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Abstract: In order to improve the overall service quality of the network and reduce the level of
network interference, power allocation has become one of the research focuses in the field of un-
derwater acoustic communication in recent years. Aiming at the issue of power allocation when
channel information is difficult to obtain in complex underwater acoustic communication networks, a
completely distributed game learning algorithm is proposed that does not require any prior channel
information and direct information exchange between nodes. Specifically, the power allocation prob-
lem is constructed as a multi-node multi-armed bandit (MAB) game model. Then, considering nodes
as agents and multi-node networks as multi-agent networks, a power allocation algorithm based on
a softmax-greedy action selection strategy is proposed. In order to improve the learning efficiency of
the agent, reduce the learning cost, and mine the historical reward information, a learning algorithm
based on the two-layer hierarchical game learning (HGL) strategy is further proposed. Finally, the
simulation results show that the algorithm not only shows good convergence speed and stability
but also can adapt to a harsh and complex network environment and has a certain tolerance for
incomplete channel information acquisition.

Keywords: underwater acoustic communication; power allocation; hierarchical game learning;
multi-armed bandit; distributed

1. Introduction

Due to the increasing intensity of military applications and marine resource develop-
ment, the research on underwater acoustic communication technology has attracted more
and more attention [1,2]. In recent years, underwater acoustic communication networks
(UACNs) have become more and more widely used in marine data collection, pollution
monitoring, disaster prevention, and marine rescue [3–5]. However, because of the charac-
teristics of the underwater environment, there are many disadvantages, such as limited
bandwidth, limited energy supply, and prolonged propagation factors, which seriously
restrict the development of underwater acoustic communication networks [6–8].

Similar to terrestrial wireless communication, resource allocation is also a key issue
for UACNs to solve. Compared with radio communication, resource allocation of UACNs
undoubtedly faces more challenges [9,10]. (a) The bandwidth is narrow. The available
bandwidth of the underwater acoustic channel is only a few kHz to several tens of kHz;
(b) the energy limitation. Most acoustic modems are battery-powered, but in the underwater
environment, the replacement and charging of the battery is extremely difficult. From
the perspective of overhead, the energy problem of UACNs is more valuable than RF
communication on land; (c) long time delay. The propagation speed of sound waves in
water is about 1500 m/s [11], which is much lower than that of electromagnetic waves in
air, which makes it difficult to obtain real-time channel information in UACNs.
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Moreover, only a single transmitter–receiver pair was required in the initial underwater
applications, but as application requirements become more complex, multiple devices are
required for simultaneous acoustic communication in the same area [12]. When there are
many underwater communication users, the communication environment is more crowded,
and many users have to conduct communication activities in similar frequency bands, and
the communication users will form confrontations and interfere with each other, thus
affecting the communication quality of underwater communication users. Therefore, it is
still a challenge for UACNs to design a resource allocation method with high efficiency and
low overhead for the complex underwater acoustic communication environment.

In recent years, scholars from home and abroad have made some achievements in
the research of resource allocation methods. The studies reported in [13,14] regard the
power allocation problem as a resource optimization problem. However, the schemes
proposed in the above studies are all applied in a centralized manner. The underwater
communication environment is complex, and it is difficult to deploy a centralized control
center underwater. Therefore, UACNs have strong distributed requirements. Game theory
with distributed characteristics is an effective means to solve the problem of multi-user
resource allocation in a strong adversarial environment. In [15], game theory is used to
maximize the throughput of UACNs, which improves the channel capacity and energy
efficiency, but does not consider the problem of interference control between nodes in the
network, so the communication service quality is relatively low, and the energy efficiency
improvement is limited. In [16], an environment-friendly power allocation method is
proposed, which considers the impact of transmission power on marine organisms in
the power allocation algorithm based on game theory and reduces the interference of
underwater communication equipment on marine organisms.

However, all the above algorithms rely on the assumption that all users can perceive
the channel gain information in time. In a complex underwater network environment,
channel information and interference information may not be acquired by users in a
timely manner. The time delay and time variability in underwater acoustic channels will
eventually lead to the result that the feedback information obtained by the transmitter
cannot reflect the real-time channel environment, which seriously affects the adaptive
communication system’s inability to select the transmission power suitable for the real-time
communication environment [17]. Therefore, the unknown channel information makes
it more difficult to solve the complex multi-user joint resource allocation problem, and
traditional optimization methods cannot be easily applied to UACNs.

Reinforcement learning is widely used to solve the problems of policy optimization
and policy selection. In other words, communicating nodes in UACNs can interact to adapt
to changes in the environment, update optimized policies, and select appropriate actions.
In general, reinforcement learning can realize the self-organizing network of UACNs,
that is, improve the intelligence and autonomous adaptability of communication nodes,
try to minimize human intervention, and perform self-configuration, self-optimization
and self-healing [18]. Multi-armed bandit (MAB) is a reinforcement learning decision
theory that has shown strong applicability in dealing with problems involving unknown
factors. Refs. [19] and [20], respectively, construct the routing problem and spectrum access
problem in wireless networks as a MAB decision problem and use MAB theory to solve the
game problem containing unknown information. However, the learning time of existing
MAB-based wireless network algorithms is relatively long. According to literature statistics,
it takes more than 10,000 learning times to reach the expected goal. Due to the limited
energy, UACNs are not suitable for processing expensive learning algorithms [21]. Based
on this, this study proposes a MAB-based resource allocation algorithm with high learning
efficiency for UACNs.

In this work, we study the resource allocation problem under interference constraints
for an underwater acoustic communication system consisting of multiple pairs of transmit-
ter and receiver nodes. In the literature, some works use MAB algorithms in reinforcement
learning to solve the problem of resource allocation in wireless communication systems (this
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will be briefly introduced later in Section 2), but the premise is that nodes must know all
perfect channel gain and other policy information for the node. It is well-known that these
assumptions will lead to a large amount of information exchange, and it is difficult to obtain
information in real-time in complex underwater acoustic communication environments
with time delays. Based on this, this paper studies the joint resource allocation problem
of multi-users in the case of unknown channel information in UACNs and proposes a
distributed, low-complexity, high-learning-efficiency learning game algorithm that does
not rely on any prior channel information. The main contributions of this work include the
following three aspects:

• We construct a multi-agent MAB game model to characterize the joint resource al-
location problem. To be more specific, the node is regarded as an agent, and the
multi-node network is regarded as a multi-agent network, the multi-agent action
space and reward function are constructed, and the optimal response strategy of each
node is solved.

• We propose a learning algorithm based on a Greedy-Softmax action selection strategy
to solve this game problem. To be more specific, the proposed learning algorithm
can be performed in a fully distributed manner, where nodes only need to record
their own local information, without any prior information and direct information
exchange, thus reducing the cost of resource allocation.

• Furthermore, in order to improve the learning efficiency and reduce the learning cost,
we propose a learning algorithm based on the two-layer HGL strategy. To be more
specific, the historical reward information is named virtual learning information, and
the introduction of virtual learning information into the algorithm can enrich the
learning information of players, thereby improving their learning ability.

The rest of this paper is organized as follows. Section 2 reviews the related work, and
Section 3 expounds the UACNs model and the construction method of the multi-node
MAB game model. Section 4 demonstrates the effectiveness of the constructed model. The
multi-node MAB game learning algorithm is analyzed in Section 5. Section 6 verifies the
effectiveness of the designed scheme from multiple perspectives, and Section 7 presents
the conclusion.

2. Related Work

Power allocation plays an important role in underwater acoustic communication
networks. In [22,23], the resource allocation problem in the wireless network is constructed
as a goal optimization problem, and the traditional optimization algorithm is used to
solve the goal. However, traditional optimization algorithms are centralized optimization
algorithms. When applied in actual wireless networks, a central information processor is
a must, yet it is difficult to build a CPU in an underwater environment. The centralized
algorithm requires a very large information exchange overhead, which can not be borne by
underwater acoustic communication.

In [15], a MAC protocol is proposed, and a distributed method is adopted to adjust
the transmission power to maximize the throughput of the underwater communication
network. In [13], a distributed power allocation algorithm is proposed, which considers
power allocation schemes of different available power levels for different network densities
to reduce energy consumption. Although the power allocation methods in the above
literature are distributed, there must be an assumption that the channel information is ideal.
The underwater acoustic channel is extremely complex. In different environments, the
state information of the channel will change at any time. The underwater communication
environment is constantly changing due to the influence of ocean currents and other factors.
Communication nodes will move with the current, and the channel state information is
constantly changing. The channel state information has strong uncertainty [24,25]. How-
ever, the performance of the algorithm based on ideal channel information will inevitably
decline when it is applied to the underwater acoustic communication network with strong



Remote Sens. 2022, 14, 6215 4 of 18

uncertainty. Therefore, it is necessary to propose a robust optimization algorithm to reduce
the impact of uncertainties on resource allocation.

The nodes in the underwater acoustic communication network are independent in-
dividuals, which are very rational and selfish [26]. Game theory means that both sides of
the game can maximize their own benefits in the game and can also play a great role in
the resource allocation problem of wireless sensor networks. Based on the game theory,
in [27], an adaptive distributed power allocation scheme is proposed to solve the power
allocation problem of multiple nodes. A distributed game power allocation algorithm
considering node residual energy is proposed in [28] to improve the channel capacity of
network communication. Meanwhile, a robust game spectrum allocation algorithm is
proposed in [29] to maximize the utility function of nodes and improve the communication
quality of nodes. Although the game theory algorithm proposed in the above literature can
solve the distributed optimization problem, it requires accurate channel state information
for resource allocation.

When the underwater communication environment is greatly affected by ship, sun-
light and other factors, the underwater acoustic communication environment is harsh,
the channel state information is extremely difficult to determine, and the channel state
information and interference information cannot be directly obtained. On the one hand,
the traditional optimization methods can not be effectively applied to the actual commu-
nication scenarios where users vary. On the other hand, the traditional learning methods
have too little learning information, resulting in very low learning efficiency. Therefore,
efficient and adaptable reinforcement learning algorithms are urgently needed to solve the
joint resource allocation problem in complex communication networks [30,31]. Next, we
further outline the resource allocation method based on MAB theory.

In recent years, MAB has been gradually applied to solve various resource allocation
problems in complex cognitive radio communication environments [32,33]. In terms of
power allocation, a low-cost UCB1-based water-filling algorithm is proposed in [34] for
single-user multi-channel models; in [35], a joint resource allocation method based on
MAB theory is proposed for multi-channel multi-user networks. However, the problem of
interference control between users in the network is not considered in its model. The above
algorithms based on MAB theory all effectively overcome the unknown prior information
of the channel and improve the performance of the network. However, the existing
MAB-based algorithms have very long learning times due to their unique learning methods
and less learning information. In general, it takes up to 10,000 learning times to reach the
desired policy [36]. Undoubtedly, for a wireless network with heavy traffic, such a large
learning time is unacceptable.

Inspired by the above research, this work applies the idea of MAB to the resource
allocation problem of UACNs and proposes a learning algorithm based on a two-layer
HGL policy to implement interference control among communication nodes in the net-
work, so as to improve the overall service quality of the network and reduce the level of
network interference.

3. System Model
3.1. UACNs Model

The UACNs model considered in this work is shown in Figure 1. The model con-
sists of N transmitting nodes Si, i ∈ N and M receiving nodes Rj, j ∈ M. During the
communication process, node Rj receives the signal from node Si and forwards it to the
surface base station. When various nodes in the network reuse the same frequency band,
cross-layer interference and same-layer interference between different nodes inevitably
occur. For this reason, this work focuses on the power allocation problem in UACNs under
the interference state.
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Figure 1. UACNs model.

In UASNs, the signal-to-interference and noise ratio (SINR) received by the receiving
node Rj can be expressed as [15]

γj =
pjhjj

∑N
k 6=j,k=1 pkhkj + σ2

, (1)

where pj denotes the transmit power of the node Sj, pk denotes the power strategy of other
transmitting nodes except node Sj, hkj denotes the channel gain between the transmitting
node Sk and the receiving node Rj. Further, ∑N

k 6=j,k=1 pkhkj represents the interference
caused by other transmitting nodes using the same frequency channel to the receiving node
Rj. In addition, the channel gain in Equation (1) is expressed as [37]

h = A−1
0 d−sp(α( f ))−d, (2)

where A0 is the normalization coefficient, d denotes the transmission distance (km), f
denotes the communication frequency (Hz), d−sp is the spread loss, which describes the
set characteristics of the transmission, sp denotes the expansion coefficient, which is 1.5,
and α( f ) denotes the absorption coefficient, which can be expressed by Thorp’s empirical
formula as [12]

10α( f ) =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75× 10−4 f 2 + 0.003. (3)

Furthermore, generally, the noise power of the underwater acoustic channels should
be assumed to be σ2 [13]. According to the Shannon theorem formula, if the channel
parameters of all nodes are known, the channel capacity of the j channel link can be
obtained as

Cj =
B
2

log2
(
1 + γj

)
, j = 1, 2, · · · , M, (4)

where B represents the channel bandwidth.

3.2. Multi-Node MAB Game Model

In the underwater transmission process, when the noise condition of the underwater
acoustic channel is given, each transmitter hopes to send data with a higher power to
obtain a better quality of service. If the interference between nodes is large, the excessive
interference will cause nodes to increase transmission power, which will lead to more
serious interference between users and increase the level of network interference, thereby
reducing the quality of service for users. To this end, it is necessary to find a balance
point between user service quality and network interference level so as to achieve optimal
system performance.
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This work uses game theory to construct a multi-user competition. In general, a
strategic game G =

{
N, {θi}i∈N , {Ui(�)}i∈N

}
consists of three parts. The set of agents is N

transmitting nodes, the transmitting power pi ∈ θi, i ∈ N of the transmitting node is the
strategy of node i, and θi represents the strategy set of the agent. Ui, i ∈ N is the utility of
node i, which reflects the satisfaction of node i with the service obtained.

It should be noted that most studies assume that nodes can perceive the influence
of external environmental factors on it in real-time [38,39]. After obtaining the external
determinants, the agent can obtain the best response strategy according to the traditional
optimization method. However, in the complex underwater acoustic environment, real
channel perception is difficult to achieve, and the realization of other assumptions will
also cause excessive information exchange, making the algorithm unable to cope with the
network delay.

For each agent, the power allocation problem can be regarded as a MAB problem. In
the process of solving the optimal response strategy, there is no need for any information
exchange between agents. Users only learn the environment (the impact of the external
environment on their utility) by analyzing their own game history data, so as to obtain the
best response strategy. If all agents in the game solve their own optimal response strategies
according to the above learning method, then the game can be regarded as a multi-agent
MAB game problem.

In the multi-node MAB game problem in this work, the strategy of node (agent) i ∈ N
is the power allocation strategy pi. Assuming that there are z feasible strategies for node
i ∈ N, then its feasible strategy set is Pi =

{
pi,1, pi,2, · · · , pi,zi

}
. In addition, the reward in

the MAB problem is the utility in the game problem. Obviously, the reward of any node
depends not only on the strategy chosen by itself, but also by external factors, such as the
strategies of other agents and environmental noise.

4. Problem Formulation

In the multi-agent MAB game problem, the goal of each agent is to maximize its own
utility (return value). In [15], the utility function constructed for agent i ∈ N is described
as follows

Ui(pi) = Blog2

(
1 +

pihii

∑N
j=1,j 6=i pjhji + σ2

)
− αi pi, (5)

where αi denotes the price factor, which is set to pmax, which represents the maximum
transmit power of the node. Obviously, the benefit part of the utility function described by
Equation (5) is the node channel capacity, and the cost part is the product of the unit power
price and the node transmit power. However, this utility function does not take the level of
interference in the network into consideration. Since the optimal transmit powers of nodes
all affect each other, if only its own power cost is considered in the utility function, while
the mutual interference between nodes is not considered, then each transmitting node will
try to transmit data at a higher power level. This will not only make the interference in
the network more serious and reduce the quality of network service but also shorten the
node’s survival time.

To address the shortcomings of the above algorithm and to improve the quality of
network services, this study makes the following improvements to the utility function:

Ui(pi) = Blog2

(
1 +

pihii

∑N
j=1,j 6=i pjhji + σ2

)
− φi

(
∑N

j=1,j 6=i pjhji + σ2
)

pi, (6)

where the first term represents the channel capacity when the node power is pi and the
second term is the network interference level penalty term. ∑N

j=1,j 6=i pjhji + σ2 indicates
that node Si is subject to interference from other transmitting nodes and environmental
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noise. φi is the adjustment coefficient. Through the above analysis, in the multi-agent MAB
game problem in this work, the optimization problem for each agent i can be expressed as

max
pi

Ui(pi) (7)

s.t. pi ∈ θi, ∀i ∈ N (8)

0 ≤ pi ≤ pmax, ∀i ∈ N (9)

pi ∈ arg max
pi

{
Uj : pi ∈ θi

}
, ∀i ∈ N. (10)

The purpose of the game is to seek an optimal combination of strategies, i.e., a Nash
equilibrium, which can make the strategy of each agent be the optimal response to the
strategies of other agents [40]. Next, the existence and uniqueness of the newly constructed
game model Nash equilibrium will be proved.

Definition 1 (Nash Equilibrium [41]). Let s =
(
b∗1 , b∗2 , · · · , b∗N

)
be a strategy combination

of a game G =
{

N, {θi}i∈N , {Ui}i∈N
}

, if all bi ∈ θi is true for each player i: Ui
(
b∗i , b∗−i

)
≥

Ui
(
bi, b∗−i

)
, then strategy combination s =

(
b∗1 , b∗2 , · · · , b∗N

)
is a Nash equilibrium of the game. bi

represents the strategy chosen by player i that is different from b∗i , and b∗−i represents the combination
chosen by all participants except i in all agents.

At the Nash equilibrium point, the power value of other users is constant, and no user
can improve its utility by simply changing its power value. The Nash equilibrium point
is an equilibrium point obtained in the competition that each participant is unwilling to
deviate from. The following proves the existence and uniqueness of the Nash equilibrium
point in the MAB game model [15,40,41].

Theorem 1. There is a Nash Equilibrium in G =
{

N, {θi}i∈N , {Ui(�)}i∈N
}

.

Proof. According to Nash’s theorem, G =
{

N, {θi}i∈N , {Ui(�)}i∈N
}

has a Nash equilib-
rium if the following conditions are met.

(a) θi is a non-empty, closed and bounded convex set of Euclidean space RN ;
(b) Ui(pi) is continuous on [pmin, pmax] and quasi-concave on pi.

Since the policy space θi of each node is defined in [pmin, pmax] (0 ≤ pmin ≤ pmax),
the first condition is obviously satisfied. For condition (b), it is obvious that Ui(pi) is
continuous on θi, so it is only necessary to prove that Ui(pi) is quasi-concave on pi.

The first-order partial derivative of the utility function Ui(pi) with respect to pi is:

∂Ui(pi)

∂pi
=

B
ln 2

hii

∑N
j=1,j 6=i pjhji + δ2 + pihii

− φi

(
∑N

j=1,j 6=i pjhji + δ2
)

. (11)

The second-order partial derivative of the utility function Ui(pi) with respect to pi is:

∂2ui(pi)

∂p2
i

=
−B
ln 2

h2
ii

(∑N
j=1,j 6=i pjhji + δ2 + pihii)

2 < 0. (12)

Since ∂2ui(pi)/∂p2
i < 0, Ui(pi) is concave in pi, a concave function is also a proposed

concave function, so there is a Nash equilibrium in G =
{

N, {θi}i∈N , {Ui(�)}i∈N
}

.
The optimal solution of G =

{
N, {θi}i∈N , {Ui(�)}i∈N

}
is arg maxpi∈θi Ui(pi). For con-

tinuously differentiable functions, the necessary condition for first-order optimization is
∂ui(pi, p−i)/∂pi = 0, which can be obtained from Equation (11)
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pi =

[
B

φi ln 2
1

∑N
j=1,j 6=i pjhji + δ2

−
∑N

j=1,j 6=i pjhji + δ2

hii

]+
. (13)

Therefore, Equation (13) is the pricing function of the power policy pi, where
[�]+ = max(�, 0) indicates that the transmission power is non-negative. Further, the value
range of φi can be obtained

φi ≤
ln 2
Bhii

. (14)

That is, if the price per unit of power exceeds this range, no user can benefit from the
system. The optimal solution of G =

{
N, {θi}i∈N , {Ui(�)}i∈N

}
is

p∗i =


pmin pi ≤ pmin[

B
φi ln 2

1
∑N

j=1,j 6=i pjhji+δ2 −
∑N

j=1,j 6=i pjhji+δ2

hii

]+
pmax ≥ pi ≥ pmin

pmax pi ≥ pmax.

(15)

Theorem 2. The Nash equilibrium of G =
{

N, {θi}i∈N , {Ui(�)}i∈N
}

is unique.

Proof. According to Theorem 2, there is a Nash equilibrium in G = {N, {θi}i∈N , {Ui(�)}i∈N},
and its Nash equilibrium solution is assumed to be ~P. According to Equation (15), the
interference equation is ~P = I(p), where I(p) = (I1(p), I2(p), · · · , IN(p)). The inter-
ference equation I(p) is said to be standard if the following properties are satisfied
for all non-negative power vectors, (a) positive, I(p) > 0, (b) monotonic, (c) scalability,
∀α > 1, αI(P) ≥ I(αP). The standard equation converges to a unique point. Therefore, to
prove the uniqueness of the Nash equilibrium, it is only necessary to prove that I(p) is a
standard function, that is, it satisfies positivity, monotonicity and measurability.

Positivity. According to the value range of the pricing function, it can be guaranteed
that there must be a node whose power level pi > 0, then I(p) > 0.

Monotonicity. For ∀i ∈ N, let pi ≥ p′ i ,

Ii
(

pj
)
− Ii

(
p′ j
)
= (16)

B
φi ln 2 ∑N

j=1,j 6=i

(
p′ j − pj

)
hji

 1(
∑N

j=1,j 6=i pjhji + δ2
)(

∑N
j=1,j 6=i p′ jhji + δ2

) +
1

hii

 ≤ 0.

It can be seen from Equation (16) that when pi ≥ p′ i, Ii
(

pj
)
− Ii

(
p′ j
)
≤ 0. Therefore,

I(p) is a single decreasing function, and it takes the equal sign when pi = p′ i.
Scalability.

αI(pi)− I(αpi) = (α− 1)

[
B

φi ln 2
1

∑N
j=1,j 6=i pjhji + δ2

− δ2

hii

]
. (17)

For the above formula, we only need to prove

B
φi ln 2

1

∑N
j=1,j 6=i pjhji + δ2

≥ δ2

hii
. (18)

when discussing pi ≥ 0 in the previous section, we obtain

B
φi ln 2

1

∑N
j=1,j 6=i pjhji + δ2

≥
∑N

j=1,j 6=i pjhji + δ2

hii
. (19)
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From the positive condition, we can obtain ∑N
j=1,j 6=i pjhji > 0, and it is easy to obtain

∑N
j=1,j 6=i pjhji+δ2

hii
≥ δ2

hii
. Hence αI(pi)− I(αpi) ≥ 0.

In summary, the interference equation I(p) is a standard function, so
G = {N, {θi }i∈N , {Ui(�)}i∈N}} has a unique Nash equilibrium solution.

5. Multi-Node MAB Game Learning Algorithm

In a complex underwater environment, it is difficult for nodes to perceive channel
gain information and other node state information in real-time. When there is little prior
information, the game algorithm based on MAB theory enables nodes to learn the environ-
ment only by analyzing historical data, and then obtain the best response strategy without
any information exchange.

5.1. Action Selection Strategy of Softmax-Greedy

In terms of action selection, we choose the softmax-greedy policy to overcome the
shortcomings of greedy policy and ε-greedy policy. Specifically, the greedy policy selects an
action under each slot to maximize the Q-value, which may achieve better performance with
a limited number of actions. However, the use of this scheme may introduce incomplete
exploration problems. Since it has no chance to explore other actions, the greedy scheme
may not be able to explore the remaining power interval. In addition, the ε-greedy strategy
adopts the probability ε to weigh the proportion of “exploration” and “exploitation” based
on the greedy strategy. The agent uses the greedy strategy to select actions with a probability
of 1-ε, that is, the action that can obtain the maximum action value function is transmitted
to the receiver in each time slot; otherwise, the agent randomly selects an action from the
selectable action set. However, in the ε-greedy strategy, there is an obvious shortcoming
that when the probability is less than ε, the greedy scheme chooses evenly among all
actions, so the probability of the best action choice may be the same as the probability of
the worst action choice.

To address the problems in ε-greedy policy, a softmax-based action selection scheme
is proposed in [41], which selects actions through exploration and utilization stages. The
action probability assignment in the softmax strategy is based on the Boltzmann distribution
and can be described as

π
(
aj
)
=

exp
(

Q(k)(ai)/τ
)

∑M
j=1 exp

(
Q(k)

(
aj
)
/τ
) , (20)

where M is the number of available action sets, τ > 0 is a parameter called temperature,
and Q(k)(ai) represents the estimated value corresponding to action i at time k. Compared
with ε-greedy, the softmax strategy is more “cautious” when choosing actions, and it needs
to calculate the probability of each optional action before it is selected. To a certain extent,
the softmax strategy will not miss any valuable actions. However, this strategy has certain
limitations. Since there are a lot of calculations before each action is selected, especially in
models with large state and action dimensional spaces, these large amounts of calculations
will greatly affect the convergence speed of the algorithm.

In this work, we propose an adaptive action selection strategy that combines softmax
and a greedy action selection strategy. In the exploration phase, the adaptive scheme
selects an action and selects the action with the largest Q value with a probability of 1− ε;
otherwise, it selects the action aj with the selection probability π

(
aj
)
. This scheme balances

exploration and exploitation through ε and τ, which avoids the incomplete exploration
problem in the greedy strategy and converges faster than the softmax strategy. The adaptive
action selection scheme can be expressed as

π(ε, τ, ai) =

{
softmax strategy ∆ ≤ ε

arg maxat∈AQ(k)(at) Otherwise,
(21)
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where 0 < ∆ < 1 is a uniform random number generated in each time slot, and 0 < ε < 1
is a certain value. In addition, it is known from (20) and (21) that when the temperature τ
is high, all action probabilities are equal. On the contrary, when the temperature τ is very
low, since the agent often chooses the action that can obtain the maximum probability, the
softmax strategy case will become the same as the greedy strategy. To sum up, the execution
process of game learning based on softmax-greedy is as described in Algorithm 1.

Algorithm 1 Power allocation algorithm based on softmax-greedy

Input: Location information of transmitting node Si, i ∈ N, base station and receiving

node Ri, j ∈ M, policy space θi, i ∈ N, learning times T, exploration probability ε;

Output: Optimal power distribution scheme ~P = [p1, p2, · · · , pN ]

1: Initialization: r = 0, For all actions a ∈ Pi, let Q(a) = 0, Count(a) = 0;

2: for k = 1 −→ T do

3: if rand() ≤ ε then

4: Select action a by executing the softmax policy via (20);

5: else

6: Select action a by executing a greedy policy, i.e., a = arg maxat∈AQ(k)(at);

7: end if

8: Calculate the utility r(k) = Ui(a) via (6);

9: Update Q(a) value

Q(a)← Q(a)× Count(a) + r(k)

Count(a) + 1
(22)

10: Update count value

Count(a)← Count(a) + 1 (23)

11: end for

5.2. Hierarchical Optimal Feedback Strategy

In the softmax-greedy policy selection mechanism, agents (nodes) do not need any in-
formation exchange or even know any channel information. The node only needs to record
its own local information, the historical strategy actually executed and the correspond-
ing utility value. Therefore, the softmax-greedy strategy is a fully distributed algorithm.
However, in one learning, an agent can only choose one to perform, that is, only one set of
learning samples can be obtained in one learning. This will lead to poor learning ability of
Algorithm 1, and the required learning times are too long.

From the definition of the Nash equilibrium, how much the node obtains is not only
affected by the node’s own strategy but also external interference, such as the strategy of
other jammers and environmental noise. The node can calculate the external interference
v(k)i at the last moment through the channel capacity obtained at the last moment, which
can be expressed as

v(k)i =
p(k)i h(k)i

2C(k)
i − 1

. (24)

This actually only requires the transmitter to transmit a pilot signal with very weak
power, and then obtain outdated interference information through Equation (1). Given
the interference information v(k)i at the past time n, substituting other strategies into
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Equation (6) can obtain the utility of the node at the past time n if the node executes
other strategies. In this work, the calculated utility information is called virtual learning
information, the introduction of which can enrich the learning information, thereby improv-
ing the learning ability of the agent. Based on this, a hierarchical game learning algorithm
is further proposed, as shown in Algorithm 2.

Algorithm 2 Power allocation algorithm based on hierarchical game learning (HGL)

Input: Location information of transmitting node Si, i ∈ N, base station and receiving

node Ri, j ∈ M, policy space θi, i ∈ N, learning times T, exploration probability ε;

Output: Optimal power distribution scheme ~P = [p1, p2, · · · , pN ]

1: Initialization: r = 0, For all actions a ∈ Pi, let Q(a) = 0, Count(a) = 0;

2: for k = 1 −→ T do

3: if rand() ≤ ε then

4: Select action a by executing the softmax policy via (20);

5: else

6: Select action a by executing a greedy policy, i.e., a = arg maxat∈AQ(k)(at);

7: end if

8: Calculate the utility r(k) = Ui(a) via (6);

9: Calculate v(t)i (a) via (4)

10: Search for the policy a′ that maximizes its utility at time k.

max Ui

(
p(k)i , p(k)−i

)
= Ci

(
v(k)i (a), p(k)i

)
− β

(
∑N

j=1,j 6=i λj pjhji + ∑N
j=1,j 6=i λj pihij

)
(25)

11: Update Q value

Q(a)← Q(a)× Count(a) + r(k)

Count(a) + 1
(26)

12: Update count value

Count(a)← Count(a) + 1 (27)

13: end for

6. Scheme Analysis and Evaluation

This section verifies the superiority of the proposed algorithm by comparing five
learning strategies (HGL, Softmax-greedy, ε-greedy, Greedy, Random). In the simulation,
we assume that there are six nodes in which three transmitting nodes and three receiving
nodes are randomly distributed in an area 2 km deep, 3 km long and 2 km wide. For
the above scenario, we will analyze the following four aspects: a. the impact of different
parameters ε in softmax-greedy on the algorithm. b. Comparison of four strategies such as
softmax-greedy and ε–greedy. c. Comparison of improved HGL and softmax-greedy in
terms of convergence and SINR. d. The proposed HGL is compared with the other four
learning strategies in dynamic environments. Note that the size of the underwater target
area is not limited when considering a dynamic environment. As shown in Figure 2, the
circle indicates the transmitting node, the diamond indicates the receiving node, and the co-
ordinate information of the nodes is shown in Table 1. During the operation of the network,
the transmitting node Si and the corresponding receiving node Ri perform information
transmission. Considering the random and non-stationary characteristics of underwater
signals, the influence of underwater uncertain factors on the underwater acoustic channel
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is reflected by the variable δ, where δ = h× γ, and γ obeys the Rayleigh distribution with
a mean of 0.1. Therefore, in the simulation, the underwater acoustic channel gain adopts
h + δ. Meanwhile, set the carrier frequency to be 20 kHz, the propagation coefficient to be
1.5, the signal bandwidth to be 10 kHz, the gain per unit rate to be 0.05, and the maximum
transmit power of the node to be 10 W. In addition, in order to facilitate the display of
experimental results, we add a coefficient τ before the first term of Equation (6), so that Bτ
is equal to ln2, and at the same time, φi takes the value 0.01.

Table 1. The coordinate of transceiver nodes.

S1 S2 S3 R1 R2 R3

x/km 0.10 0.50 0.70 0.50 1.00 1.20

y/km 0.10 0.10 1.1 0.50 0.50 1.00

z/km 0.10 0.11 0.10 0.12 0.10 0.10

y position (km) x position (km)

3

3

-1
1

-0.5

0
2

1.5

0.5

1

1

0.5 1

1.5

0.5

2

0 0

1

Transmitting node
Receiving node

Figure 2. Distribution of communication nodes.

Figure 3 describes the impact of different ε on the softmax-greedy algorithm conver-
gence when softmax-greedy action selection strategy is adopted. In this section, the values
of ε are taken as 0.1, 0.01 and 0.001, respectively. As can be seen from the above discussion,
the MAB algorithm has two stages: exploration and utilization. When the agent is in an
unfamiliar environment, it needs to explore the environment more, and agents can change
the proportion of exploration and exploitation by adjusting ε. In the exploration phase,
the softmax-greedy strategy estimates the Q value corresponding to each action. From
Figure 3, we can observe that within a reasonable range of values, the smaller the ε, the
slower the convergence speed of the algorithm. The reason is that when the value of ε is
small, the agent has a greater probability of selecting an action through the Greedy strategy,
that is, it tends to select the power with the largest Q value. This ignores other actions with
more value, resulting in incomplete exploration. In order to ensure the convergence of the
algorithm, we make ε = 0.1 in the next simulation experiments.

Further, this section verifies the superiority of the softmax-greedy algorithm by com-
paring the performance of four learning algorithms (softmax-greedy, ε-greedy, Greedy,
Random). Figure 4 compares the performance of four algorithms, softmax-greedy, ε-greedy,
greedy and random, demonstrating the effectiveness of the proposed algorithm. The
key to learning algorithms is to maintain an explore–exploit balance. The greedy strat-
egy only emphasizes “exploitation”, that is, the agent tends to choose the strategy that
seems to have the greatest utility at present, while the random strategy only emphasizes
“exploration”, which always chooses an action randomly and uniformly with the same
probability. The ε-greedy strategy balances “exploration” and “exploitation” with the help
of ε, but during “exploitation”, it still randomly selects an action with the same small
probability (P = ε/|A|). In contrast, the softmax-greedy strategy will make the action
with more utility have a greater probability of being selected, i.e., not forgetting to take
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advantage of it during exploration. Therefore, from Figure 4, we can observe that in terms
of stability, greedy > softmax-greedy > ε-greedy > random, and in terms of performance,
ε-greedy > softmax-greedy > random > greedy. Overall, the softmax-greedy strategy has
the best overall performance.
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Figure 3. Influence of parameter ε on the convergence of softmax-greedy action selection strategy.
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Figure 4. Comparison of utility values under different power control strategies.

It can be seen from Figure 4 that softmax-greedy is slightly lower than ε-greedy in
terms of performance, mainly because the softmax-greedy strategy is more inclined to
select actions with higher returns in exploration, and a very small amount of learning
information limits the degree of exploration. Subsequently, Figure 5 shows the variation
of the utility of the three nodes with time slots under the guidance of the softmax-greedy
strategy and HGL strategy, respectively. Obviously, compared with the softmax-greedy
strategy, the HGL strategy can make the three nodes quickly reach the convergence state
after a short fluctuation. Therefore, based on the softmax-greedy strategy, the proposed
HGL strategy can enrich the learning information of the agent by mining historical reward
information, improve the learning efficiency and reduce the learning cost of the algorithm.

In order to verify the effectiveness of the HGL strategy, we further analyze the strategy
probability distribution of node S3 under the guidance of the two strategies. It can be seen
from Figure 6 that in the initial stage, the probability of each strategy being selected is equal,
which is 0.2. As the number of learning increases, the expected utility Q(a) corresponding
to each action will gradually change. Subsequently, the Boltzmann distribution is used as a
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random strategy to increase the probability of action with large Q(a) being selected and,
conversely, to decrease the probability. It can be seen from Figure 6 that the convergence
speed and effect of the HGL strategy are better than those of the softmax-greedy strategy. In
the HGL strategy, each discrete strategy can converge to a pure strategy after less iteration,
while the softmax-greedy strategy can only converge to a mixed strategy. This is mainly
because the number of learning times a node can obtain in one learning of the two-layer
HGL strategy is one more than that of the single-layer learning algorithm. More importantly,
the added virtual learning information enriches the learning information of nodes, and
these virtual pieces of information are optimized information based on the actual execution
information, so the two-layer HGL strategy can significantly improve the learning efficiency
and reduce the number of learning times.
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Figure 5. Convergence comparison between softmax-greedy and HGL.

In Figure 7, we compare the SINR performance of the HGL strategy and other strategies
under different time slots. We can observe that the two-layer HGL strategy can obtain
the best SINR performance. This is due to the efficient hierarchical learning method that
greatly enhances the learning ability of the HGL learning algorithm. Specifically, in the
lower-level learning, historical decision information is constructed as virtual information,
and the agent learns the virtual information and mines the environmental information,
thereby improving the learning efficiency.

Next, we show how the performance of five strategies varies with distance in a dynamic
water environment. Assuming that the transmitter-receiver pair 1 and 3 are in the same
position in the target waters, the transmitter-receiver pair 2 moves in a certain direction. In
other words, the distance between the transmitter-receiver pair 2 and the transmitter-receiver
pair 1 and 3 is becoming farther and farther. Figures 8 and 9 show the effect of distance dj on
the performance of the proposed scheme, dj = [0.35, 0.5, 0.65, . . . , 2.3] km, where dj represents
the distance from transmitting node S2 to transmitting node S1. Two conclusions can be
drawn from Figure 8. On the one hand, the utility of the node increases with the increase
in dj. This is mainly because with the increase in dj, the interference suffered by node
R2 decreases continuously. On the other hand, the HGL strategy improves the adaptive
ability of node S2, that is, it can quickly adjust the power according to the changes in the
environment. When dj is less than 7 km, node S2 suffers a lot of network interference and
has a low utility; on the contrary, when dj is greater than 7 km, node S2 has a high utility.
Similarly, it can be seen from Figure 9 that the SINR of the signal increases with the increase
in dj. It is further confirmed that the proposed algorithm has strong adaptive ability and
can adjust the transmit power of the node according to the changes in the environment.
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Figure 6. Policy probability distribution of node S3. (a) Softmax-greedy strategy. (b) HGL strategy.
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Figure 8. The utility varies with the distance dj between node S2 and node S1.
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Figure 9. SINR comparison under different strategies.

7. Conclusions

This paper studies the joint resource allocation problem of multiple users in UACNs with
unknown channel information and proposes a distributed, low-complexity, high-efficiency
learning game algorithm that does not rely on any prior channel information. First, the
joint resource allocation problem is constructed as a multi-agent MAB game model. Subse-
quently, a learning strategy without any prior channel gain information is designed to find
the Nash equilibrium solution of the game. Two distributed learning strategies (Softmax-
greedy and HGL) based on game theory are proposed to solve the above-mentioned
multi-agent MAB game problem. Compared with softmax-greedy, HGL is a two-layer
learning strategy. By introducing virtual learning information into the lower level learning,
and learning virtual learning information, the learning efficiency of the algorithm is im-
proved. Finally, the high learning efficiency of the proposed two-layer learning algorithm
and the high efficiency of the obtained Nash equilibrium are verified by simulation tests.
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