
Citation: Haumont, J.; Lootens, P.;

Cool, S.; Van Beek, J.; Raymaekers, D.;

Ampe, E.; De Cuypere, T.; Bes, O.;

Bodyn, J.; Saeys, W. Multispectral

UAV-Based Monitoring of Leek

Dry-Biomass and Nitrogen Uptake

across Multiple Sites and Growing

Seasons. Remote Sens. 2022, 14, 6211.

https://doi.org/10.3390/rs14246211

Academic Editors: Gregorio Egea

and María Luisa Pérez-Bueno

Received: 15 October 2022

Accepted: 6 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multispectral UAV-Based Monitoring of Leek Dry-Biomass and
Nitrogen Uptake across Multiple Sites and Growing Seasons
Jérémie Haumont 1,2,*, Peter Lootens 2 , Simon Cool 2, Jonathan Van Beek 2 , Dries Raymaekers 3, Eva Ampe 4,
Tim De Cuypere 4, Onno Bes 5, Jonas Bodyn 6 and Wouter Saeys 1

1 KU Leuven Department of Biosystems, MeBioS Division, 3000 Leuven, Belgium
2 Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
3 Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
4 Inagro, 8800 Roeselare, Belgium
5 Research Station for Vegetable Production Sint-Katelijne Waver (PSKW), 2860 Sint-Katelijne-Waver, Belgium
6 Research Station for Vegetable Production (PCG), 9770 Kruishoutem, Belgium
* Correspondence: jeremie.haumont@ilvo.vlaanderen.be

Abstract: Leek farmers tend to apply too much nitrogen fertilizer as its cost is relatively low compared
to the gross value of leek. Recently, several studies have shown that proximal sensing technologies
could accurately monitor the crop nitrogen content and biomass. However, their implementation is
impeded by practical limitations and the limited area they can cover. UAV-based monitoring might
alleviate these issues. Studies on UAV-based vegetable crop monitoring are still limited. Because
of the economic importance and environmental impact of leeks in Flanders, this study aimed to
investigate the ability of UAV-based multispectral imaging to accurately monitor leek nitrogen uptake
and dry biomass across multiple fields and seasons. Different modelling approaches were tested
using twelve spectral VIs and the interquartile range of each of these VIs within the experimental
plots as predictors. In a leave-one-flight out cross-validation (LOF-CV), leek dry biomass (DBM)
was most accurately predicted using a lasso regression model (RMSEct = 6.60 g plant−1, R2= 0.90).
Leek N-uptake was predicted most accurately by a simple linear regression model based on the red
wide dynamic range (RWDRVI) (RMSEct = 0.22 gN plant−1, R2 = 0.85). The results showed that
randomized Kfold-CV is an undesirable approach. It resulted in more consistent and lower RMSE
values during model training and selection, but worse performance on new data. This would be due
to information leakage of flight-specific conditions in the validation data split. However, the model
predictions were less accurate for data acquired in a different growing season (DBM: RMSEP = 8.50 g
plant−1, R2 = 0.77; N-uptake: RMSEP = 0.27 gN plant−1, R2 = 0.68). Recalibration might solve
this issue, but additional research is required to cope with this effect during image acquisition and
processing. Further improvement of the model robustness could be obtained through the inclusion of
phenological parameters such as crop height.

Keywords: UAV; multispectral imaging; leek; biomass; nitrogen uptake; cross-validation

1. Introduction

It is projected that the current global nitrogen use efficiency (NUE) should rise from
52% to 75% in Europe to meet global future food demands while reducing the input of
nitrogen fertilizers [1]. In this context, a great effort should be made for fruit and veg-
etable cultivation as their NUE should increase from 14% to 40%. To achieve this, fertilizer
inputs should be halved. There are multiple reasons for the low NUE of vegetables:
(i) they often have a shallow rooting system, while (ii) having a high nitrogen demand, and
(iii) mineral fertilizers are cheap compared to the high gross value of vegetables [2]. There-
fore, farmers tend to apply too high fertilizer doses to their vegetable crops to avoid yield
losses. This study focuses on leeks, which represented about 22.1% of the total gross value
of field vegetables in Flanders, Belgium from 2010 until 2020 [3]. Additionally, Belgium
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was among the five top leek-producing countries between 2014 and 2019 [4]. Multiple
strategies and tools exist to assist farmers in improving their nitrogen management, such
as soil-based systems, simulation models, and crop monitoring [2,5,6]. Recently, there have
been several studies on using different proximal sensing technologies to monitor vegetable
crops and assist fertilization management [5,7]. Several researchers reported useful rela-
tions between measurements with a handheld chlorophyll meter and the leaf nitrogen
content of tomatoes [8], sweet peppers [9] and cucumbers [10]. However, as the sampling
surface is small, multiple repetitions in combination with a strict sampling protocol are
required to acquire representative data [7]. This might impede its practical use for precision
nitrogen management in farmers’ fields. Proximal canopy reflectance sensors (e.g., multi-
and hyperspectral cameras) have a larger measurement surface and can be mounted on a
vehicle for continuous measurement. These sensors allow for both the estimation of the
crop nitrogen content [8,11] and biomass [12–14]. However, according to Tsouros et al. [15],
unmanned-aerial vehicle (UAV) monitoring is even more efficient than ground systems
as UAVs can cover larger areas and still acquire high-resolution images. Until today, the
number of studies on UAV-based vegetable monitoring is still limited [16–20] compared to
crop monitoring and phenotyping in arable crops [21,22].

Several researchers have found a good relationship between UAV-derived morpho-
logical parameters such as plant height [18,19] or canopy volume [17] and crop biomass.
Wittstruck et al. [16] have used UAV imagery to count the number of pumpkins within a
field. Moreover, the combination of both image-derived morphological parameters and
spectral reflectance indices allowed to successfully monitor the biomass of tomatoes [20,23]
as well as eggplant and cabbage [20]

However, while many of these studies investigated different crops, they only covered
a small fraction of all the different vegetables. Therefore, this study’s objective was to
expand the research on UAV-based vegetable monitoring by examining the potential of
high-resolution multispectral UAV images as a tool for robust estimation of the variation
in leek biomass and nitrogen uptake within a field throughout the growing season. To
this end, leek development was monitored across multiple fields over two consecutive
growing seasons.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Site Description and Agricultural Management

In both 2019 and 2020, multiple fields across Flanders, Belgium, were planted with
leeks (Allium porrum) (Figure 1). In 2019, the experiments were spread across four fields
at agricultural research stations (ILVO, Inagro, PSKW, and PCG). The leeks were planted
between 19 June and 28 June and harvested between 4 December 2019, and 10 February
2020. All fields were planted with the Pluston variety (Nunhems Netherlands BV, Nunhems,
The Netherlands). In addition to the research centres, leek cultivation at ten fields from ten
different farmers were also included in the experiments in 2020. The leeks were planted
between 29 May and 31 July 2020 and harvested between 12 October 2020 and 24 April
2021, depending on the location. The farmers cultivated several varieties, sometimes even
two within one field (Table 1). At the research stations, only the Pluston variety was
planted. At the research stations, different fertilization strategies were applied, which were
determined as variants of the strategies proposed by the updated KNS advisory system for
Flemish soils [24,25]. In 2019, mineral fertilizers were applied at planting and 7 to 9 weeks
after planting in the form of calcium ammonia nitrate (CAN). The total amount of applied
fertilizers at the research stations varied from 0 kg N/ha to 247 kg N/ha in 2019. In 2020,
the total amount of mineral fertilizers varied from 0 kg N/ha to 157 kg N/ha. The farmers
applied their standard management homogeneously throughout the field. The applied
fertilizers consisted of initial fertilization with organic fertilizer or manure and a side-dress
with mineral fertilizers. Some farmers planted multiple varieties in their fields (Table 1).
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All fields were grown under rain-fed conditions. Only at the research station of PSKW
irrigation was applied.
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Figure 1. The location of the leek fields at the research centres (yellow) and farmers (green) during
the 2019 (triangles) and 2020 (squares) experiments.

Table 1. Description of the fields that were monitored during the experiments, the varieties that
were planted, fertilizers used, the number of observations and flights for both the plant nitrogen
uptake (N-uptake) and dry biomass (DBM) and the days after planting (DAP) on which the flights
were executed.

Season Type Location Area
(ha) Variety Fertilizer Plant Density

(ha−1) nplots nflights nobs DAP

2019 Research
Centre ILVO 1 0.89 Pluston CAN 153 846 12 3 40 41, 99, 125

Inagro 2 0.53 Pluston CAN 153 846 24 5 120 41, 101, 132,
176, 216

PCG 2 0.14 Pluston CAN 153 846 12 4 48 3, 41, 100, 129
PSKW 1 0.09 Pluston CAN 178 571 8 5 40 6, 41, 100, 126, 168

2020 Research
Centre ILVO 1 0.48 Pluston CAN 153 846 16 4 64 44, 83, 136, 251

Inagro 2 0.32 Pluston CAN 153 846 16 4 64 49, 91, 135, 210
PCG 2 0.18 Pluston CAN 153 846 4 3 12 42, 84, 129

PSKW 1 0.28 Pluston CAN 178 571 16 4 (1) * 64 (16) * 36, 77, 105, 149 *
Farmer F1 2 3.51 Vitaton PS + Urean 185 185 3 3 9 43, 124, 257

F2 1 2.97 Chiefton CM + CAN 185 185 2 2 4 43, 134
Pluston CM + CAN 185 185 1 2 2 38, 129

F3 2 1.45 Pluston CS + CAN 161 943 3 3 9 36, 118, 183
F4 2 3.09 Krypton N.A. § 161 943 2 2 4 54, 243
F5 1 2.14 Harston PS + CAN 170 940 2 3 (1) * 6 (2) * 44, 100, 266 *
F6 2 1.88 Vitaton CS + CAN 151 515 2 1 2 204
F7 2 1.21 Pluston PS + CAN 175 439 1 3 3 40, 122, 176

Poulton PS + CAN 175 439 2 3 6 56, 138, 187
F8 2 0.79 Harston CM + APP 208 333 2 2 4 47, 263
F9 1 1.95 Pluston Novatec 227 273 2 3 (1) * 6 (2) * 37, 106, 150 *
F10 1 0.66 Poulton RM + CAN 170 940 2 2 (0) * 4 (0) * 43, 134

Total 2019 56 17 248
Total 2020 76 44 (32) * 263 (203) *

Total 132 61 511 (451) *

1,2 These UAV flights were executed by certified pilots with a DJI M6001 or a DJI M2002. * The number of flights
and observations that were matched with N-uptake observations deviates from the number of flights for DBM
observations and is indicated between brackets. The flight moments that correspond to those flights is also
indicated with *. The different mineral fertilizers used were calcium ammonia nitrate (CAN), Urean, Novatec, and
ammonia polyphosphate (APP), while the used organic fertilizers were pig slurry (PS), cattle slurry (CS) or cattle
manure (CM). § The farmer did not provide information on the type of fertilizer used.
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2.1.2. Plant Samples

In each field, one or multiple trial plots were laid out from which leeks were harvested
at different sampling moments throughout the growing season. At each sampling moment,
12 leeks (or at least 2 kg) were sampled from each plot within a field. First, the harvested
plants were cleaned to remove any soil. Next, the plants were cut into 2 cm pieces and
mixed to ensure representative fractions of all plant parts in the 250 g sub-sample. Finally,
the sub-sample was dried in an oven at 60 ◦C for at least 72 h. The dried mass was used
to calculate the dry matter content (DM%) of the leeks. This was subsequently multiplied
by the sampled plant’s average weight to determine the dry biomass (DBM) (g plant−1).
The total nitrogen content was determined from the plant samples using the Dumas
combustion method, expressed as gN kg−1 fresh weight [26]. The leek nitrogen uptake was
then determined by multiplying this number by the average fresh weight of the harvest.

Table 1 summarizes the year, location, planted varieties, the number of experimental
plots within the field, the total number of plant samples for both DBM and crop nitrogen
uptake, and the number of UAV flights for these samples.

2.1.3. UAV Monitoring

At each plant sampling moment, a UAV flight was performed with a DJI M600 or a
DJI M200 drone (DJI, SZ DJI Technology Co., Shenzhen, China), as indicated in Table 1.
The plant samples were acquired right before the second fertilization dose was applied
and during harvest. At the research centres two additional plant samples were acquired,
between the second fertilizer application and the legal deadline to apply fertilizers in
Flanders (i.e., 31 October). At the farmers field, only one sample was collected in this
period. Both UAVs were equipped with a multispectral sensor (Micasense Rededge MX,
Micasense, Seattle, WA, USA). In 2019, flights were carried out at an altitude of 20 m, which
resulted in a ground sampling distance (GSD) of 11 ± 4 mm (standard deviation on the
GSD resulting from variation in the actual flying height). In 2020, the altitude was increased
to 40 m to be able to cover the farmer’s fields completely, resulting in a GSD of 27 ± 2 mm.
The side and forward overlap were set to 80%. The flights were executed around solar noon,
i.e., between 11 am and 3 pm. Five ground control points (GCP) were placed within each
field to optimize the georeferencing of the ortho-mosaics. GCP locations were determined
with an RTK-GNSS (S10 GNSS Receiver, Stonex, Italy; SL600, Satlab, Sweden) and using
the Flemish Positioning Service (FLEPOS).

2.2. Image Processing and Feature Extraction

Image stitching and radiometric calibration were carried out by an automated process-
ing pipeline developed by the Flemish Institute for Technological Research (VITO, Mol,
Belgium) (https://mapeo.vito.be/en accessed on: 7 September 2021). These processes
resulted in an ortho-mosaic with five spectral bands (blue: 475 nm, green: 560 nm, red:
668 nm, rededge: 717 nm, and near-infrared (NIR): 842 nm). The GSD was not consistent
across all flights due to different flight altitude settings and small variations between
the actual flight and the set altitude. Therefore, all ortho-mosaics were resampled to the
largest GSD of all flights (31.2 mm), using the average resampling implemented in Rasterio
(v1.1.3) [27]. From the five resulting spectral reflectance bands, twelve vegetation indices
(VIs) were calculated: the normalized difference vegetation index (NDVI), normalized
difference rededge index (NDRE), green NDVI (GNDVI), blue NDVI, red wide-dynamic
range vegetation index (RWDRVI), blue WDRVI (BWDRVI), Meris terrestrial chlorophyll
index (MTCI), modified chlorophyll absorption in reflectance index (MCARI), canopy
chlorophyll content index (CCCI), chlorophyll index green (CI-green), chlorophyll index
rededge (CI-rededge) and soil adjusted vegetation index (SAVI) (Table 2). These indices
were first calculated at pixel level and subsequently aggregated by calculating the median
and interquartile range (iqr) from all pixels within an experimental plot, as the extraction
of plant pixels did not improve the model accuracy [28].

https://mapeo.vito.be/en
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Table 2. Calculated vegetation indices and formulae based on the Micasense Rededge MX bands.

VI Formula References

NDVI (nir − red)/(nir + red) [29]
NDRE (nir − rededge)/(nir + rededge) [30]

GNDVI (nir − green)/(nir + green) [31]
BNDVI (nir − blue)/(nir + blue) [32]

RWDRVI (0.1 × nir − red)/(0.1× nir + red) [33]
BWDRVI (0.1 × nir − blue)/(0.1× nir + blue) [33]

MTCI (nir − rededge)/(rededge − red) [34]
MCARI (rededge − red) − 0.2(rededge − green)(rededge/red) [35]
CCCI [(nir + red)(nir − rededge)]/[(nir − red)(nir + rededge)] [36]

CI-green nir/green − 1 [37]
CI-rededge nir/rededge − 1 [37]

SAVI [(1 + 0.5) × (nir − rededge)]/(nir + red + 0.5) [38]

2.3. Statistical Analysis
2.3.1. Modelling Approaches

In this study, both the ability of linear and non-linear regression models was tested to
predict the crop DBM (g plant−1) and nitrogen uptake (gN plant−1). In total, six different
modelling approaches were studied because they possess various mathematical properties.
The linear models consisted of simple linear regression (SLR), lasso regression (lasso) and
partial least squares regression (PLSR). Support vector regression (SVR), random forest
regression (RFR) and gradient boosting with a tree-based model as a base estimator (xGBR)
were studied as non-linear models. The SLR models contained only one predictor variable.
The other models were more complex as they included the median and iqr of all VIs. A
lasso regression model automatically selects predictor variables [39] while a PLSR model
reduces the dimensionality by projecting the predictors onto a lower-dimensional space
where the latent variables are orthogonal [40]. An SVR model determines a hyperplane (i.e.,
support vectors) that captures the relationship between the predictor variables and target
variable [41]. When the Euclidean distance of a data point to a support vector is below a
threshold (ε), the data point is not considered in calculating the model performance index.
Finally, random forest regression (RFR) and extreme gradient boosting regression (xGBR)
are both ensemble regression methods that predict the target values based on a stack of
multiple regression trees [42,43]. RFR uses numerous trees fitted on bootstrapped datasets
and finally aggregates the predictions of all trees to predict the response value of a new
observation. In an xGBR model, the first decision tree is fitted on the complete dataset,
and the following trees are built on a dataset using the residual of the previous tree as the
response. The SLR, Lasso, PLSR, SVR and RFR models were fitted using python’s Scikit-
Learn (v.0.22.1) package [44], while the xGBR models were estimated with the XGBoost
(v.1.2.0) package [42].

2.3.2. Model Training and Hyperparameter Optimization

The workflow to estimate, select and validate the models is illustrated in Figure 2.
The models were trained using the data that was acquired during the field trials in 2019.
Cross-validation (CV) was used to quantify the ability of the model to predict crop DBM
and nitrogen uptake throughout the leek development. As the observations acquired at
each sampling moment and location are not independent due to similar soil, weather
conditions and MS-sensor calibration during each flight, random CV-splits might lead to
over-fitting models, poor generalization, and thus poor model selection [45,46]. To obtain
a reliable estimate of the prediction performance for a new flight, a leave-one-flight out
cross-validation (LOF-CV) scheme was used. In each iteration, the data was split such
that all data from one flight were set aside to validate the model, while the data from the
other flights were used to train the model. The parameters of the SLR were estimated
through ordinary least squares. The other methods require specification of one or multiple
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hyperparameters. These hyperparameters were optimized through the minimization of the
root mean squared error cross-validation (RMSEcv) (Equation (2)) on the training data. So,
the data of the remaining n−1 flights to train the model were iteratively split in a training
set of n−2 flights and a validation set containing all data from the remaining flight. For the
PLSR model, the number of latent variables was selected as the number with the lowest
RMSEcv. For the lasso model, the regularization parameter was optimized. Before the
estimation of the Lasso or PLSR model, the predictor variables were scaled to zero mean
and unit standard deviation. For the SVR model, only the RBF kernel was considered. The
kernel scaling factor (gamma), ε and L2-regularization parameters were optimized. For
the RFR model, the number of regression trees, the minimal number of observations at
each leaf, the maximal number of predictors used and the maximal depth of each tree were
optimized. For the xGBR model, the following hyperparameters were tuned: the number
of regression trees that were used, the maximal tree depth, the minimum reduction in the
loss function value, learning rate, L2 regularization weight and the number of predictors
used to build the trees. The hyperparameters for the SVR, RFR and xGBR models were
optimized through Bayesian optimization using the scikit-optimize package (v0.8.1).
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Next, the models with the selected hyperparameters were trained on the n−1 flights
of the training set. To evaluate the model performance the RMSE on the training data
was calculated for each model, and the model was applied to the test data to predict the
response values. After all iterations, the average RMSE for the training data (Equation (1))
was calculated as well as the cross-testing RMSE (RMSEct, Equation (2)).

2.3.3. Model Selection and Validation

The goal of this research was to find the modelling approach that provides the most
accurate prediction of DBM or crop nitrogen uptake during the growing season. Therefore,
the best performing model was selected based on the smallest RMSEct (Equation (2)).
Furthermore, model performance was also quantified in terms of the bias (Equation (5))
and R2 of the linear regression model between the observed and predicted values. The
RMSEct was calculated as the average error across all LOF-CV iterations as the number of
observations per flight varied from 8 to 24.

RMSEtrain =
1
n

n

∑
k=1

√√√√ 1
n− 1

n

∑
i=1;i 6=k

∑mi
j=1

(
yij − ŷij

)
2

mi
(1)
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RMSEcv =
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(
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with n the number of flights, mi the number of observations in flight i, and ŷij the jth
observation and prediction of flight i, respectively, and σobs the standard deviation of
the observations.

After the best performing model architecture was selected, this model was trained on
the data from all flights executed in the first season (2019) and tested on the data of the
flights executed in the second season (2020).

3. Results
3.1. UAV Flights and Plant Samples

It was planned to acquire the plant samples within as short as possible after a UAV
flight. However, due to practical issues, this was not always possible. As longer delays
were expected to negatively influence the relationship between image features and the
destructive measurements, the flights for which the reference measurements were not made
within 7 days were left out of the regression dataset. In total, 12 UAV flights (four from
the 2019 experiment and eight from the 2020 experiment) could not be matched to any
plant sample. The data for the remaining flights are summarized in Table 1. Figure 3 shows
the evolution of the NDVI throughout the 2019 growing season at the field of PSKW. A
clear increase in the NDVI values can be observed in the beginning of the season, while it
saturates towards the end of the growing season.
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Figure 3. Evolution of the NDVI values acquired at the field of PSKW during the 2019 growing
season. The cyan rectangles indicate the complete experimental plot while the red rectangle indicates
the area used to extract the multispectral data.

In Figure 4, the DBM and nitrogen uptake measured with the reference methods are
plotted as a function of the days after planting (DAP). It clearly shows that there was a
fast increase in DBM and nitrogen uptake after planting until DAP 100, after which they
remained quite constant. The final yield and nitrogen uptake in 2020 were lower compared
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to 2019. The acquired data in 2019 were mainly measured in the very early growth stage
(DAP < 50) or after the leek reached a DBM level similar to the final yield. Thus, little
information was acquired during the exponential growth phase. In 2020 plant samples
and UAV multispectral images were also obtained during the exponential growth phase.
The average measured DBM was 33.60 g plant−1 and 29.25 g plant−1 for the 2019 and 2020
experiments, respectively. The minimal and maximal measured DBM values were 0.71 and
70.15 in 2019, and 1.34 and 97.98 g plant−1 in 2020. The observed leek nitrogen uptake in
2019 ranged from 0.02 to 2.16 with a mean value of 0.94 gN plant−1 and in 2020, nitrogen
uptake ranged from 0.04 to 1.62, with a mean value of 0.78 gN plant−1.
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line is a lowess smoother.

3.2. Regression Analysis and Model Selection
3.2.1. SLR Models

For both N-uptake and DBM, 24 SLR models were built (Figure 5). The DBM was most
accurately predicted by the RWDRVI model with an RMSEct of 9.08 g plant−1 (Figure 5a).
The median NDVI and BNDVI had only a slightly increased RMSEct, 9.37 and 9.96 g plant−1,
respectively. The N-uptake was also most accurately predicted by the RWDRVI model with
an RMSEct of 0.22 gN plant−1. The SLR models using the median NDVI, BNDVI, GNDVI
and BWDRVI had a similar accuracy (Figure 5b). The RMSEct only varied from 0.23 to
0.25 gN plant−1. The N-uptake and DBM were both least accurately estimated using the
iqr of the NDRE; the RMSEct was equal to 0.67 gN plant−1 and 25.26 g/plant, respectively.
However, the relationship between the observed and predicted values in LOF-CV was
significant (p < 0.001). Only the iqr of the MTCI index resulted in a non-significant linear
model for both DBM (p = 0.05) and N-uptake (p = 0.08) estimation. More complex models
were trained and compared to the best performing SLR model to evaluate whether the
information contributed by multiple VIs could provide more accurate predictions.

3.2.2. Model Selection for DBM Prediction

All model types were used to quantify their ability to estimate the leek DBM (Table 3).
The best performing SLR model was the least accurate of all models during training with
an RMSEtrain of 8.11 g plant−1. The other models had smaller training errors that varied
from 1.97 g plant−1 for the xGBR model to 5.26 g plant−1 for the PLSR model. However,
the average RMSEcv of the internal cross-validation loop (Figure 2) for the SLR model was
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only 6.34 g plant−1, which was similar to the RMSEcv of the RFR and xGBR models, which
had the lowest values of the multivariate models.
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Table 3. Summary of the model performances based on RMSEtrain across all LOF-CV iterations, the
RMSEcv, Biasct, and R2 for DBM (g plant−1). The SLR model performance is based on the median
RWDRVI model.

SLR Lasso PLSR SVR RFR xGBR

RMSEtrain (g plant−1) 8.11 5.00 5.26 3.59 3.30 1.97
RMSEcv (g plant−1) 6.34 7.22 7.58 11.15 6.37 6.31
RMSEct (g plant−1) 9.08 6.60 7.90 10.92 6.35 6.72

rRMSEct (%) 42.97 31.21 37.36 51.67 30.03 31.80
Biasct (g plant−1) −0.02 0.59 0.70 −0.07 −0.43 −0.89

R2 0.81 0.90 0.87 0.73 0.91 0.90

The Lasso had a small RMSEct value (6.60 g plant−1) and large R2 (0.9). Additionally, its
RMSE values during training, cross-validation and cross-testing were relatively consistent.
Although the RMSEct of the Lasso model was slightly larger than for the RFR model,
the Lasso model was preferred, as the model is considerably less complex than the RFR
model. Besides, the RMSEct value of the RFR model was almost two times larger than the
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RMSEtrain, which indicates the model was prone to overfitting. The results showed that
the SVR and xGBR models had the same issue: a small RMSEtrain but considerably larger
RMSEct values.

3.2.3. Model Selection for N-Uptake Prediction

Table 4 summarizes the model performance of all model types to estimate the leek
N-uptake. The predictions of the SVR model were most accurate during model training,
with an RMSEtrain equal to 0.08 gN plant−1. The SLR model performed the least accurately
during model training, with an average training error of 0.21 gN plant−1. However, the SLR
model was the second most accurate model in cross-validation and cross-testing with an
RMSEcv and RMSEct of 0.20 and 0.22 gN plant−1, respectively. Additionally, the SLR model
had consistent RMSE values during training, internal cross-validation, and cross-testing.
The bias of the SLR model was also almost zero. Although the SVR model was the best
performing model during training, the RMSEcv (0.30 gN plant−1) was much larger than
the RMSEtrain (0.08 gN plant−1). The SVR model had also the largest bias compared to the
other models.

Table 4. Summary of the model performance based on RMSEtrain across all LOF-CV iterations, the
RMSEcv, Biasct, and R2 for N-uptake (gN plant−1). The SLR model performance is based on the
median RWDRVI model.

SLR Lasso PLSR SVR RFR xGBR

RMSEtrain (g plant−1) 0.21 0.20 0.16 0.08 0.11 0.15
RMSEcv (g plant−1) 0.20 0.25 0.23 0.32 0.19 0.18
RMSEct (g plant−1) 0.22 0.29 0.26 0.30 0.21 0.23

rRMSEct (%) 39.08 51.35 44.89 52.49 36.78 40.11
Biasct (g plant−1) 0.00 0.05 0.01 0.14 0.03 −0.05

R2 0.85 0.75 0.82 0.78 0.87 0.87

Figure 6 illustrates the predictions during cross-testing for both leek DBM and N-
uptake using the Lasso and SLR models, respectively. The lowess curves, which indicate the
average prediction error, are rather small in the beginning of the growing season. However,
at larger DBM and N-uptake values, both models tend to underestimate the observations.
Despite a good overall relationship between predicted and observed DBM values, the
relationship for the low DBM (rpearson = 0.44) and N-uptake (rpearson = 0.66) values was
less clear.
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3.3. Model Validation

For the prediction of the leek DBM and N-uptake, the Lasso model and SLR model
were trained again on all the observations from 2019. The dominant parameters in the Lasso
model were the median values of RWDRVI and MCARI, with both positive coefficients. The
hyperparameter optimization resulted in a value of the regularization parameter of 0.06.

Next, these models were used to predict the DBM and N-uptake for the dataset of
2020. In the following sections, the model prediction accuracy for the Pluston variety will
be analysed as well as the ability of the model to be transferred to other varieties.

3.3.1. Pluston Variety

For the predictions of the Pluston DBM a considerable increase in the RMSEP
(8.50 g plant−1) was observed (+28.8%) compared to the RMSEct (Table 5). Additionally, the
R2 decreased (0.77) and absolute bias (1.59 g plant−1) increased compared to cross-testing.
DBM was less accurately predicted at the farmers’ fields compared to the research centres
as the bias and RMSEP increased to 3.11 g plant−1 and 9.79 g plant−1, respectively. The
prediction error was relatively small for low DBM values but increased for larger DBM
values. As the maximal observed DBM in 2020 was smaller than in 2019, no clear underesti-
mation of the DBM yield was observed (Figure 7a). Similar trends were observed for the
validation of the SLR model to predict the Pluston N-uptake. The RMSEP increased 22.7%
relative to the RMSEct to a value of 0.27 gN plant−1, while also the R2 (0.68) decreased and
the absolute bias increased slightly to 0.03 gN plant−1. N-uptake in the beginning of the
growing season was clearly underestimated at the research centres, while this was not the
case for the farmer fields. The model predictions were less accurate for large N-uptake
values (Figure 7b).

Table 5. Summary of the Lasso model to predict Pluston DBM and SLR model to predict Pluston
N-uptake on the test data acquired during the 2020 experiments.

Field Type All Research Centre Farmer

Variety Pluston Pluston Pluston
DBM

nobs 224 204 20
RMSEP 8.50 8.37 9.79
rRMSEP 49.98 49.96 50.62

Bias 1.28 1.10 3.11
R2 0.77 0.77 0.78

N-uptake
nobs 172 156 16

RMSEP 0.27 0.28 0.24
rRMSEP 69.77 72.76 49.51

Bias 0.03 0.02 0.09
R2 0.68 0.67 0.82

3.3.2. Model Transfer to Other Varieties

Different leek varieties differ in the leaf greenness, shaft length, and the intended sea-
son to be planted. Therefore, they could vary in both spectral and physiological properties.
In this study, the generalization ability of the models trained on only the Pluston variety
was evaluated using a limited number of observations acquired in 2020 at farmers’ field.
The DBM of the Chiefton variety was most accurately predicted with an RMSEP of 6.19 g
plant−1 (Table 6). The Harston DBM was the least accurately predicted with an RMSEP
of 21.68 g plant−1. Low DBM values were largely overestimated while a very large DBM
yield was observed, 97.98 g plant−1, which was clearly underestimated. The RWDRVI was
able to predict the N-uptake of the Harston and Krypton varieties with similar accuracy
compared to Pluston, the RMSEP was 0.26 gN plant−1 for both varieties, while the bias was,
respectively −0.01 and 0.04 gN plant−1 (Table 6). The RMSEP of the Chiefton variety was



Remote Sens. 2022, 14, 6211 12 of 17

0.27 gN plant−1, which could be largely attributed to the large bias of 0.24 gN plant−1. The
N-uptake of the Vitaton variety was least accurately predicted with an RMSEP of 0.44 gN
plant−1 and a bias of 0.29 gN plant−1.
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Table 6. Summary of the prediction accuracy for leek DBM and N-uptake for leek varieties that were
not included in the training dataset.

Variety Chiefton Harston Krypton Poulton Vitaton

DBM
nobs 4 10 4 10 11

RMSEP 6.19 21.68 9.20 13.32 11.59
Bias 1.03 3.89 3.94 9.83 0.23
R2 1.00 0.59 0.86 0.71 0.70

N-uptake
nobs 4 6 4 6 11

RMSEP 0.27 0.26 0.26 0.30 0.44
Bias 0.24 −0.01 0.04 0.23 0.29
R2 0.96 0.73 0.77 0.96 0.65

4. Discussion
4.1. Model Selection and Validation

The aim of this study was to find a robust modelling approach to estimate leek DBM
and N-uptake throughout the growing season at multiple locations from multispectral
data acquired with a UAV. The results showed that for both DBM and N-uptake the most
robust predictions were achieved with a simple model with a limited number of predictors
(Tables 3 and 4). The LOF-CV clearly showed that more complex models like SVR, RFR and
xGBR were prone to overfitting despite the hyperparameter tuning in leave-one-flight-out
cross-validation to avoid this. This result was contrary to several other studies where RFR
was reported to outperform linear regression models [18,20,47]. However, these studies
used either Kfold-CV or validation plots within the same field as the calibration plots to
quantify model performance. Using randomized Kfold-CV on the dataset used in this
study, the RMSE values during training, cross-validation, and cross-testing were smaller
and more consistent compared to the LOF-CV results (Tables A1 and A2). The problem of
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overfitting would thus be less clear. Additionally, based on the Kfold-CV results the ability
of multispectral UAV imagery to predict leek DBM and N-uptake for the 2020 experiments
would be overestimated if RMSEct (Tables A1 and A2) is compared to RMSEP (Table 5).

Based on these results it can be hypothesized that more complex models were able
to capture some flight-specific effects which resulted in less accurate predictions in cross-
testing [46]. To alleviate this problem, additional research is required into these effects,
which probably originate from image acquisition or radiometric calibration. Field specific
model adjustments might solve this issue but would impede application in precision
farm management.

Kim et al. [19] achieved accurate biomass predictions after applying a bias and slope
correction on the predicted values when their model was transferred to the next growing
season. In our study, an increase in both bias and RMSEP was observed which could
not be corrected by either a bias or slope correction. However, Kim et al. [19] used only
phenological parameters such as crop height and vegetation fraction. Several other stud-
ies indicated that the combination of spectral VIs and plant morphological parameters
such as canopy cover and plant height resulted in more accurate estimates of the crop
biomass [20,28,48–51]. Crop height could not be reliably estimated for the UAV flights
of 2020 and was therefore omitted in this study. The digital surface model (DSM) was
georeferenced using 5 GCPs and a digital terrain model (DTM) was determined based on
soil pixels selected from the DSM. It is hypothesized that the presence of only five GCPs
in the fields was not sufficient for the covered area and therefore led to inaccurate image
products. However, the need for placing a large number of GCPs in each field would be
a serious drawback for practical implementation. This problem might be overcome by
equipping UAVs with an RTK GNSS, as Štroner et al. [52] reported that this allows to obtain
georeferencing errors smaller than one GSD without using GCPs.

4.2. Model Application

This study showed the potential of multispectral UAV imagery for leek growth moni-
toring as both leek DBM and N-uptake were predicted relatively accurate for the Pluston
variety. However, there are still some challenges that should be tackled to improve the
model robustness in the context of precision agriculture. Nitrogen fertilization of leeks is
most often applied at planting and about eight weeks after planting. The results showed
that the predictions in this early growth stage did not correlate well with the observed
values compared to the overall fit. This might result in sub-optimal management decisions.
In both the Lasso model for DBM prediction and the SLR model for N-uptake prediction,
the median RWDRVI was an important VI. Although wide dynamic range VIs were devel-
oped to cope with the saturation effect of the NDVI, high DBM and N-uptake levels were
still underestimated during cross-testing [33]. This was less pronounced during model
validation. However, the maximal observed values of the 2020 experiments were smaller
compared to the 2019 experiments. The consequences for in-season management decisions
will be limited, but accurate predictions of yield and N-uptake are essential to evaluate
management decisions. Nonetheless, some farmers also apply fertilizers after eight weeks
in the growing season to fertilize in a more fractioned way.

In farmers’ fields, it is common to plant multiple varieties next to each other, so it would
be helpful if only one model is needed to estimate DBM or N-uptake of different varieties.
However, the validation predictions for the other leek varieties showed mixed results, some
varieties had accurate predictions for either DBM or N-uptake while other predictions
were considerably less accurate. However, due to the limited number of observations and
variable plant densities, these results on the transferability to other varieties should be
handled with care.

5. Conclusions

To achieve sustainable leek production, N-input should be reduced, however, relatively
low fertilizer prices combined with high N-demand, a shallow rooting system and a long
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growing period make this a difficult task. UAV imagery has been identified as a tool
with high potential to assist farmers in improving their N-management and allow site-
specific fertilization as it overcomes some practical limitations of handheld, proximal
imaging sensors. As few of these studies have focused on vegetable cultivation and none
were found on leeks, this study aimed to expand the research on UAV-based vegetable
monitoring by identifying the most robust modelling approaches to monitor leek DBM
and N-uptake using leave-one-flight-out cross-validation (LOF-CV). Simple linear models
based on a limited number of spectral VIs achieved the best results. More complex models
like SVR, RFR and xGBR were prone to overfitting as large differences between RMSEtrain,
RMSEcv and RMSEct were observed. A Lasso model, using RWDRVI and MCARI resulting
in an RMSEct of 6.60 g plant−1, a bias of 0.57 g plant−1 and an R2 of 0.90 was determined
as the best model to predict leek DBM. An SLR using the RWDRVI resulted in an RMSEct
of 0.22 gN plant−1, a biasct of 0.00 gN plant and an R2 of 0.85. The models still have some
limitations as the model predictions were less accurate when used to predict DBM and
N-uptake during the next growing season, as the RMSEP and bias increased while the R2

decreased. This study also showed that Kfold-CV could lead to over-optimistic results
and the consequent selection of models with poor generalizability due to the inclusion of
flight-specific effects such as the weather conditions, soil type, and sensor calibration in
the validation data. Additional research into these effects is recommend to build models
that are capable of predicting DBM and N-uptake accurately throughout different growing
seasons and fields from multispectral UAV data. As long as this has not been resolved,
field- and season-specific calibration will be required to improve model accuracy, which
impedes the applicability of the technology.
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Appendix A

Table A1. Model training performance using randomized Kfold-CV for the prediction of the leek
DBM using the data from the 2019 experiments.

SLR Lasso PLSR SVR RFR xGBR

RMSEtrain (g plant−1) 8.15 4.49 5.07 3.58 1.7 1.96
RMSEcv (g plant−1) 8.17 4.88 5.32 4.36 4.18 4.35
RMSEct (g plant−1) 8.19 4.47 5.38 4.31 4.20 4.52

rRMSEct (%) 38.74 23.05 25.47 20.0 19.89 21.38
Biasct (g plant−1) 0.01 0.00 0.10 −0.05 −0.20 −0.63

R2 0.85 0.95 0.94 0.96 0.96 0.96
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Table A2. Model training performance using randomized Kfold-CV for the prediction of the leek
N-uptake using the data from the 2019 experiments.

SLR Lasso PLSR SVR RFR xGBR

RMSEtrain (g plant−1) 0.21 0.15 0.14 0.08 0.06 0.14
RMSEcv (g plant−1) 0.21 0.16 0.16 0.16 0.14 0.15
RMSEct (g plant−1) 0.21 0.16 0.16 0.17 0.14 0.16

rRMSEct (%) 36.44 28.36 27.19 29.23 24.35 27.83
Biasct (g plant−1) 0.00 0.00 0.00 0.01 0.00 0.01

R2 0.87 0.92 0.93 0.91 0.94 0.93
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