructure is restricted. Motivated by this, an operational policy is proposed in
this section. The goal is to select a subset of a predetermined size X that has the greatest
distinguishing ability. This knapsack problem can be written as follows:
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maximize
qt,qr

PFT(qt, qr)

s.t. ∑M
l=1 qt

l + ∑N
k=1 qr

k = X
qt

l = 0 or 1, l = 1, . . . , M
qr

k = 0 or 1, k = 1, . . . , N

(8)

The selection of the initial transmitter and receiver has a considerable impact on the
final result. As mentioned above, there are two ways to find the best pairs as the initial
subset. In this section, we choose the initial subset selection method for global shrinkage.
For MN preselected initial subset, all pairs are compared to find the best choice as the
selected subset.

The selection steps are the same as in Section 3.3 on the shrinkage model, but the main
difference lies in the ending conditions. In this section, when the size of the preselected matrix
is X, the selection must stop. Then, with the comparison of preselected matrixes, the best
subset is singled out. At the same time, the vectors qt and qr are updated to suit the choice of
the selected transmitters or receivers. The detailed steps can be seen in Algorithm 3.

Algorithm 3: Algorithm of Selection Strategy for Predetermined Size
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Through the steps above, the predetermined size subset selection strategy is obtained.
The time complexity of this algorithm is determined through the initial subset selection,
when the initial subset is selected with the shortest target distance. It is similar to the
calculation method of Algorithm 1 in Section 3.1. The total time complexity of the strategy
is ∼ O(X(M + N)), only replacing the total number of radars J in the final subset by preset
amount X. When the initial subset is scanned from MN channel pairs, the predetermined
size method reaches the time complexity of∼ O(XMN(M + N)). The calculation is similar
to Algorithm 2 in Section 3.2.

4. Simulation Results

In the simulation section, the multistatic radar system and jamming discrimination
methods are the same as described in Section 2. Three simulations are provided to demonstrate
the feasibility and investigate the discrimination performance of the proposed approaches.

4.1. Subset Selection Strategy for Preset Discrimination Performance

Assuming that the system consists of 7 transmitters and 5 receivers, the algorithms
introduced in Section 3 are verified by various site layouts. The specific radar distribution
and selection results are shown in Figure 2. Setting false target discrimination perfor-
mance at ηmax ≥ 0.99, all radars of the system have the same transmission power, and
βk = 500 MHz, ∆d = 150 m, SNR = 10 dB.

Figure 2. Simulation for three types of subset selection strategy in case 1: (a) subset selection strategy
for rapid shrinkage; (b) subset selection strategy for global shrinkage; (c) subset selection strategy for
exhaustive search.

In the layout of case 1, the target carrying a self-defensive jammer is located on the
central axis of the maximum aperture in multistatic radar system. The simulation results
of rapid shrinkage and global shrinkage are in Figure 2a,b and Table 1; 8 radars and
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7 radars are respectively screened out to achieve the preset discrimination performance
ηmax ≥ 0.99. It demonstrates that these two algorithms can reduce the number of radars
and communication requirements, which saves equipment resources. Notably, the final
screening results are also different due to the different methods for selection of the initial
radar. Generally speaking, the subset selection strategy for global shrinkage sacrifices time
complexity to achieve the optimal discrimination performance, and the economizing of
equipment is more obvious. Contrarily, the selection strategy for rapid shrinkage is more
suitable for a large number of radars and saves calculation time.

Table 1. Simulation of different selection strategies.

Method Case q∗t q∗r PFT Runtime (ms)

Exhaustive Search 1 [1,0,1,1,0,0,1] [1,0,1,0,1] 99.66% 13.1726
Rapid Shrinkage 1 [1,1,1,1,0,0,1] [0,1,1,0,1] 99.37% 0.6763

Global Shrinkage
1 [1,0,1,1,0,0,1] [1,0,1,0,1] 99.66% 2.0671
2 [1,1,1,0,0,0,1] [1,1,0,1,1] 99.14% 2.3413
3 [1,0,1,1,0,0,1] [1,1,1,0,1] 99.22% 2.0646

Figure 2b,c show the same screening results, indicating that the exhaustive search
method and global shrinkage method can find the same subset to obtain the optimal
solution. However, the global shrinkage subset selection strategy has an edge over the
exhaustive search method due to its great capability of reducing time complexity while
ensuring the same discrimination performance.

The simulation results of some representative layouts and the selection results are
shown in Figure 3 and Table 1. They reveal that the spatial position of radars has a signifi-
cant influence on the subset selection results. The layout of case 2 has the transmitters and
receivers distributed on each side of the target, but has poor discrimination performance
and requires more radars to achieve the preset discrimination performance. In case 3,
the transmitters and receivers are staggered on one side of the target. The discrimination
performance is not as good as in case 1, but it is better than in case 2, indicating that
discrimination performs well and the demand for stations is reduced when the transmitters
and receivers are scattered.

Figure 3. Simulation results for different scenarios: (a) global shrinkage strategy in Case 2; (b) global
shrinkage strategy in Case 3.

All of the experiments were implemented in Matlab 2018b software on a PC with a
3.20 GHz Intel Core I7 CPU and 8 GB memory. The runtime parameters can be observed
in Table 1. With the same initial multistatic radar system in case 1, the method of rapid
shrinkage requires 0.6763 ms. The method of global shrinkage needs more time, and
the simulation result is 2.0671 ms. However, the running time for the exhaustive search
method is much longer than that of the proposed methods, requiring 13.1726 ms. All of the



Remote Sens. 2022, 14, 6230 12 of 18

simulations show the same results with the efficiency analysis after Algorithms 1 and 2. The
subset selection strategies of rapid shrinkage and global shrinkage can effectively improve
the speed of selection, which is especially important in complicated combat environment.
The proposed method reduces the amount of data processing time and number of required
communication links, which effectively saves operating costs.

4.2. Selection Strategy for Subset of Predetermined Size

In this section, a numerical analysis is performed on the subset selection algorithm of
predetermined size. The subset size is set to X = 6. There are four typical types of radar
layouts, and the selection results are shown in Figure 4 and Table 2.

Figure 4. The different layouts for the subset selection algorithm of predetermined size: (a) Case 1,
(b) Case 2, (c) Case 3, (d) Case 4.

Table 2. Simulation for subset selection strategy of predetermined size.

Case q∗t q∗r PFT

1 [1,0,0,1,0,0,1] [1,0,1,0,1] 96.33%
2 [1,0,1,0,0,0,1] [1,0,0,1,1] 90.59%
3 [1,0,0,1,0,0,1] [1,0,1,0,1] 81.08%
4 [1,0,0,1,0,0,1] [1,0,1,0,1] 99.48%

For all cases, transmitters 1 and 7 and receivers 1 and 5 are chosen for the subset, as
they provide the best angular spread. Most of the remaining radar stations choose the
middle position of aperture, as they may have the best channel conditions. In comparison
with case 1 and case 3, this also proves that radar aperture has a great influence on jammer
discrimination. When the target is located within the range of the maximum aperture for
the multiple radar system, the effectiveness of false target discrimination is much greater
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than when the target is outside the aperture range. This is because the larger the radar
aperture, the higher the angular resolution of the multistatic radar system with respect to
the target, and thus the lower the rate of deception. The aggregation distribution mode
for the transmitters and the receivers is not as good as in the scattered distribution, as is
described in case 2. Compared with case 1, the x-axis coordinates of each radar station
in case 4 are consistent with case 1, while the y-axis coordinates increase randomness.
Additionally, the simulation results show that the dispersed station method in case 4
has better discrimination performance than that of case 1; case 4 provides further proof
of the advantages of scattered distribution in all dimensions, which has better jammer
discrimination capabilities than other cases. All of these indexes illustrate the tradeoffs in
subset selection.

In comparison with the exhaustive search, the radar subset has the same selection
results and discrimination probability under limited sources. The selected subset can yield
the best performance among the choices of radar combinations. Thus, it can be proved that
it is an effective method to reduce the computational complexity of radar selection under
limited instrument conditions.

4.3. Simulation and Analysis of Related Factors
4.3.1. Analysis of SNR and Deceptive Distance

Discrimination probability is affected by many factors in signal processing. This
section discusses some factors that affect the results of subset selection. Based on the system
configuration in case 1 for the global shrinkage method, only the influence of SNR and
deceptive distance on the subset selection strategy is analyzed.

Simulation results are shown in Table 3. The false target discrimination probability is
sensitive to SNR and deception distance. As SNR and deceptive distance increase, the num-
ber of selected radars in the subset decreases. Sometimes, the discrimination probability
will suddenly decrease, because the shrinkage in the number of sites in the selected subset
has higher priority when the discrimination probability meets the preset requirements.

Table 3. Radar subset under different deception distances and SNR.

SNR
∆d 50 m 100 m 150 m 200 m 250 m 300 m

3 dB 2%/12 21%/12 68%/12 96%/12 99%/10 99%/9
7 dB 9%/12 74%/12 99%/11 99%/9 99%/7 99%/6

11 dB 43%/12 99%/10 99%/8 99%/6 99%/5 100%/5
15 dB 95%/12 99%/7 99%/5 100%/5 100%/5 99%/4
19 dB 99%/9 99%/5 100%/5 99%/4 100%/4 100%/4

Where the first row shows the range of deception distance, the first column represents
the range of variation in SNR, and the content of the table shows the discrimination
performance of the selected subset under the corresponding jamming distance and SNR/the
number of selected radars in the subset.

As is shown in Table 3, when SNR or deception distance is very low, the preset
discrimination requirements cannot be met even if all radar stations are deployed. In this
case, all radar stations need to be utilized to achieve the highest discrimination performance,
and the subset selection strategy proposed in this paper is no longer applicable.

4.3.2. Simulation of Single Factors

The influence of variations in global SNR or deceptive distance is mainly analyzed
above. However, in actual battlefield environment, each transmission channel between
transmitting station and receiving station has its own error characteristics, which are deter-
mined by multiple factors such as channel loss, target reflection characteristics, effective
bandwidth and transmission power.
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The transmission power of different transmitting stations, the sensitivity of different
receiving stations and environmental noise in each channel are different, so the SNR
of each transmission channel is no longer uniform. In this section, changing SNRs of
different channels are taken as an example. The influence of a single variable on subset
selection is discussed through simulation. Setting the same parameters as in Section 4.1, for
most channels SNR = 10 dB, and the method applied is the global shrinkage algorithm.
Assuming that the transmission power of transmitters 3 and 6 is higher than that of the
other transmitters, the SNR of the corresponding channels increases to 15 dB. The receiving
sensitivity of receiver 5 is low, so the SNR of the corresponding channel decreases to 5 dB.
Additionally, the SNR of other channels remains unchanged at 10 dB. After adjusting the
SNR of some channels, the selection results for different cases are obtained by simulation.

The simulation results are shown in Figure 5. By comparing Figures 2 and 3 with the
global subset selection strategies, it can be seen that the basic rules of selection strategy
are the same as in the analysis above, that is, the radar combination of maximum aperture
is easier to be selected, and the dispersed distribution mode is better than the clustered
distribution mode, etc. However, the simulation in this section shows that the SNR of each
channel has a great influence on discrimination performance. Among the three station
distribution modes, the transmission channel with a higher SNR is more likely to be selected
(transmitters 3 and 6 are selected), and the transmission channel with a lower SNR is more
likely to be abandoned (receiver 5 is not selected). Formula (5) proves that the change in
bandwidth is the same as that of SNR. If the bandwidth of the transmitting station is larger,
that channel is more likely to be selected, which will not be described here.

Figure 5. The influence of SNR variation in each channel: (a) Case 1, (b) Case 2, (c) Case 3.

4.3.3. The Rules for Subset Selection

Therefore, in battlefield environment, the subset selection method is affected by multi-
ple factors, such as SNR, bandwidth, radar station distribution mode, battlefield environ-
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ment, etc. Every factor will affect the final subset selection method. However, the three
subset selection methods proposed in this paper can achieve the required discrimination
performance and reduce demand for communication resources.

Based on the above analysis, the rules summarized below can work as meaningful
guidelines for subset selection:

• For radar layout, the radar aperture has a great influence on discrimination perfor-
mance, because it provides a larger angular resolution for target detection. When
self-defensive jammer is within the maximum aperture range of multistatic radar sys-
tem, the simulation result is better than in the situation where the jammer is far away
from the aperture center or even outside the maximum aperture range. Therefore,
when selecting a subset, the radar combination that constitutes the maximum aperture
needs to be selected.

• The choice of the initial radar has a great influence on the results during iterations.
Since the selection method for the initial subset is different, the resulting radar selection
is also different. The proposed algorithm requires a tradeoff between discrimination
performance and time complexity. If missile interception is the targeted scenario, the
rapid shrinkage subset selection strategy may be chosen to save more time for the
determination of optimal deployment. If the scenarios are radar detection and early
warning, the global shrinkage subset selection strategy is recommended to increase
the interference countermeasure performance. No matter which method is used, the
proposed methods all perform better than the exhaustive search subset method.

• The aggregation distribution mode for transmitters and receivers is not as good as the
scattered distribution mode. No matter which dimension is dispersed, more spatial
selection possibilities can be obtained, thus improving the discrimination performance
of the selected subset. Therefore, it is better to mix the alternative transmitting and
receiving radars together, and then scatter the radar stations to an area as large as
possible, which is more conductive to selection of the subset.

• If all radars in the multistatic radar system still cannot meet the preset discrimination
performance requirements when the SNR is low or the deceptive distance is small,
that may result in the inapplicability of the proposed subset selection strategy. Instead,
all radar stations will need to be used to identify the false targets.

5. Conclusions

The existing false target discrimination method based on joint parameter estimation
increases discrimination probability by adding the number of radars, which may seriously
waste system resources. In this paper, some effective strategies were proposed for selecting
a subset with gradual shrinkage. On the premise of satisfying preset discrimination
performance or balancing limited device resources, the transmitters or receivers with better
spatial positions or communication conditions in multistatic radar system are selected
gradually to form the radar subset using strategies such as the rapid shrinkage method,
global shrinkage method, and predetermined size method, which can minimize the amount
of equipment used in the multistatic radar system, reducing the burden of data processing
and the communication links required in the fusion center. Compared with the exhaustive
search method, the proposed subset selection strategy yields a significant reduction in terms
of time complexity. The subset selection strategy was verified by simulation, which showed
that a radar subset can maintain approximate discrimination performance comparable
to that of the original multistatic radar system. Additionally, the influence of SNR and
deceptive distance on the selection strategy was further analyzed. Finally, we provided a
summary of some rules that can work as meaningful guidelines for subset selection.
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Appendix A

The matrix J(ψ) is the FIM with respect to ψ, which is specifically expressed as

J(ψ) = Er|ψ

{[
∂

∂ψ
log p(r |ψ )

][
∂

∂ψ
log p(r |ψ )

]T
}

(A1)

and the conditional joint pdf of observations r is

p(r |ψ ) ∝ exp

− 1
σ2

ω

N

∑
k=1

∫
T

∣∣∣∣∣rk(t)−
M

∑
l=1

αlksk(t− τlk)

∣∣∣∣∣
2

dt

 (A2)

where T is the duration of all transmitted waveforms.
The chain derivation method can be obtained from the literature [29], and the expres-

sion of J(ψ) is

J(ψ) =
2

σ2
w

[
SMN×MN 0MN×2MN
02MN×MN I2MN×2MN

]
(A3)

S= 4π2diag
([

β2
1|α11|2, . . . , β2

l |αlk|2, . . . , β2
M|αMN |2

])
(A4)

where 0MN×2MN is the all-zero matrix with the dimension of MN×2MN, 02MN×MN is the
all-zero matrix with the dimension of 2MN ×MN, I2MN×2MN is the identity matrix with
the dimension of 2MN × 2MN, and diag(·) represents the diagonal matrix formed by each
vector element on the diagonal.

The matrix P is the Jacobian

P =
∂ψ

∂u
=

[
H3×MN 03×2MN
02MN×3 I2MN

]
(A5)

The matrix H is the partial derivative of the delay with respect to the parameters x, y
and ∆d

H = −1
c

at
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1 at
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2 . . . at
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N
bt
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1 bt
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where at
l , ar

k, bt
l and br

k respectively represent the observation angle of the transmitter/receiver
relative to the target, which is specifically expressed as
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Through the above derivation, the CRLB matrix CCRLB can be obtained as

CCRLB = [J(u)]−1 =
σ2

w
2

[
HSHT 0

0 I

]−1

(A8)

In order to obtain the estimation accuracy of parameters x, y and ∆d, it is only necessary
to derive the 3 × 3 submatrix in the upper left corner of the CRLB matrix.

[CCRLB]3×3 =
σ2

w
2

(
HSHT

)−1
=

c2σ2
w

8π2β2A
(A9)

The CRLB matrix is determined by matrices H and S, where H is determined by the
relative position of the target and radar, and S is determined by the target noise ratio and
signal bandwidth. β represents the average of effective bandwidth, as β2 = ∑M

k=1 β
2
k/M.

The normalized bandwidth βk is βk = βk/β. Additionally, each element in matrix A can be
specifically expressed as
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