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Abstract: Twenty-two flood-causative factors were nominated based on morphometric, hydrological,
soil permeability, terrain distribution, and anthropogenic inferences and further analyzed through
the novel hybrid machine learning approach of random forest, support vector machine, gradient
boosting, naïve Bayes, and decision tree machine learning (ML) models. A total of 400 flood and
nonflood locations acted as target variables of the flood hazard zoning map. All operative factors in
this study were tested using variance inflation factor (VIF) values (<5.0) and Boruta feature ranking
(<10 ranks) for FHZ maps. The hybrid model along with RF and GBM had sound flood hazard
zoning maps for the study area. The area under the receiver operating characteristics (AUROC) curve
and statistical model matrices such as accuracy, precision, recall, F1 score, and gain and lift curve
were applied to assess model performance. The 70%:30% sample ratio for training and validation of
the standalone models concerning the AUROC value showed sound results for all the ML models,
such as RF (97%), SVM (91%), GBM (97%), NB (96%), DT (88%), and hybrid (97%). The gain and lift
curve also showed the suitability of the hybrid model along with the RF, GBM, and NB models for
developing FHZ maps.

Keywords: flood susceptibility; hybrid machine learning; Boruta techniques; AUROC; NDVI

1. Introduction

In tropical countries, flooding, a natural hazard, occurs very frequently and causes
tremendous damage to both the human ecosystem and environmental diversity [1]. Floods
can also cause severe disturbances to public health infrastructure and personal property.
Nearly 2 billion people were affected by floods from 1998 to 2017 worldwide [2]. These flood
events have caused absolute losses in Asian countries, such as China (USD 492.2 billion),
India (USD 79.5 billion), and Thailand (USD 52.4 billion) from 1998 to 2017 [3]. Lack of early
warning systems and proper awareness of flood risks cause collateral damage, particularly
in developing and poor countries. Since 1953, India has been the world’s fifth-largest host
to deaths caused by floods. The National Disaster Management Authority, Government of
India, reported that nearly 7.5 million hectares of land area were affected by floods, costing
around INR 1805 billion and 1600 valuable human lives annually [4].

Major floods occur more than once every five years due to heavy precipitation in
the rainy season, mostly due to the southwest monsoon. Northeastern India, along the
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Brahmaputra catchment area, contains the most flood-vulnerable zones of the country [5].
In 2016, devastating floods killed over 200 wild animals in Kaziranga National Park and
affected nearly 1.8 million people in the Assam region. Around 28.75% (2.25 million ha)
of land area was affected by floods in Assam from 1998 to 2015. The State Disaster Man-
agement Agency of India reported that recent floods have affected over 660,000 people
and displaced nearly 40,000 others in 27 districts of Assam. The National Remote Sensing
Centre (NRSC), India [6], identified 17 out of the 34 districts of the state as flood hazard
zones that are severely affected by floods. The Rashtriya Barh Ayog [7] also stated that
around 3.12 million hectares (about 40%) of the total area are prone to flooding in the state
of Assam.

The Sendai Framework developed disaster risk assessment procedures, as well as
mapping and management of various natural hazards with affected zones located around
rivers, mountains, drylands, wetlands, and coastal flood plains. The resulting areas can be
identified as safe for the Ecumene zone [8] using the technique. Geospatial technology has
great potential to mitigate flood hazards through multidecision support analysis by incorpo-
rating a large amount of multisensor data [9]. In addition to the reduction of flood impacts,
the socioeconomic growth of rural communities can also help to preserve ecosystems. A
variety of flood-causative factors (FCFs) were used to identify the flood hazard zones of
historical flood events. Integration of GIS and RS techniques helped to minimize flood
damage with the help of flood mapping in Kerala, India [10]. Gupta and Dixit [11] used
different multidecision support systems with topographical and geomorphological factors
for flood hazard zoning (FHZ) mapping in Assam, India. Swain et al. [12] successfully
estimated FHZ mapping through the GIS AHP and Google Earth Engine Cloud using a
number of flood conditioning variables, namely, hydrological aspects, soil permeability, ter-
rain distribution, and anthropogenic inferences, in the lower Bihar region of India. Similar
studies are required for Assam, India, to protect it from frequent floods. Mapping accuracy
should be improved using updated technologies and tools for better measures against
flood devastation. AHP-fuzzy logic has been used for ranking the factors of flood hazard
zoning maps [13] (Swain et al., 2020). However, the application of the Boruta technique for
extended data by creating shuffled copies of the featured factors enhances the accuracy of
ranking [14] (Szul et al., 2021) for FHZ mapping.

The machine learning (ML) technique is a type of artificial intelligence where predic-
tion is more accurate by using historical data and records. FHZ mapping can be enriched
by using various machine learning models, namely, random forest [15], support vector
machine [16], extreme gradient boosting [17], classification and regression tree [18], alter-
nating decision tree [19], optimized tree [20], artificial neural network [21], naïve Bayes [22],
genetic algorithm rule-set production [23], Bayesian additive regression tree [24], grid
search algorithm [25], logistic regression [26], etc. Recently, the novel ensemble-based
machine learning (ML) technique was utilized for parallel high computing performance
of flood risk zone mapping on a real-time basis. Sachdeva and Kumar [27] employed an
ensemble ML approach of an extremely randomized tree model for FHZ mapping with
14 flood conditioning factors for lower Assam, India, in the year 2020. Prasad et al. [28]
used ensemble ML techniques based on adabag classifiers and AUC with 12 flood-inducing
factors for FHZ mapping on the central west coast of India. Novel integration of bootstrap-
ping and random subsampling techniques had high precision for FHZ mapping in Ardabil
province, Iran [29]. The hybrid autoencoder-MLP coupled with GIS/RS was a powerful ML
technique for developing flood risk maps in India and Iran [30]. Ha et al. [31] applied four
hybrid ML models to develop flash FHZ from National Highway 6 derived data in 2017,
2018, and 2019 for Vietnam. Ahmadlou et al. [25] used the CART model combined with
grid search and the genetic algorithm to have high-level interoperability of FHZ mapping
at 222 flood sites in Iran.

Primarily, single ML techniques were used for a limited number of flood condition
factors to create FHZ. Nowadays, the hybrid ML approach is preferred over a single
model for its higher prediction accuracy and lower bias variance [32]. The hybrid ML
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model also removes the high misclassification error of the single model. Accurate and
intelligent prediction of flood hazard zoning maps requires a greater number of factors
through a hybrid ML environment. The novelty of this research lies in the application
of Google Earth Engine cloud for analyzing a number of flood monitoring factors, such
as geomorphological, topographical, hydrological, terrain distribution, soil permeability,
and anthropogenic inferences, through advanced hybrid machine learning techniques for
drawing sound flood hazard zoning maps for Assam, India. The application of machine
learning models along with Boruta will improve the accuracy of flood hazard identification
maps in the GEE platform based on these factors.

The objective of this study is to produce high-precision flood hazard zoning maps
using a hybrid of five ML models, namely, random forest (RF), support vector machine
(SVM), gradient boosting model (GBM), decision tree (DT) classification regression tree, and
naïve Bayes (NB), in the GEE platform. These maps will be recommended to researchers and
policymakers to identify the most flood-hazard-affected areas and to implement effective
preventive measures in advance.

2. Materials and Methods
2.1. Study Area

The study area lies in the Assam region, India, extending from 22◦19′ to 28◦16′ north
latitude and 89◦42′ to 96◦30′ east longitudes (Figure 1). The study area covers around
33,908.14 km2 in the region, with an altitude range of 45–1960 m above mean sea level.
As the state of Assam experiences tropical monsoon climates, it receives heavy rainfall
(2300 mm annually) and maintains high humidity. Nearly 75% of precipitation occurs
during the monsoon spell (July to September) each year. During the winter season, it
experiences low humidity and moderate temperatures. The seasonal temperature varies
between 8 ◦C and 32 ◦C.
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Figure 1. Study area map.

Torrential precipitation in the rainy seasons and the rising water levels of the Brahma-
putra river and its branches cause floods in different parts of the state every year. The
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disaster also leads to loss of human life and animals and damage to crops, construction,
transportation, communication systems, etc. The devastating floods that hit the state of
Assam in 2015 caused a loss of 42 people and affected over 1.6 million households. The
disaster also destroyed over 2000 villages and damaged over 440,000 acres of cropland. In
July 2016, the flood forced the evacuation of more than 1.7 million people and damaged
major roads in the state. Floods in the state of Assam also affect neighboring states such
as Nagaland and Manipur. Similarly, in 2018, the floods affected around 0.45 million
people and submerged over 11,243 hectares of cropland in four districts of Assam [11].
In 2019, the disaster affected nearly 0.52 million people in 3024 villages. The Assam Dis-
aster Management Authority (ASDMA) reported that, even in the 2020 flood, more than
30,000 households were affected, including half of Kaziranga National Park and Pobitora
Wildlife Sanctuary. In addition, around 87,000 hectares of farmland were devastated in
the 2020 flood that came along with the COVID-19 pandemic (Figure 2a). During the
2022 flood, more than 6000 households were affected, and more than 60,000 hectares of
agricultural land were destroyed across the state (Figure 2b). The frequent flood in the
study area demands flood hazard mapping with new technologies.
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2.2. Historical Flood Inventory Mapping

Accurate FHZ mapping depends on different flood-causative factors suitable for the
study area. Historical flood information is required to validate the flood hazard zones.
The annual flood frequency of the study area is as high as 9–10, affecting around 40% of
the state. The country has a flood-affected area of around 10%, which makes the region
four times more prone to flooding in terms of the national average. The Assam region
had major floods in 1954, 1962, 1966, 1972, 1974, 1978, 1983, 1986, 1988, 1996, 1998, 2000,
2004, 2008, 2015, and 2018 (Government of Assam Water Resources) after independence.
Historical flood point location data were collected from the flood annual layer of Web
Map Service (WMS) maps from 1999 to 2010. The flooding hazard zone developed by the
Bhuvan National Remote Sensing Centre (NRSC), India, field photographs, and damage
site-based handheld global positioning system (GPS) points of 2020 and 2021 data were also
collected for the flood inventory mapping in the study area. In the flood model analysis,
the database was assigned a binary composition, with 200 flood points represented as ‘1′

and 200 non-flood points represented as ‘0′ in the study area. For cross-the validation and
accuracy of model prediction, the datasets were classified into training and testing groups
by 70%:30%.

2.3. Flood-Causative Factors

Characteristics of floods vary from location to location based on their geoenvironmen-
tal variability. The geographical behaviors of the study area were analyzed by selecting the
flood-causative factors (FCFs). A comprehensive literature review and communication with
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local hydrologists and administrators were carried out to assist in choosing the twenty-two
factors, including seven morphometric factors (elevation, aspect, slope, profile curvature,
topographic ruggedness index (TRI), topographic position index (TPI), and geology), six
hydrological factors (topographic wetness index (TWI), standardized precipitation index
(SPI), rainfall, distance to stream, drainage density (DD), and normalized difference flood
index (NDFI)), three soil permeability factors (soil type, soil moisture, and soil erosion),
three terrain distribution factors (land use/land cover (LULC), landform, and normalized
differential vegetation index (NDVI)), and three anthropogenic factors (population density,
Global Human Modification of Terrestrial System (GHMTS), and distance to road) for
FHZ analysis. All the thematic maps (30 m spatial resolution) were prepared using the
data sources for FHZ in the ArcGIS 10.7 (ESRI, Redlands, CA, USA) environment. The
details of FCFs used in this study, including all the preprocessing steps and methodological
framework for FHZ, were formulated in a flowchart for the research work (Table 1 and
Figure 3).

Table 1. Different data source and description for FCFs.

SL No. Data Type Sources Description Spatial Map

1. Digital elevation
model (DEM)

https:
//earthexplorer.usgs.gov * ASTER DEM (30 m)

Elevation, Aspect, Slope,
Profile curvature TWI, TRI,

TPI, and SPI,

2. European
Union/ESA/Copernicus Google Earth Engine Sentinel-2B MSI (10 m) NDVI, NDFI

3. ESA/World Cover Google Earth Engine ESA/WorldCover/v100, (10 m) LULC

4. Global ALOS Landforms Google Earth Engine CSP/ERGo/1_0/Global/
ALOS_landforms (90 m) Landform

5. Soil data

https://www.fao.org/soils-
portal/soil-survey/soil-

maps-and-databases/
harmonized-world-soil-

database-v12/en/ *

Harmonized World Soil
Database v1.2

(30 arc-second raster)
Soil type

6. NASA-USDA Enhanced
SMAP Global Soil Moisture

NASA GSFC/Google Earth
Engine

NASA_USDA/HSL/
SMAP10KM_soil_moisture

(10 km)
Soil moisture

7. Rainfall (mm/day) UCSB/CHG/Google Earth
Engine

UCSB-CHG/CHIRPS/DAILY
(0.05◦) Rainfall

8. Soil erosion (Mg/ha/y) European Soil Data Centre
(ESDAC)

Global Land Degradation as
Debts. (0.4 degrees) Soil erosion

9. Geologic USGS
U.S. Geological Survey World

Energy Project,2000, Version 2.0,
vector layer

Geology

10. Stream network https:
//www.hydrosheds.org/ **

WWF/HydroSHEDS/v1/
FreeFlowingRivers, vector layer

Drainage density, distance
to stream

11. Road network
https://www.

openstreetmap.org/export#
map=7/26.069/92.855 **

Road network in Assam region,
vector layer distance to stream

12. NASA Socioeconomic Data
and Applications Center Google Earth Engine

CIESIN/GPWv4.11/
GPW_Population_Density

(927.67 m)
Population Density

13.
The Global Human

Modification of Terrestrial
Systems

NASA Socioeconomic Data
and Applications Center

The Global Human Modification
of Terrestrial Systems v1 (2016),

1 km
GHMTS

* Accessed on 11 May 2022; ** Accessed on 12 May 2022.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.hydrosheds.org/
https://www.hydrosheds.org/
https://www.openstreetmap.org/export#map=7/26.069/92.855
https://www.openstreetmap.org/export#map=7/26.069/92.855
https://www.openstreetmap.org/export#map=7/26.069/92.855
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2.4. Morphometric Factors

The seven depicted flood conditioning factors, grouped under morphometric criteria,
were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (GDEM) data of 30 m resolution. Elevation is the main criterion for predicting
areas of flood occurrence. Flood occurrences are high in low-elevation zones in comparison
to high-elevation areas [33]. Slope also monitors subsurface runoff amount, sedimenta-
tion, infiltration rate, and flow accumulation level. Flood direction and duration are also
delineated by aspect and slope gradient factors. Degree of slope and aspect map were
extracted through the Google Earth Engine code editor. Profile curvature represents the
variation of convexity and concavity of relief features [34]. Topographic position index
(TPI), a component of terrain surface plane, represents deviation from the central cell to
the surrounding cell. Topographic ruggedness index (TRI), which represents the region’s
undulating characteristics, has an inverse relationship with flood susceptibility level [35].
TPI and TRI were derived from DEM using ArcGIS software v10.7 (Equations (1) and (2)).

TPI =
Ecell

Esurrounding
(1)

TRI = Abs(max2 −min2) (2)

where Ecell represents the elevation of the pixel;
Esurrounding represents the average elevation of the neighboring cell;
max and min represent maximum and minimum elevations, respectively.
Five geological units (mesozoic and paleozoic intrusive metamorphic rocks, undi-

vided precambrian rocks, paleogene sedimentary rocks, undivided paleozoic rocks, and
quaternary sediments) were identified. Quaternary sedimentary geological units occupy a
maximum area of 70% in the study zone.



Remote Sens. 2022, 14, 6229 7 of 26

The elevation of the study region varies from 67 to 1122 m (Figure 4). The profile
curvature in the study area ranges from −0.31 to 3.52 (Figure 4d). TPI and TRI were
categorized into five classes using the natural break Jenks method. TPI and TRI ranged
from −2.41 to 24.12 and 24.93 to 397.38 within the region of study in the categorical
geological map extracted from the U.S. Geological Survey World Energy Project, 2000
(Figure 4e,f).

2.5. Hydrologic Factors

Topographic wetness index (TWI) and standardized precipitation index (SPI) fac-
tors were estimated from digital elevation model (DEM) data using the ArcGIS tool
(Equations (3) and (4)). Flood flow intensity is greatly controlled by the gravitational effect,
which accounts for TWI distribution. TWI is a widely used geohydrological process influ-
encing basin moisture level, soil depth, water table, and saturated zone management [36].
SPI explains the erosive efficiency of flowing water within a particular point, reciprocal
to flood occurrences [37]. The drainage density (DD) map was computed through the
line density tool in the ArcGIS software environment with the help of the HydroSHEDS
free-flowing river network tool (Equation (5)).

Duration and intensity of rainfall generally determine flood acceleration rate after
a rainfall event. Mean annual rainfall data for the years 2000–2020 were extracted from
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2.0, developed
by USGS Earth Resources Observation and Science (EROS) Center, Santa Barbara, CA,
USA) in ArcGIS 10.7 software environment through the inbuilt inverse distance weighting
(IDW) tool and were used for preparing the rainfall distribution map. Annual rainfall
in the study region varied between 771 mm and 1321 mm (Figure 5d). Drainage density
monitors runoff rate, infiltration rate, and permeability, which employs the supplementary
likelihoods of a flood event. Flood occurrence was directly proportional to the distance of
the location from the rivers [38]. The Euclidean distance tool was used for producing the
distance stream map in the ArcGIS environment. The normalized difference flood index
(NDFI) was computed using the RED and SWIR2 bands of Sentinel 2B MSI data in the GEE
platform [39] (Equation (6)).

TWI = In(Ai/ tan β) (3)

SPI = Ai × tan β (4)

where Ai: basin area;
β: degree of gradient slope.

DD =
∑n

i=1 Zi

Ai
(5)

where: ∑n
i=1 zi sum of stream length (Z);

Ai: total basin area;
‘n’: number of streams within the area.

NDFI =
RED− SWIR2
RED + SWIR2

(6)

where NDFI: normalized difference flood index; RED and SWIR2: reflectance values for the
Red and SWIR2 band spectrum, respectively.

TWI and SPI values ranged from 6.54 to 20.25 and −6.82 to 9.33 (Figure 5a,b). Drainage
density was classified into five zones, namely,≤0.30 km/km2,≤0.39 km/km2,≤0.47 km/km2,
≤0.56 km/km2, and ≤0.78 km/km2 (Figure 4c). Distance to rivers was categorized into
five classes (≤327 m, ≤695 m, ≤1076 m, ≤1567 m, and ≤3475 m). The range of the NDFI
value was between 0.16 and 0.99.
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2.6. Soil Permeability Factors

Soil type, a predisposing factor of floods, determines the soil permeability rate, soil
percolation rate, and rate of runoff. The soil map of the study site was extracted from
the Harmonized World Soil Database v1.2 portal. The soil moisture active and passive
(SMAP) satellite-derived L-band was used for developing the soil moisture distribution
map through the GEE platform. Soil erosion could also trigger flood events due to their
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sediment load [40]. The soil erosion map was developed from the Global Land Degradation
as Debts database.

Four soil types were defined in ascending order of their area coverage in percentages,
such as clay (0.06%), sandy loam (8.68%), loam (39.02%), and sandy clay loam (49.88%)
(Figure 6a). Five soil moisture zones were demarcated for the study area (Figure 5b). Soil
erosion maps were developed from the Global Land Degradation as Debts of the European
Soil Data Centre (Figure 6c). The soil erosion rate ranged from 10.25 to 18.72 Mg/ha/y. The
central region of the study area received very high soil erosion incidents in the range of
≤18.72 Mg/ha/y (Figure 6c).
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2.7. Terrain Distribution Factors

Land use/land cover (LULC) pattern directly impacts the occurrence of a flash flood.
Land area covered with vegetation is less prone to flooding compared to barren land [41].
The LULC map of 2020 was obtained from the European Space Agency (ESA/WorldCover
datasets). Global Advanced Land Observing Satellite (ALOS) landform classes are very
sensitive to the quantification of land cover zones, as they are ecologically relevant to the
physiographic process [42]. The landform layers were obtained from ALOS Polarimetric
phased array L-band synthetic aperture radar (PALSAR) data. Twelve landform classes
were utilized for FHZ, i.e., peak/ridge (warm), peak/ridge, mountain/divider, cliff, upper
slope (warm), upper slope, upper slope (flat), lower slope (warm), and lower slope. NDVI is
a good indicator of vegetation coverage, largely inducing soil moisture, evapotranspiration,
infiltration, sediment transportation, and runoff. High NDVI minimizes flood events [28]
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and vice versa. The NDVI layer was prepared from the Sentinel 2B MSI image of 2021 using
the NDVI estimation equation (Equation (7)).

NDVI =
NIR− RED
NIR + RED

(7)

where NDVI: normalized differential vegetation indices;
NIR and RED: reflectance indices for NIR and Red band, respectively.
Eight LU/LC classes were distinguished for the study region. Cropland demarcated

the maximum area (47.49%), followed by tree cover (35.51%), permanent water bodies
(8.56%), barren land (5.21%), grassland (1.65%), built-up (1.18%), shrubland (0.20%), and
herbaceous wetland (0.20%) (Figure 7a). The annual NDVI layer was classified into five
levels, and the levels of ≤0.19 occupied the maximum (62.03%) area, followed by the level
of ≤0.12 (21.38%), ≤0.26 (14.26%), ≤0.03 (2.03%), and 0.53 (0.30%) (Figure 7c).
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2.8. Anthropogenic Inferences Factors

Population density (PD), one of the major anthropogenic factors affecting all resources,
monitors the recharge or discharge of water, infiltration rate, and water flow. The PD map
was obtained from the Landsat v1-based GPWv4.11 database through the GEE platform.
The Global Human Modification of Terrestrial System (GHMTS) implies different human
modification stress that could impact the degree of flood risk [43]. The GHMTS layer was
produced from the NASA Socioeconomic Data and Applications Centre database. The
distance to the road factor was computed through the Euclidean distance tool in ArcGIS
10.7 software.
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This current study has identified five classes of person/km2 level e.g., ≤471, ≤916,
≤2277, ≤4921, and ≤6675 in person/km2 (Figure 8a) for population density analysis. The
range of the GHMTS layer was demarcated between 0.34 and 0.87 (Figure 8b). As we
know, the nearby roads are highly prone to flood occurrences with their impervious surface
and water blockage [12], and distance to road has some impact on the frequency of floods.
Distance to road maps is also classified into five categories, namely, ≤1139 m, ≤3020 m,
≤5470 m, ≤8870 m, and ≤16,040 m (Figure 8c).
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2.9. Boruta Feature Ranking and Multicollinearity Check

The comparative importance of the flood-influencing factors was visualized before
the model’s validation. This step can help in determining the model’s ability to improve
prediction accuracy to cope with flood hazard zoning. The efficiency of each factor was
measured using the statistical properties of its correlation with flooding and classification
status. The Boruta feature ranking technique was used to identify the most significant
factors for the forecast of FHZ [14]. Here, the randomness was given to the data set by
creating shuffled copies of all features (shadow data set). Then, the iteration process
checked whether a real feature has a higher importance than the best of its shadow features.
The iteration continued until all the features were either confirmed or rejected. The Boruta
feature selection helped in achieving the optimum accuracy and reducing the model
overfitting problems. The random forest method identified the relative importance of the
flood susceptibility factor in the Boruta feature selection. The variance inflation factor (VIF)
technique was used for checking the multicollinearity problem of each FCF. The model can
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give sound performance when the VIF is less than 5, indicating the absence of collinearity
in the factors [44]. The VIF was calculated as follows (Equations (8) and (9)).

Tolerance = R2
j (8)

where R2
J : coefficient of determination of regression of explanatory J on all the other

explanatories

VIF =
1

Tolerance
(9)

where VIF: variance inflation factor; Tolerance: tolerance level.

2.10. Machine Learning Model
2.10.1. Random Forest

The random forest (RF) model is an ensemble tree-based machine learning model
coined by Breiman [45]. The goal of an ensemble learning technique is to combine the
training of various decision trees into a single prediction. RF can also be used to estimate
the accuracy of various decision tree classifiers on different subsample points (bootstrapping)
when building trees (ntree). It uses simple averaging to improve its accuracy and control
overfitting while maintaining the subsample size. In the RF technique, if the bootstrap
criterion is True, then the whole dataset is used to build the tree.

2.10.2. Support Vector Machine

The support vector machine is very efficient in high-dimensional spaces. It can be very
useful where the number of samples is greater than the number of training points. It also
uses a subset of the decision function (support vectors) and regularizes factors to perform
memory-efficient calculations. There are many types of kernels, e.g., ‘linear’, ‘radial basis
(rbf)’, ‘sigmoid’, ‘poly’, and ‘precomputed’, that can be specified for the decision attributes
of the model. Several studies have reported that the ‘rbf ’ function outperforms others for
flood risk modeling [46].

2.10.3. Gradient Boosting Model

The powerful ensemble gradient boosting algorithm (GBM) is used for performing
various calculations associated with the regression and classification of tabular data. The GB
model is an additive framework that permits the execution of differentiable loss functions in
a forward-looking manner and reduces the error gradient. In each stage, a regression tree is
fitted to the negative classifier of the calculated loss function. The main parameters that the
GBM algorithm considers for FHZ when it comes to performing various hyperparameters
are learning rate, maximum tree depth, minimum tree weight, regularization alpha, and
lambda [47].

2.10.4. Naïve Bayes

Naïve Bayes methods are based on the Bayes theorem, which states that every feature
of a class variable has conditional independence of probability [48]. The ability to decouple
the class conditional feature agrees with Bayes methods to accomplish fast and precise
classification and learning tasks. This eliminates the need for further investigation related
to dimensionality patterns.

2.10.5. Decision Tree

A decision tree (DT) is a type of supervised learning method that can model simple
decision rules found in the data features. DT takes place in a tree structure such as decision
nodes and end nodes with categorical, binary, and continuous variables [49]. It works
as a white box model for feature selection. Gini index, information gain, and chi-square
methods were used for making a decision tree.
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2.10.6. Hybrid Modeling

All four above-mentioned models used the stacking method to develop the hybrid
machine learning model. Model evaluation and performance analysis were used through
VotingClassifier in the scikit-learn library through the Anaconda Jupyter notebook v6.1.4.
Currently, hybrid machine learning is very popular for FHZ [16,24,50]. All ML classifier
analyses use the sklearn OneHotEncoder, GridSearchCV, and the pipeline approach in
Python for continuous and categorical data to generate FHZ. All the ML models performed
well through the best tuning optimization incorporated into twenty-two flood-causative
factors (Table 2).

Table 2. Best tuning parameters of the ML model for FHZ.

Model Name Best Tuning Parameters

Random forest

‘estimator__criterion’: ‘gini’;
‘estimator__max_depth’: 5,
‘estimator__min_samples_split’: 2,
‘estimator__n_estimators’: 100,
‘estimator__bootstrap’: True,

Support vector machine

‘estimator__C’: 1.0,
‘estimator__kernel’: ‘rbf’,
‘estimator__tol’: 0.001,
‘n_features_to_select’: 5,
‘estimator__cache_size’: 200,
‘estimator__probability’: True

Gradient boosting

‘estimator__learning_rate’: 0.05,
n_estimators = 15,
‘estimator__criterion’: ‘friedman_mse’,
‘estimator__max_depth’: 3,
‘estimator__tol’: 0.0001,
max_features = ‘log2′

‘estimator__min_samples_split’: 2

Naïve Bayes

‘verbose’: False,
‘kbest’: SelectKBest (k = 6),
‘model’: GaussianNB (),
‘kbest__k’: 6,
‘model__var_smoothing’: 1 × 10−9

Decision tree

‘estimator__criterion’: ‘gini’,
‘estimator__max_depth’: 4,
‘estimator__min_samples_leaf’: 1,
‘estimator__min_samples_split’: 2,
‘n_features_to_select’: 5,
‘estimator__splitter’: ‘best’,

2.11. Model Validation and Performance Evaluation

As statistical measures, the precision, recall, F1 score, area under the curve (AUC), and
model accuracy were applied to assess the performances of the ML models (Equations (10)–(13)).
Model accuracy can specify the validation result for witnessed flood pixels and nonflood
pixels. AUROC analysis represents the true-positive rate (specificity value) and false-
positive rate (sensitivity value) of the probability of floods and nonflood pixel ratios,
which are correctly classified. AUC performance considers model reliability and exactness.
An AUC value range between 0 and 1 was used in Equation (14). A higher AUC value
influenced the better acceptability of the model optimization [22].

precision =
TP

TP + FP
(10)
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recall =
TP

TP + FN
(11)

F1 =
2× precision× recall

precision + recall
(12)

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

where true positive (TP) and true negative (TN) are correctly predicted pixel numbers;
False positive (FP) and false negative (FN) are falsely predicted pixel numbers;
P: total number of floods;
N: total number of nonfloods denoted by N.
The cumulative gain curve is used for the model benefits and effectiveness of flood and

nonflood pixels. The cumulative gain curve shows the performance of the mentioned model
when it estimates new targets that can be reached based on a given population. It shows the
percentage of individuals that our model can realistically reach with the highest probability
of being successful. The cumulative gain curve is a graphical representation between
the gain on the vertical axis and the decile (percentage of the sample) on the horizontal
axis. The lift curve is a ratio of the number of positives that the model can influence the
probable number of negative observations that it considers zero within a random space.
The lift curve demonstrates the association between the positive and negative records of
deciles. The larger the area between the gain/lift and baseline, the better the model works
(Equations (14) and (15)).

Gain =
Cumulative number of positive observations upto decile k

Total number of positive observations in the sample
(14)

Lift =
Cumulative number of positive observations up to decile k using ML model

Cumulative number of positive observations up to decile k using a random model
(15)

where Gain: gain in terms of positive observations;
Lift: association between positive and negative records.

3. Results
3.1. Multicollinearity Test and Boruta Feature Ranking

Multicollinearity testing and Boruta feature ranking of the twenty-two flood moni-
toring factors were carried out (Table 3). The VIF ranged between 1.07 and 3.28, and the
uppermost and lowermost values of VIF were assigned with NDFI and TWI. As all the
values of VIF were within the limit (<5.0), there was no multicollinearity problem among
the flood-influencing factors. The result of the Boruta method found that fourteen factors
were the most important (Rank 1) for the current study, namely, elevation, landform, soil
moisture, slope, TRI, LULC, NDVI, NDFI, distance to stream, rainfall, population density,
GHMTS, distance to road, and geology (Figure 4a). In contrast, SPI, TWI, and soil erosion
had a moderate (Rank 2) influence on flood events, whereas drainage density, profile
curvature, TPI, soil type, and aspect had the least importance (Ranks 3, 4, 5, 6, and 7) for
FHZ [19].
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Table 3. Multicollinearity test and Boruta feature rank analysis for FHZ.

Factors VIF Boruta Rank

Elevation 2.10 1

Landform 1.99 1

Soil moisture 1.28 1

Slope 1.57 1

TRI 2.01 1

LULC 2.33 1

NDVI 2.45 1

NDFI 1.07 1

Distance to stream 1.43 1

Rainfall 1.67 1

Population density 1.40 1

GHMTS 1.46 1

Distance to road 1.54 1

Geology 1.39 1

SPI 2.72 2

TWI 3.28 2

Soil erosion 1.68 2

Drain density 1.57 3

Profile curvature 2.33 4

TPI 2.67 5

Soil type 1.33 6

Aspect 1.07 7

3.2. Flood Hazard Zoning

Spatial analysis of FHZ was created using five ML models of RF, SVM, GBM, NB,
and DT and one hybrid model in the Assam region of India. All of these ML models’
output maps were reclassified into five flood hazard zones (i.e., very low, low, moderate,
high, and very high) using the well-defined natural Jenks method through the ArcGIS tool
(Figure 8). Based on the RF model, 39.07% of the study region was classified as a very
high flood hazard zone, whereas 14.52% and 22.32% of the region were very low and low
flood-prone areas, respectively (Figure 8a). In the SVM model, the aerial coverage of very
high and high flood-prone areas was 96.74% and 2.73%, respectively. In the instance of
the GBM model, the arranged FHZ map revealed in terms of aerial coverage for the five
zones was very high, 23,180.38 (68.36%); high, 6471.47 (19.08%); moderate, 0.23 (0.001%);
low, 4252.89 (12.54%); and very low, 3.18 (0.009%) km2. In the NB model, the areal coverage
of very low, low, moderate, high, and very high flood-prone zones was 7387.47 (21.79%),
2233.54 (6.59%), 2092.41 (6.17%) 2815.44 (8.30%), and 19,379.27 (57.15%) km2, respectively
(Figure 8). According to the DT model, 39.35% and 60.65% of the study area fall into the
very high and very low flood hazard zones (Figure 9). Lastly, the outcomes produced in the
hybrid ML proposed that 6952.78 km2 (20.50%) of the study region was in very high flood
hazard zones, whereas 5076.56 (14.97%) km2 had a moderate chance of flooding (Figure 9f).
According to this model, 52.55% of the study region was under a low flood-prone area
(Figure 10), which was represented as the optimum area among all the models. The general
rule of thumb as revealed during the research was that the area near the courses of the river
was very high flood-prone, and the remote to upper part courses was very low flood-prone.
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Figure 10. FHZ area coverage by different machine learning models.

This region is more prone to floods because of the presence of the Brahmaputra river,
with high sediment load during monsoon periods and high runoff coming down from the
uphill to the lower confluence river, causing a flash flood event. Accordingly, the blend
of morphometric, hydrologic, soil permeability, terrain distribution, and anthropogenic
inferences is the main monitoring factor for a higher inclination of overflowing along the
courses of the riverbank of the study area.

3.3. Validation of ML Models

The single validation method is inadequate for the verification of the flood susceptible
zones with the uncertainty of the data variability. Therefore, in this study, we used different
ML metrics to verify the outcome, such as accuracy, precision, recall, F1 score, and AUROC.

3.3.1. AUROC Evaluation

The model accuracy of the testing sample and the NB model was very well fitted
compared to the others. The AUROC value was higher than 95% for the hybrid, RF, NB,
and GBM models, followed by SVM (91%) and DT (88%) (Figure 11). The precision values
of the RF and hybrid models were 0.94 and 0.95, respectively (Table 4). Similarly, the recall
values of the SVM and hybrid models were 0.97 and 0.92, respectively (Figure 11). The F1
scores of the GBM and hybrid models were 0.91 and 0.93, respectively. This research found
that the hybrid model and others, namely, the RF, GBM, and NB models, performed well
with their higher metrics value for FHZ analysis.

3.3.2. Cumulative Gain and Lift Curve Evaluation

The gain and lift curve was used to evaluate the performance of the tested ML models.
It refers to how much better the model can perform when comparing the predictive model
with the baseline. As we know, the more the area between the model and the baseline, the
better the model performed. According to the cumulative gain and lift curve, the hybrid,
RF, GBM, and NB models were identified as the best predictive models (Figures 12 and 13).
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models: (a) random forest (RF); (b) support vector machine (SVM); (c) gradient boosting model
(GBM); (d) naïve Bayes (NB); (e) decision tree (DT); (f) hybrid.

Table 4. Different ML model metrics for FHZ.

Classifiers Test accuracy Precision Recall F1 Score AUROC

RF 0.90 0.94 0.89 0.91 0.97

SVM 0.86 0.78 0.97 0.87 0.91

GBM 0.90 0.95 0.87 0.91 0.97

NB 0.95 0.85 0.95 0.89 0.96

DT 0.93 0.92 0.92 0.93 0.88

Hybrid 0.94 0.95 0.94 0.94 0.97
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4. Discussion

Geospatial technology is the most promising and superior technology for the identifica-
tion of flood-prone areas and for quantifying and reducing the damages triggered by flood
disasters. Various research works have demarcated the spatial analysis of flood hazard
zoning maps through the multicriteria decision support architecture with a single machine
learning model and few factors. Currently, hybrid machine learning is very popular for
flood susceptibility mapping due to its optimal accuracy, computational power robust
approach, execution time, and satisfactory performance [16,50]. The recently developed
Google Earth Engine Cloud provides several FCFs to monitor floods on a near-real-time
basis [12].

4.1. Flood Hazard Zoning Criteria Selection

In this study, the twenty-two most flood-influencing factors were analyzed through
hybrid machine learning and GIS/RS technology for flood susceptibility mapping in Assam,
India. The twenty-two individual factors were grouped through morphometric, hydrologic,
soil permeability, terrain distribution, and anthropogenic inference classes. These factors
were selected from a previous work having a major contribution towards or against flood
occurrence in the study area [16]. Some of the factors were classified into more than five
classes, which were later regrouped into five classes (for instance, aspect had ten classes,
and land use/land cover had eight classes). In addition, for some factors, the majority of
the study area was classified under one or two classes instead of five (e.g., topographic
position index, population density, soil type, etc.). Factors such as geology, soil erosion, etc.,
have distinct areas under all five classes. Distance to river factors mostly measured the
distance of the area from the Brahmaputra river or its branches, showing the contribution
of the Brahmaputra river towards flood hazards in the region.

4.2. Multicollinearity Test and Boruta Feature Rank

The permissible limit (5) of the VIF value is not exceeded for all the individual factors
used for ML model development. Similarly, all the factors were ranked below 10 (threshold
of ranking) through the Boruta feature rank. Therefore, all 22 selected factors were later
included in FHZ mapping through machine learning models. As per the Boruta ranking,
factors such as elevation, soil moisture, slope, TRI, LULC, NDVI, NDFI, and rainfall were
the most influential factors causing floods in the region. The proximity of the riverbank
causes a large amount of sediment load and generates runoff with higher water depth,
mostly responsible for flood inundation incidents during torrential rainfall [51]. However,
vegetation cover reduces soil erosion and sediment-free runoff, and soil moisture availabil-
ity assists in the reduction in the number of flood occurrences [52]. Factors such as elevation,
slope, TRI, TPI, SPI, TWI, and drainage density, grouped under morphometric factors, had
a substantial influence on the extent of flood inundation, depth of the riverbed, recharge
and discharge rate, runoff speed, and sediment distribution pattern [53,54]. Factors such
as land use/land cover, soil type, soil erosion, and geology, which also affect soil depth,
groundwater table, and infiltration rate, are directly associated with flood events [55]. Ur-
banization, industrialization, and climate change events along with deforestation, reduced
agricultural land use, degradation of ecosystem biodiversity, etc., lead to severe flood
disasters [56]. Population density and GHMTS with different human modification stressors
can also greatly impact the degree of flood risk [43]. Built-up areas and road infrastructure
modified the terrestrial ecosystem, producing larger impervious surfaces, which blocked
the groundwater recharge and created a conducive environment for flash flood events.

4.3. Flood Hazard Zoning

The current research applied different machine learning models, i.e., RF, SVM, GBM,
NB, DT, and hybrid, for FHZ mapping in the Assam region, India. As expected, the
hybrid model has better prediction along with the RF and GBM models. The application
of machine learning has been carried out in a number of fields, including medical science,
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agriculture, etc. The applications of these models for disaster prediction and mapping are
novel in terms of their approach. The accuracy will definitely improve by applying these
techniques for developing flood hazard zoning maps along with remote sensing and GIS in
the Google Earth Engine platform.

4.4. ML Model Validation

All the ML model evaluations included different matrices such as precision, recall,
F1 score, and area under the curve (AUC). The validation results presented that the AUC
values ranged from 0.88 to 0.97 for the ML models. AUROC values of >95% for the
hybrid, RF, NB, and GBM models outperformed the SVM (91%) and DT (88%) models.
The outcomes of our study validated the suitability hybrid model with accuracy—0.94,
precision—0.95, recall—0.94, and F1 score—0.94 to perform the FHZ analysis. In this
research, the gain and lift curves were mainly demarcated with the rank order of the
chances of flood at each observation point. The technique can be used for the quick and
accurate prediction of floods in an area to prevent loss of life and properties.

Future flood monitoring can be incorporated with advanced AI, hybrid deep learning,
UAV, IoT, LiDAR, and real-time cloud and web-based models to optimize the accuracy
level of spatial analysis for flood monitoring.

5. Conclusions

The northern part of Assam is located in one of the major flood-prone areas of In-
dia. A total of twenty-two flood condition factors were nominated and tested through
multicollinearity testing and Boruta feature ranking for flood hazard zoning maps in the
northern part of Assam, India. The current research deployed five machine learning models
and a hybrid model for an intelligent spatial analysis of flood hazard zoning. A total of
400 flood and nonflood locations acted as target variables of flood hazard zoning. The
AUROC mechanism identified the model performance and correctly predicted flood pixels
in the region. The validation result presented that the AUC value ranged from 0.88 to
0.97 for all tested models. The outcome of the hybrid model was outstanding (with an
AUROC of 0.97) along with the RF and GBM models for successful FHZ. The flood hazard
zoning tool will support the local administrator in making conducive policy decisions
against flood damage control and remaining vigilant to carry out preventive measures in
flood probability zones. The proposed methodological framework will be very effective for
decision-making planners, insurance estimators, and governmental disaster authorities in
their tactical planning for flood monitoring and management.

Author Contributions: Methodology, C.S.; Software, K.C.S. and M.M.; Validation, C.S.; Formal
analysis, K.C.S.; Investigation, M.M. and H.G.A.; Resources, H.A. and M.A.-M.; Data curation, C.S.;
Visualization, M.A.-M.; Project administration, H.G.A. and H.A.; Funding acquisition, H.G.A., H.A.
and M.A.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by Princess Nourah bint Abdulrahman University Research
Supporting Project Number PNURSP2022R24, Princess Nourah bint Abdulrahman University, Riyad,
Saudi Arabia. The article processing charge was funded by the Deanship of Scientific Research,
Qassim University.

Data Availability Statement: Data will be available on request.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research, Qassim
University for funding the publication of this project.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 6229 24 of 26

References
1. Arora, A.; Arabameri, A.; Pandey, M.; Siddiqui, M.A.; Shukla, U.K.; Bui, D.T.; Mishra, V.N.; Bhardwaj, A. Optimization of

State-of-the-Art Fuzzy-Metaheuristic Anfis-Based Machine Learning Models for Flood Susceptibility Prediction Mapping in the
Middle Ganga Plain, India. Sci. Total. Environ. 2020, 750, 141565. [CrossRef] [PubMed]

2. WHO (World Health Organization). Floods. 2017. Available online: https://www.who.int/health-topics/floods (accessed on 13
January 2022).

3. UNISDR (United Nations Office for Disaster Risk Reduction). Economic 1998-2017 Losses, Poverty & DISASTERS, 2017.1-30.
Available online: www.unisdr.org (accessed on 21 January 2022).

4. NDMA. (National Disaster Management Authority), Government of India, Floods. 2018. Available online: https://ndma.gov.in/
Natural-Hazards/Floods (accessed on 21 January 2022).

5. López, P.L.; Sultana, T.; Kafi, M.A.H.; Hossain, M.S.; Khan, A.S.; Masud, M.S. Evaluation of Global Water Resources Reanalysis
Data for Estimating Flood Events in the Brahmaputra River Basin. Water Resour. Manag. 2020, 34, 2201–2220. [CrossRef]

6. NRSC (National Remote Sensing Centre). India, Flood Inundation Maps -2022. 2016. Available online: https://www.nrsc.gov.in/
Floods_Inundation_2022?language_content_entity=en (accessed on 10 January 2022).

7. RBA. (Rashtriya Barh Ayog). Flood and Erosion Problem. 2009. Available online: https://waterresources.assam.gov.in/portlets/
flood-erosion-problems (accessed on 14 March 2021).

8. UNISDR. (United Nations Office for Disaster Risk Reduction). Sendai Framework for Disaster Risk Reduction 2015—2030,
2015,1-35, UNISDR/GE/2015—ICLUX EN5000 1st edition. Available online: https://www.unisdr.org (accessed on 13 April 2022).

9. El-Haddad, B.A.; Youssef, A.M.; Pourghasemi, H.R.; Pradhan, B.; El-Shater, A.-H.; El-Khashab, M.H. Flood susceptibility
prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Nat. Hazards
2021, 105, 83–114. [CrossRef]

10. Vilasan, R.T.; Kapse, V.S. Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of
Ernakulam district (India). Nat. Hazards 2022, 112, 1767–1793. [CrossRef]

11. Gupta, L.; Dixit, J. A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and
administrative level. Geocarto Int. 2022. [CrossRef]

12. Swain, K.C.; Singha, C.; Nayak, L. Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud. ISPRS Int. J.
Geo-Inf. 2020, 9, 720. [CrossRef]

13. Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical
Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [CrossRef]

14. Szul, T.; Tabor, S.; Pancerz, K. Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set
Theory (RST) to Prediction Energy Consumption for Building Heating. Energies 2021, 14, 2779. [CrossRef]

15. Hen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling flood susceptibility
using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total. Environ. 2019,
701, 134979. [CrossRef]

16. Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility
modelling using advanced ensemble machine learning models. Geosci. Front. 2020, 12, 101075. [CrossRef]

17. Madhuri, R.; Sistla, S.; Raju, K.S. Application of machine learning algorithms for flood susceptibility assessment and risk
management. J. Water Clim. Chang. 2021, 12, 2608–2623. [CrossRef]

18. Pandey, M.; Arora, A.; Arabameri, A.; Costache, R.; Kumar, N.; Mishra, V.N.; Nguyen, H.; Mishra, J.; Siddiqui, M.A.; Ray, Y.; et al.
Flood Susceptibility Modeling in a Subtropical Humid Low-Relief Alluvial Plain Environment: Application of Novel Ensemble
Machine Learning Approach. Front. Earth Sci. 2021, 9, 659296. [CrossRef]

19. Costache, R.; Arabameri, A.; Elkhrachy, I.; Ghorbanzadeh, O.; Pham, Q.B. Detection of areas prone to flood risk using state-of-the-
art machine learning models. Geomat. Nat. Hazards Risk 2021, 12, 1488–1507. [CrossRef]

20. Eslaminezhad, S.A.; Eftekhari, M.; Azma, A.; Kiyanfar, R.; Akbari, M. Assessment of flood susceptibility prediction based on
optimized tree-based machine learning models. J. Water Clim. Chang. 2022, 13, 2353–2385. [CrossRef]

21. Costache, R.; Pham, Q.B.; Avand, M.; Linh, N.T.T.; Vojtek, M.; Vojteková, J.; Lee, S.; Khoi, D.N.; Nhi, P.T.T.; Dung, T.D. Novel
hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment.
J. Environ. Manag. 2020, 265, 110485. [CrossRef]

22. Sankaranarayanan, S.; Prabhakar, M.; Satish, S.; Jain, P.; Ramprasad, A.; Krishnan, A. Flood prediction based on weather
parameters using deep learning. J. Water Clim. Chang. 2020, 11, 1766–1783. [CrossRef]

23. Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning
techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [CrossRef]

24. Janizadeh, S.; Vafakhah, M.; Kapelan, Z.; Dinan, N.M. Novel Bayesian Additive Regression Tree Methodology for Flood
Susceptibility Modeling. Water Resour. Manag. 2021, 35, 4621–4646. [CrossRef]

25. Ahmadlou, M.; Ghajari, Y.E.; Karimi, M. Enhanced Classification and Regression Tree (Cart) by Genetic Algorithm (Ga) and Grid
Search (Gs) for Flood Susceptibility Mapping and Assessment. Geocarto Int. 2022. [CrossRef]

26. Janizadeh, S.; Avand, M.; Jaafari, A.; Van Phong, T.; Bayat, M.; Ahmadisharaf, E.; Prakash, I.; Pham, B.T.; Lee, S. Prediction Success
of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability 2019, 11, 5426.
[CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.141565
http://www.ncbi.nlm.nih.gov/pubmed/32882492
https://www.who.int/health-topics/floods
www.unisdr.org
https://ndma.gov.in/Natural-Hazards/Floods
https://ndma.gov.in/Natural-Hazards/Floods
http://doi.org/10.1007/s11269-020-02546-z
https://www.nrsc.gov.in/Floods_Inundation_2022?language_content_entity=en
https://www.nrsc.gov.in/Floods_Inundation_2022?language_content_entity=en
https://waterresources.assam.gov.in/portlets/flood-erosion-problems
https://waterresources.assam.gov.in/portlets/flood-erosion-problems
https://www.unisdr.org
http://doi.org/10.1007/s11069-020-04296-y
http://doi.org/10.1007/s11069-022-05248-4
http://doi.org/10.1080/10106049.2022.2060329
http://doi.org/10.3390/ijgi9120720
http://doi.org/10.3390/rs13234761
http://doi.org/10.3390/en14102779
http://doi.org/10.1016/j.scitotenv.2019.134979
http://doi.org/10.1016/j.gsf.2020.09.006
http://doi.org/10.2166/wcc.2021.051
http://doi.org/10.3389/feart.2021.659296
http://doi.org/10.1080/19475705.2021.1920480
http://doi.org/10.2166/wcc.2022.435
http://doi.org/10.1016/j.jenvman.2020.110485
http://doi.org/10.2166/wcc.2019.321
http://doi.org/10.1016/j.ijdrr.2020.101687
http://doi.org/10.1007/s11269-021-02972-7
http://doi.org/10.1080/10106049.2022.2082550
http://doi.org/10.3390/su11195426


Remote Sens. 2022, 14, 6229 25 of 26

27. Sachdeva, S.; Kumar, B. Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods. Ecol. Inform.
2022, 67, 101498. [CrossRef]

28. Prasad, P.; Loveson, V.J.; Das, B.; Kotha, M. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto
Int. 2021, 37, 4571–4593. [CrossRef]

29. Dodangeh, E.; Choubin, B.; Eigdir, A.N.; Nabipour, N.; Panahi, M.; Shamshirband, S.; Mosavi, A. Integrated machine learning
methods with resampling algorithms for flood susceptibility prediction. Sci. Total Environ. 2020, 705, 135983. [CrossRef] [PubMed]

30. Ahmadlou, M.; Al-Fugara, A.; Al-Shabeeb, A.R.; Arora, A.; Al-Adamat, R.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Sajedi,
H. Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and
autoencoder neural networks. J. Flood Risk Manag. 2020, 14, e12683. [CrossRef]

31. Ha, H.; Luu, C.; Bui, Q.D.; Pham, D.-H.; Hoang, T.; Nguyen, V.-P.; Vu, M.T.; Pham, B.T. Flash flood susceptibility prediction
mapping for a road network using hybrid machine learning models. Nat. Hazards 2021, 109, 1247–1270. [CrossRef]

32. Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment
using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method.
Sci. Total Environ. 2020, 711, 135161. [CrossRef]

33. Xi, W.; Li, G.; Moayedi, H.; Nguyen, H. A particle-based optimization of artificial neural network for earthquake-induced
landslide assessment in Ludian county, China. Geomat. Nat. Hazards Risk 2019, 10, 1750–1771. [CrossRef]

34. Al-Abadi, A.M.; Al-Najar, N.A. Comparative assessment of bivariate, multivariate and machine learning models for mapping
flood proneness. Nat. Hazar. 2020, 100, 461–491. [CrossRef]

35. Tehrany, M.S.; Kumar, L.; Jebur, M.N.; Shabani, F. Evaluating the application of the statistical index method in flood susceptibility
mapping and its comparison with frequency ratio and logistic regression methods. Geomat. Nat. Hazards Risk 2018, 10, 79–101.
[CrossRef]

36. Tang, X.; Li, J.; Liu, M.; Liu, W.; Hong, H. Flood susceptibility assessment based on a novel random Naïve Bayes method: A
comparison between different factor discretization methods. Catena 2020, 190, 104536. [CrossRef]

37. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach
for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]

38. Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An Ensemble Prediction of Flood Suscepti-
bility Using Multivariate Discriminant Analysis, Classification and Regression Trees, and Support Vector Machines. Sci. Total
Environ. 2019, 651, 2087–2096. [CrossRef]

39. Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map flooded areas from
Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [CrossRef]

40. Rawat, A.; Bisht, M.P.S.; Sundriyal, Y.P.; Banerjee, S.; Singh, V. Assessment of soil erosion, flood risk and groundwater potential
of Dhanari watershed using remote sensing and geographic information system, district Uttarkashi, Uttarakhand, India. Appl.
Water Sci. 2021, 11, 119. [CrossRef]

41. Mind’je, R.; Li, L.; Amanambu, A.C.; Nahayo, L.; Nsengiyumva, J.B.; Gasirabo, A.; Mindje, M. Flood susceptibility modeling and
hazard perception in Rwanda. Int. J. Disas Risk Reduc. 2019, 38, 101211. [CrossRef]

42. Theobald, D.M.; Harrison-Atlas, D.; Monahan, W.B.; Albano, C.M. Ecologically-Relevant Maps of Landforms and Physiographic
Diversity for Climate Adaptation Planning. PLoS ONE 2015, 10, e0143619. [CrossRef]

43. Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Global Human Modification of Terrestrial Systems.
2020, Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available online: https://sedac.ciesin.
columbia.edu/data/set/lulc-human-modification-terrestrial-systems (accessed on 13 January 2021).

44. Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Tien Bui, D. Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case
Study of Eastern India. Sensors 2020, 20, 1313. [CrossRef]

45. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
46. Chen, J.; Li, Q.; Wang, H.; Deng, M. A machine learning ensemble approach based on random forest and radial basis function

neural network for risk evaluation of regional flood disaster: A case study of the yangtze river delta, China. Int. J. Environ. Res.
Public Health 2020, 17, 49. [CrossRef]

47. Mirzaei, S.; Vafakhah, M.; Pradhan, B.; Alavi, S.J. Flood susceptibility assessment using extreme gradient boosting (EGB). Iran.
Earth Sci. Inform. 2020, 14, 51–67. [CrossRef]

48. Abu El-Magd, S.A. Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras
El-Zait, Gulf of Suez Coast, Egypt. Arab. J. Geosci. 2022, 15, 217. [CrossRef]

49. Luu, C.; Nguyen, D.D.; Van Phong, T.; Prakash, I.; Pham, B.T. Using Decision Tree J48 Based Machine Learning Algorithm
for Flood Susceptibility Mapping: A Case Study in Quang Binh Province, Vietnam. In CIGOS 2021, Emerging Technologies and
Applications for Green Infrastructure. Lecture Notes in Civil Engineering; Ha-Minh, C., Tang, A.M., Bui, T.Q., Vu, X.H., Huynh, D.V.K.,
Eds.; Springer: Singapore, 2022; Volume 203203. [CrossRef]

50. Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid Models Incorporating Bivariate Statistics and Machine
Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sens. 2021, 13, 4945.
[CrossRef]

51. Lombana, L.; Martínez-Graña, A. A Flood Mapping Method for Land Use Management in Small-Size Water Bodies: Validation of
Spectral Indexes and a Machine Learning Technique. Agronomy 2022, 12, 1280. [CrossRef]

http://doi.org/10.1016/j.ecoinf.2021.101498
http://doi.org/10.1080/10106049.2021.1892209
http://doi.org/10.1016/j.scitotenv.2019.135983
http://www.ncbi.nlm.nih.gov/pubmed/31841902
http://doi.org/10.1111/jfr3.12683
http://doi.org/10.1007/s11069-021-04877-5
http://doi.org/10.1016/j.scitotenv.2019.135161
http://doi.org/10.1080/19475705.2019.1615005
http://doi.org/10.1007/s11069-019-03821-y
http://doi.org/10.1080/19475705.2018.1506509
http://doi.org/10.1016/j.catena.2020.104536
http://doi.org/10.1016/j.envsoft.2017.06.012
http://doi.org/10.1016/j.scitotenv.2018.10.064
http://doi.org/10.1016/j.jag.2019.101951
http://doi.org/10.1007/s13201-021-01450-0
http://doi.org/10.1016/j.ijdrr.2019.101211
http://doi.org/10.1371/journal.pone.0143619
https://sedac.ciesin.columbia.edu/data/set/lulc-human-modification-terrestrial-systems
https://sedac.ciesin.columbia.edu/data/set/lulc-human-modification-terrestrial-systems
http://doi.org/10.3390/s20051313
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3390/ijerph17010049
http://doi.org/10.1007/s12145-020-00530-0
http://doi.org/10.1007/s12517-022-09531-3
http://doi.org/10.1007/978-981-16-7160-9_195
http://doi.org/10.3390/rs13234945
http://doi.org/10.3390/agronomy12061280


Remote Sens. 2022, 14, 6229 26 of 26

52. Song, D.; Zhang, Q.; Wang, B.; Yin, C.; Xia, J. A Novel Dual Branch Neural Network Model for Flood Monitoring in South Asia
Based on CYGNSS Data. Remote Sens. 2022, 14, 5129. [CrossRef]

53. Askar, S.; Zeraat Peyma, S.; Yousef, M.M.; Prodanova, N.A.; Muda, I.; Elsahabi, M.; Hatamiafkoueieh, J. Flood Susceptibility
Mapping Using Remote Sensing and Integration of Decision Table Classifier and Metaheuristic Algorithms. Water 2022, 14, 3062.
[CrossRef]

54. Panahi, M.; Dodangeh, E.; Rezaie, F.; Khosravi, K.; Van Le, H.; Lee, M.J.; Lee, S.; Pham, T.B. Flood spatial prediction modeling
using a hybrid of meta optimization and support vector regression modeling. Catena 2021, 199, 105114. [CrossRef]

55. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami,
S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach:
Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [CrossRef]

56. Chen, Y.J.; Lin, H.-J.; Liou, J.-J.; Cheng, C.-T.; Chen, Y.-M. Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios
in Taiwan. Water 2022, 14, 207. [CrossRef]

http://doi.org/10.3390/rs14205129
http://doi.org/10.3390/w14193062
http://doi.org/10.1016/j.catena.2020.105114
http://doi.org/10.3390/rs12020266
http://doi.org/10.3390/w14020207

	Introduction 
	Materials and Methods 
	Study Area 
	Historical Flood Inventory Mapping 
	Flood-Causative Factors 
	Morphometric Factors 
	Hydrologic Factors 
	Soil Permeability Factors 
	Terrain Distribution Factors 
	Anthropogenic Inferences Factors 
	Boruta Feature Ranking and Multicollinearity Check 
	Machine Learning Model 
	Random Forest 
	Support Vector Machine 
	Gradient Boosting Model 
	Naïve Bayes 
	Decision Tree 
	Hybrid Modeling 

	Model Validation and Performance Evaluation 

	Results 
	Multicollinearity Test and Boruta Feature Ranking 
	Flood Hazard Zoning 
	Validation of ML Models 
	AUROC Evaluation 
	Cumulative Gain and Lift Curve Evaluation 


	Discussion 
	Flood Hazard Zoning Criteria Selection 
	Multicollinearity Test and Boruta Feature Rank 
	Flood Hazard Zoning 
	ML Model Validation 

	Conclusions 
	References

