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Abstract: Increased use of laser scanning in forest inventories is leading to the adoption and develop-
ment of automated stand delineation methods. The most common categories of these methods are
region merging and region growing. However, recent literature proposes alternative methods that
are based on the ideas of cellular automata, self-organizing maps, and combinatorial optimization.
The studies where these methods have been described suggest that the new methods are potential
options for the automated segmentation of a forest into homogeneous stands. However, no studies
are available that compare the new methods to each other and to the traditional region-merging and
region-growing algorithms. This study provided a detailed comparison of four methods using LiDAR
metrics calculated for grids of 5 m by 5 m raster cells as the data. The tested segmentation methods
were region growing (RG), cellular automaton (CA), self-organizing map (SOM), and simulated
annealing (SA), which is a heuristic algorithm developed for combinatorial optimization. The case
study area was located in the Heilongjiang province of northeast China. The LiDAR data were
collected from an unmanned aerial vehicle for three 1500-ha test areas. The proportion of variation in
the LiDAR metrics that was explained by the segmentation was mostly the best for the SA method.
The RG method produced more heterogeneous segments than the other methods. The CA method
resulted in the smallest number of segments and the largest average segment area. The proportion of
small segments (smaller than 0.3 ha) was the highest in the RG method while the SA method always
produced the fewest small stands. The shapes of the segments were the best (most circular) for the CA
and SA methods, but the shape metrics were good for all methods. The results of the study suggest
that CA, SOM, and SA may all outperform RG in automated stand delineation.

Keywords: region growing; cellular automaton; self-organizing map; simulated annealing; LiDAR
data; unmanned aerial vehicle; laser scanning; forest segmentation

1. Introduction

Forest stands are homogeneous subareas of the forest, which often serve as the basic
unit for field surveys, yield prediction, management planning, and implementation of
management prescriptions. The use of automatic segmentation methods in the delineation
of forest stands is increasing [1–4]. For example, in Finland, almost all stand delineations
are currently based on fully automated or semi-automatic methods that employ LiDAR
scanning data either alone or in combination with digital aerial photographs [2].

The main reason for this trend might be the increased availability of laser scanning
data. There are already several methods available that can use these data to automatically
delineate forest stands [1–4]. The traditional manual stand delineation by forest man-
agers is time-consuming and subjective. Delineations by different forest managers may
differ greatly.

Increased use of LiDAR data in forest inventories has accelerated the shift from manual
stand lineation to automated methods. Besides segmenting the forest into stands, LiDAR
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data may also be used for stratification and in the process of imputing or predicting stand
variables for the segments [5,6]. In Finland, the field data are imputed, besides segments,
also for 16 m by 16 m raster cells. Therefore, the site and growing stock variables of the
raster cells may also be used in automated stand delineation [7–10].

Many methods for automated stand delineation have been suggested in forestry
literature [4,10–12]. The methods that have been used most commonly belong to the
categories of region merging and region growing. The idea of region merging is to join
adjacent spatial units if they are similar in terms of LiDAR metrics or other variables that
are available for assessing similarity. The initial spatial units may be raster cells, so-called
nano-segments [13], small micro-segments [6], or Voronoi polygons that correspond to the
growing spaces or crown areas of individual trees [14].

In region-growing, the first step is usually to identify homogeneous areas from the
forest, which are subsequently used as seeds in the region-growing process. Adjacent raster
cells are joined to the seeds in such a way that the within-segment variation increases as
little as possible [15].

Region merging and region growing are one-directional methods in the sense that
the segments can only enlarge. Recent literature presents a few alternative approaches in
which the segmentation process is more flexible, and the segments can shrink or enlarge, or
even disappear. One of these methods is the cellular automaton where each cell of a grid is
joined to one of its adjacent segments for many iterations [3,8,16]. The initial segments may
be, for instance, rectangular areas. When the cellular automaton algorithm proceeds, the
borders of the segments will move toward existing boundaries in the forest landscape.

Another approach suggested in recent literature is to use existing algorithms for
combinatorial optimization for the delineation of forest stands [4]. The rationale behind
this suggestion is the realization that finding the best stand number for a grid of raster
cells is a combinatorial optimization problem. Therefore, simulated annealing, genetic
algorithm, and other methods for combinatorial problems can also be used in automatic
stand delineation [17,18].

The third new method that was recently adapted to stand delineation is the self-
organizing map developed by Kohonen (1982) [19]. This method consists of separate
training and classification steps. The training step creates a set of different combinations
of values of those variables that are used in segmentation. These combinations are called
neurons. In the training phase of the method, the neurons “learn” from the data. At
the end of the training step, the set of neurons provides a summary of the data. In the
classification step, each cell of the raster is connected to the neuron that is closest to it in
terms of variables available for the raster cells. The result can be understood as stratification.
When the coordinates of the raster cells are used as additional variables in training and
classification, the strata are spatially continuous, corresponding to forest stands [9].

Recently, some studies have suggested that these segmentation methods could be used
for automatic stand delineation [3,4,9]. All of the new methods are promising and able to
delineate stands with small within-stand variations in LiDAR metrics or other variables
that were used in segmentation. However, there are no comparisons of these algorithms
with the prevailing segmentation methods, namely region merging and region growing.
The new methods have not been compared to each other either, except that Pukkala (2021)
provided a succinct comparison of the cellular automaton and self-organizing map [9].

The objective of this study was to compare the performance of the region growing,
cellular automaton, self-organizing map, and simulating annealing in automated stand
delineation. The purpose was to increase the knowledge and understanding of the potential
usability of the new methods. The variables used in the delineation were three metrics
calculated from LiDAR scanning data.
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2. Materials and Methods
2.1. Study Sites and Field Data

The study area is located in the Mengjiagang forest farm of 15,503 ha, owned by the Hua-
nan country in Heilongjiang Province of China (45◦30′16′′–46◦20′20′′N, 130◦32′0′′–130◦52′6′′E)
(Figure 1). Most forests are plantations dominated by coniferous tree species, predomi-
nantly Pinus koraiensis, Pinus sylvestris var. mongolica, Larix olgensis, and Picea asperata. The
case study forest has an average elevation of approximately 250 m a.s.l. with a range of
180–450 m. The area is characterized by relatively flat slopes [20].
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Figure 1. Map of the Mengjiagang forest farm in Heilongjiang Province, northeast China, showing
the study area location.

2.2. Data Acquisition and LiDAR Metrics

Laser scanning from an unmanned aerial vehicle (UAVLS) was conducted on 12
August 2019, using a RIEGL VUX-1UAV LiDAR scanner (www.riegl.com/products/
unmanned-scanning/rieglminivux-1uav, accessed on 19 October 2022) carried by a DJI
M600 Pro unmanned aerial vehicle (eight-rotor UAV platform). The services provided by
the RIEGL (RIEGL Laser Measurement Systems GmbH, Horn, Austria) also included basic
data processing. The study area consisted of three rectangular 1 km × 1.5 km sub-areas,
which were scanned from an altitude of 180 m above ground. The flight speed was 10 m/s.
A total of 6 flights were carried out. The laser scanner had a 330◦ field of view (FOV).
The scanning of the three sub-areas lasted for one hour. The maximum point density
was 136 pulses/m2, with up to 5 echoes. The main characteristics of the scanning are
summarized in Table 1.

Table 1. Descriptive statistics of the operational parameters for the UAVLS data collection.

Characteristic Value

Laser pulse repetition rate (kHz) 380
Accuracy/Precision (mm) 10/5
Maximum echo number 5

Maximum Range (m) 250
Beam divergence (mrad) 0.5
Laser wavelength (nm) 1550

Weight (kg) 3.75
Note: Accuracy is the degree of conformity of a measured quantity to its actual value and precision is the degree
to which further measurements show the same result.

Before calculating the structural metrics from the UAVLS point cloud data, some data
pre-processing was conducted. First, the noise points were removed from the LiDAR point
clouds by using a Gaussian-smoothing filter [21]. Second, a cloth simulation filter was

www.riegl.com/products/unmanned-scanning/rieglminivux-1uav
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employed to separate non-ground and ground point clouds using parameters 0.5 as the
value of the grid resolution, 0.6 as the time step, and 3 as the rigidness [22]. The average
density of ground points was 17 pulses/m2. Then, the digital elevation model (DEM)
was constructed using the ground points and the Kriging interpolation method with a
1 m spatial resolution [23]. Finally, The UAVLS point clouds were height-normalized by
the DEM. The normalized point clouds were clipped with a 1 km × 1.5 km rectangular
boundary. Three subareas of this size were used in the study.

A set of UAVLS metrics were calculated for 1 m2 raster cells using the normalized point
cloud data and the LiDAR360 software (www.lidar360.com). Three categories of metrics
were calculated: height-related metrics, intensity-related metrics, and topography-related
metrics. Height-related and intensity-related metrics were calculated from the normalized
point clouds, and they included the percentiles (1%, 5%, 10%, 20%, 25%h, 30%, 40%,
. . . , 90%, 95%, 99%) of echo heights, cumulative heights, and intensities. Other standard
metrics such as the variance, standard deviation, coefficient of variation, skewness, kurtosis,
average absolute deviation, mean, maximum and median of the heights, and intensities of
the echoes were also calculated [4]. Topography-related metrics were calculated from the
DEM and included the elevation, aspect, and slope of the terrain.

Based on the study of Sun et al. (2021), the following three LiDAR metrics were used
in stand lineation (Figure 2): 95th percentile of the height distribution of normalized echo
height (referred to as HP95), 5th percentile of the accumulated echo heights (AH5), and
variance of the intensity of the echoes (IV) [4]. Sun et al. (2021) concluded that while HP95
is the most important variable for the segmentation, the result would improve if other
LiDAR metrics were used as well. Based on Sun et al. (2021), the weights of the three
LiDAR metrics were as follows: HP95: 0.7, AH5: 0.2, and IV: 0.1. These weights were used
in all four delineation methods tested in this study.

The three LiDAR variables (HP95, AH5, IV) were first calculated for 1 m2 raster cells.
Based on the recommendation of Jia et al. (2020), the 1 m2 rasters were resampled to a 5 m
by 5 m cell size because the use of smaller cells may delineate crowns of individual large
trees and produce very rugged segment boundaries [3]. The metrics of the 5 m by 5 m cells
were calculated as the means of the 1 m2 cells that belonged to the larger 5 × 5 m2 cell.

2.3. Methods
2.3.1. Region-Growing

Region-growing was performed using the segmentation algorithm introduced by
Balasubramanian et al. (2008) and implemented in MATLAB (Mathworks, Inc., Natick,
MA, USA) [24]. Region growing (RG) is the process of aggregating the cells of a grid
into larger regions. It first determines initial seeds, which are subsequently enlarged into
neighbouring cells following the parameters set for area growth and the stopping criteria
of area growth [25,26].

The use of region growing started with the generation of initial seeds and the calcu-
lation of the mean and standard deviation of the variables used in the process. A recent
study by Lee and Cok (1991) uses a vector-based gradient map to guide the growth of
the regions [27]. In this study, a weighted mean of the normalized values of three LiDAR
metrics within 5 m2 raster cells was used in the generation of the gradient map. The
weighted mean of the LiDAR metrics was calculated from:

C = 0.7HP95 + 0.2AH5 + 0.1IV (1)

Low gradient values correspond to homogenous regions. To form initial growth seeds,
we joined adjacent cells for which the gradient was below the sum of the mean and standard
deviation within the seed by using 4-neighborhood connectivity (cells to the east, west,
north, and south were considered). Seeds larger than 0.025 ha were retained for subsequent
region growth.

www.lidar360.com
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In the region-growing step, the neighbouring cells of a region included the adjacent
“side cells” (cells to the east, west, north, and south) and the “corner cells” (cells to the
northeast, southeast, southwest, and northwest) of those cells that constituted the region,
i.e., 8-neighbourhood was used (Figure 3). The initial growth seeds expanded toward neigh-
bouring cells based on a pre-defined homogeneity criterion. The homogeneity criterion
employed the vector-based gradient map [2]. The mean (m) and standard deviation (σ)
computed for each initial growth seed were used to calculate the confidence interval for C
(Equation (1)). If the value of variable C in the neighboring cell was between m − σ and
m + σ, the neighboring cell was added to the growing seed and the neighboring cell was
given the same segment number as the seed.
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Figure 3. Schematic diagram illustrating the expanding process of growth seeds in the region growing
method. Blue cells represent the initial growth seed, red cells represent the neighbouring cells, and
yellow cells represent neighbouring cells that meet the joining criteria.

The expanding process was stopped when no cells were found that met the joining
criterion. To obtain a segment number for all cells, the process was repeated for several
iterations. At each iteration, the mean and standard deviation were calculated for the
expanded regions, which were subsequently used as the initial growth seeds for the next
iteration. The above steps were repeated until each cell belonged to a region (i.e., had a
segment number).

2.3.2. Cellular Automaton

The cellular automaton used in this study is the same as that described by Jia et al.
(2020) [3]. The idea of the method is to join each cell of a raster to one of its adjoining
segments using the following formula for selecting the most suitable segment for the cell:

Pij = w1p1(Bij) + w2p2(Aj) + w3p3(Dij) + w4p4(Sij) (2)

where Pij is the priority, or score, if cell i is joined to segment j, Dij is the Euclidean distance
of the LiDAR metrics between cell i and segment j, Aj is the area of segment j, Bij is the
proportion of the common border between cell i and segment j (of the total border length
of cell i), Sij is the effect of joining cell i to segment j on the shape of segment j, pk is the
sub-priority function for criterion k, and wk is the weight of criterion k. The sum of the
weights was equal to one. The score was calculated for each segment adjacent to cell i, and
the number of the segment with the highest score was given to cell i. When calculating the
border length, it was assumed that the side cells to the east, west, south, and north have a
length equal to 1 and the corner cells (to the northeast, southeast, southwest and northwest)
have a “length” equal to 0.3.

The initial segments were obtained by dividing the area into square-shaped areas.
Then, the segment number of each cell of the grid was determined by using Equation (2).
This process was repeated for several iterations.

Compared to the first version of the cellular automaton [8], Jia et al. (2020) introduced
a shape metric that affected the assignment of segment numbers for the cells [3]. The
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shape metric was based on the distance of the cells of a segment to the segment’s center.
Minimizing this distance produces roundish segments without long and narrow extensions.

All four criteria used in Equation (2) had an associated sub-priority function, which
determined the effect of segment area, common border, segment shape, and difference in
LiDAR metrics between the cell and the segment on the sub-priority obtained from the
criterion. We used the same sub-priority functions as Jia et al. (2020) [3]. As shown by
Equation (2), the sub-priorities were multiplied by the criteria weights and summed.

The difference between LiDAR metrics in cell i and segment j was calculated from the
normalized values of the metrics as follows:

Dij =
√

0.7
(

HP95i − HP95j
)2

+ 0.2
(

AH5i − AH5j
)2

+ 0.1
(

IVi − IV j
)2, j = 1, . . . , J (3)

where J is the number of segments adjacent to cell i. The sub-priority was inversely
proportional to the difference, i.e., a smaller difference in the LiDAR metrics between cell i
and segment j increased the probability that cell i was joined to segment j. Since all LiDAR
metrics were scaled to the range 0–1, the sub-priority also ranged from 0 to 1.

The sub-priority functions for the segment area and the common border between the
cell and a segment were logistic curves, which resulted in sub-priorities ranging from zero
to one. For example, the sub-priority function for the segment area was:

p2 =
1

1 + exp
(
−5
(

Aj − 0.5
)) (4)

where Aj is the area of segment j in hectares. The sub-priority function is graphically
depicted in Figure 4. It indicates that increasing the segment area increases the likelihood
that a cell is joined to the segment, but the effect is almost over at about 1.5 hectares. As a
result of the shape of the sub-priority function (Figure 4), the cellular automaton avoids
joining cells to segments whose area is clearly less than one hectare. However, other criteria
of the priority function (Equation (2)) may favour a small segment, which means that small
segments are not ruled out completely.
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2.3.3. Self-Organizing Map

The variant of the self-organizing map adapted to stand delineation by Pukkala (2021)
was used in this study [9,19]. The algorithm begins with the creation of initial neurons. In
Pukkala’s (2021) study as well as in ours, the initial neurons were obtained by dividing
the area into squares (for instance, 1 ha squares) and calculating the mean values of the
normalized LiDAR metrics and the x and y coordinates for each square [9]. Each neuron
was associated with the values of HP95, AH5, IV, x coordinate, and y coordinate.

Then, a training process was initiated that consisted of selecting a random cell from
the grid and finding the neuron most similar to it in terms of the five variables listed above
(HP95, AH5, IV, x, y). The similarity was assessed by using the weighted Euclidean distance
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Dij =

√
0.7
(

HP95i − HP95j
)2
+0.2

(
AH5i − AH5j

)2
+0.1

(
IVi − IV j

)2
+v(x i − xj

)2
+v(y i − yj

)2 (5)

where Dij is the distance between cell i and neuron j, and v is the weight of coordinates.
Before calculating the distance, all variables were normalized to a mean of zero and a
standard deviation of one.

The neuron that is most similar to cell i is called the best matching unit (BMU). The
attribute values (HP95, AH5, IV, x, y) of the BMU were updated using

zjk(t + 1)= zjk(t)+α(t)
[
zjk(t)− zik(t)

]
(6)

where zjk is the value of attribute k in neuron j, zik is the value of the same attribute in cell i,
t is the number of the current iteration and α(t) is the learning rate. The initial value of the
learning rate parameter was 1, and it was updated after every iteration as follows

α(t + 1)= α(0)[1− t/tMax] (7)

The number of training iterations (tMax) was 10,000, which means that the process
of selecting a random cell, finding the BMU for it, and updating the attribute values of
the BMU was repeated 10,000 times. Then, classification was performed where each cell
of the raster was linked to the neuron most similar to it in terms of Euclidean distance
(Equation (5)). The number of the most similar neuron was given to the cell. Due to the use
of coordinates, cells that constituted a class were usually adjacent, and the classes could
therefore be interpreted to be segments.

As suggested by Pukkala (2021), the process that consisted of the production of initial
neurons, training, and classification was repeated a few more times (10 times in this
study) [9]. In the second and all later repetitions, the attribute values of initial neurons were
obtained from the means of the classes of the previous classification. However, classes that
had only a few cells were discarded, which means that the number of initial neurons may
decrease when the self-organization process is repeated. In this study, all classes (segments)
smaller than 0.1 ha were discarded at the beginning of a new self-organization round.

2.3.4. Simulated Annealing

In the same way, as in cellular automaton, simulated annealing (SA) was started by
dividing the area into square-shaped initial segments [4]. In the SA method, these segments
are called the initial solution. Then, a random cell was selected from the grid. If this cell
was located at the segment border (at least one of its adjacent cells belonged to a different
segment), the possibility to change the segment number of the cell was considered. The
choice depended on the effect of the change on the properties of the segment to which it
would be joined (recipient segment) and the current segment of the cell (donor segment).
In SA, changing the segment number of a raster cell was called a move.

The formula that was used to evaluate the effect of the move was as follows:

Q = w1p1(A) + w2p2(V) + w3p3(S) (8)

The formula expresses the quality of the segment as a function of three criteria: seg-
ment area (A), variance of the LiDAR metrics (HP95, AH5, IV) within the segment (V),
and shape of the segment (S). The quality measure was calculated for both the donor and
the recipient segment before and after implementing the move. If the move improved
the average quality score of the two segments, it was accepted. Otherwise, the move was
accepted with the following probability (p):

p = exp
(QA f ter −QB f ore

T

)
(9)
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where QBefore is the average quality score of the two segments before the move and QAfter
is the average score if the move is implemented. T is a “temperature” parameter that
affects the probability of implementing inferior moves. The temperature parameter had a
starting value and an ending value (“freezing temperature”). At each temperature, a certain
number of candidate moves were produced and evaluated, after which the temperature
was multiplied by a constant smaller than one. The process was terminated when the
temperature reached freezing temperature.

In this study, the number of candidate moves (random cells) evaluated at each tem-
perature was 50,000. This number also includes those randomly selected cells that were
not located at the segment border and were therefore not eligible for a move. The initial
temperature was 0.1, the freezing temperature was 0.0001, and the multiplier to obtain
a new temperature was 0.95. These parameters are based on the analyses of Sun et al.
(2021) [4].

In Equation (8), which was used to evaluate the quality of a segment, the sub-priority
function for segment area was the same as used in cellular automaton (Figure 4). The
sub-priority function for within-segment variance (V) was

p2 =
1

1 + exp(3(V − 0.3))
(10)

where V is the weighted mean of the relative variances of HP95, AH5, and IV within
the segment. The formula implies that the quality score from variance decreases with
increasing within-segment variation in HP95, AH5, and IV. The relative variance was
calculated by dividing the variance of the cell values by the mean value of the attribute
within the segment. The weighted mean of the relative variances (RV) was calculated from

V = 0.7RVHP95 + 0.2RVAH5 + 0.1RVIV (11)

The priority function for segment shape was the one suggested by Sun et al. (2021) [4].
It is different from the one used in the cellular automaton, although in both cases the idea
of the shape metric is to measure deviation from a circular shape. The quality points from
the segment shape were calculated as follows:

p3 =
1
n ∑n

i=1
1

1 + exp(8 (RDi − 1))
(12)

where n is the number of cells that belong to the segment and RDi is the relative distance
of cell i from the segment centroid. RD was calculated by dividing the distance by the
radius of a circle that has the same area as the segment. The shape score of the segment is
calculated as the mean of cell-level distance scores.

2.4. Post-Processing

All three methods tested as alternatives for region growing (CA, SOM, SA) may split
segments into disconnected parts. The methods may also produce rugged boundaries and
result in a gradual change in stand number (Figure 5 top left). These outcomes are more
common in SOM and SA as compared to CA [3,4,9]. Although the delineations obtained
from the algorithms correspond to the spatial variation of the attribute values within the
input raster, divided segments, gradual changes, and rugged segment boundaries may not
be appreciated in forestry practice. In addition, very small segments are seldom desired as
forest management units since they make it difficult to implement treatments.

To mitigate these problems, the segmentations obtained from CA, SOM, and SA were
post-processed in three steps. First, a mode filter with a 3 × 3 cell window was applied to
the segmentation: the segment number of every cell was replaced by the most common
segment number of the 9-cell window. This process smoothed segment boundaries and
reduced gradual transitions (Figure 5, top left and top right).
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Second, non-connected parts of segments were given different segment numbers,
i.e., they were interpreted to be different segments (Figure 5, bottom left). Third, another
model filter was applied to cells that belonged to segments smaller than 0.1 ha. The
segment number of these cells was replaced by the most common segment number within
a 9 × 9 cell window. This post-processing step was called cleaning (Figure 5, bottom right).

Of these post-processing steps, mode filtering increases the within-segment variation
in LiDAR metrics and renumbering decreases it. However, the effects are usually small [4].
Both mode-filtering and renumbering tend to improve the shapes of the segments [21].
Renumbering decreases the average area points of the stands as it creates new small
segments, and cleaning has the opposite effect.

2.5. Fine-Tuning of CA, SOM, and SA

Most of the parameters of CA, SOM, and SA were taken from previous studies [3,4,9],
which have analyzed the effects of parameters on the segmentation results and recom-
mended certain parameter values. However, additional sensitivity analyses were conducted
to find the most suitable size of initial stands and suitable weights for the quality criteria of
the segments.

Three different sizes of the square-shaped initial stands were compared within each
method (CA, SOM, SA): 1 ha, 1.5 ha, and 2 ha. In addition, three different sets of criteria
weights were tested. In CA, the weight of Euclidean distance between a cell and a seg-
ment (criterion D in Equation (2)) was 0.1, 0.4, or 0.7, and the weights of the three other
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criteria (area, shape, common border) were equal (0.3, 0.2, or 0.1). This resulted in nine
combinations of initial segment area and criteria weights.

In SOM, each initial segment area was tested with three different weights of coordi-
nates in Equation (5). Equation (5) was used to measure the similarity between a cell and a
neuron. The weight of the coordinates was 3, 6, or 9 while the weights of HP95, AH5, and
IV were always 0.7, 0.2, and 0.1, respectively. An increasing weight of coordinates results
in more compact, roundish, and even-sized segments.

In SA, the criteria weights of Equation (8) were modified so that the weight of within-
segment variance was 0.5, 0.7, or 0.9. The weights of the other criteria (area and shape)
were equal in such a way that the sum of the three weights was always 1.

2.6. Statistics Calculated for the Segmentations

The delineations produced by the four methods were evaluated by calculating the
degree of the variance in HP95, AH5, and IV which was explained by the delineation (R2).
The R2 statistic was calculated from

R2= 1 − SSE/SST (13)

where SSE is the variation not explained by the delineation and SST is the total variation of
the attribute within the grid. SST and SSE were calculated as follows:

SST =
N

∑
j=1

nj

∑
i=1

(
zij − z

)2 (14)

SSE =
N

∑
j=1

nj

∑
i=1

(
zij − zj

)2 (15)

where N is the number of segments, nj is the number of cells in segment j, zij is the value of
the attribute (HP95, AH5 or IV) in cell i of segment j, z is the overall mean of the attribute,
and zj is the mean value of the attribute among the cells that belong to segment j.

In addition, the average segment area and the proportion of segments smaller than
0.3 ha were calculated for each segmentation. The shape of the segments was assessed
using metrics that measure deviation from a circular shape. First, a radius of a circle having
the same area as the segment was calculated for each segment. Then, the average distance
of the cells from the segment center was calculated, using the length of the radius as the
unit. For example, if the segment area is 1.2 ha, it corresponds to a 61.8-m radius. If the
average distance of the cells from the segment’s center is 45 m, it corresponds to a relative
distance of 0.727 (45/61.8 = 0.728, i.e., 0.728 radii from the center). The centre of the segment
was defined by the mean x and y coordinates of the cells that constituted the segment.

In addition, the proportion of cells that were within one radius of the segment center
was calculated for each segment. Then, the average distance and average proportion of
cells within one radius were calculated over all segments. These averages were calculated
with and without using segment area as the weight variable.

3. Results
3.1. Parameter Fine-Tuning Results

Different combinations of initial segment area and criteria weights were tested in the
second case study area. The results were visualized by plotting the mean R2 of the three
LiDAR metrics (HP95, AH5, IV) against the shape metric (Figure 6) and the mean area of
the segments (Figure 7). The results indicated that increasing the R2 was achieved at the
cost of a decreased average segment area and increased deviation from the circular shape
of the segments.
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Figure 6. Relationship between the mean R2 of the LiDAR metrics (HP95, AH5, IV) and a shape
metric when CA, SOM, and SA were used with different parameter values. Larger markers show the
results for those segmentations that were obtained with parameters selected for further analyses.
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Figure 7. Relationship between the mean R2 of the LiDAR metrics (HP95, AH5, IV) and the mean
area of the segments when CA, SOM, and SA were used with different parameter values.

Considering that small within-segment variation in the LiDAR metrics is the most
important measure of a good stand delineation, the segmentations shown with large
markers in Figures 6 and 7 were selected for further analyses. These segmentations were
judged to be the most efficient as they maximized the degree of variance explained by
the segmentation while also being good in stand area and shape. In all cases, the area of
the initial segments was 1 ha. In CA, the weights of the four criteria of Equation (2) were:
D (difference in LiDAR metrics between a cell and segment) 0.4, A (segment area) 0.2, S
(segment shape) 0.2 and B (the common boundary between cell and segment) 0.2. In SOM,
the weight of the coordinates (v in Equation (5)) was 3 while the weights of HP95, AH5, and
IV were the same as in Equation (5). In SA, the weights of the within-segment variance,
segment area, and segment shape were 0.7, 0.15, and 0.15, respectively (Equation (8)). The
results presented later for the three case study areas were obtained with these parameters.

The parameter fine-tuning results already give some information about the perfor-
mance of alternative segmentation methods. For example, SA resulted in a higher mean R2
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than the region growing (RG) with all parameter combinations tested in fine-tuning. SOM
always resulted in a better (more circular) stand shape than RG. Figure 7 suggests that SA
might be the best method in terms of R2 and segment shape, and all new methods (CA,
SOM, and SA) may outperform RG in R2 and segment shape.

Figure 7 shows that CA and SOM always resulted in a larger average segment area
than RG. The overall conclusion is that decreasing the segment area increases the R2 of the
LiDAR metrics. Therefore, the parameters used in CA, SOM, and SA were selected in such
a way that the mean segment area of CA, SOM, and SA was not smaller than that produced
by RG. Based on Figure 7, CA seems to dominate all other methods since, with the selected
parameter values, it resulted in almost the same mean R2 as the best method (SA) but had a
clearly larger mean stand area.

Plotting the percentage of small stands (less than 0.3 ha) against mean R2 indicated
better performance of CA, SOM, and SA, as compared to RG (Figure 8). The proportion of
small stands was higher in the RG segmentation than in the other methods, irrespective
of the parameter values, except for one SA case that produced as many small stands as
obtained in RG.
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Figure 8. Relationship between the mean R2 of the LiDAR metrics (HP95, AH5, IV) and the percentage
of segments smaller than 0.3 ha when CA, SOM, and SA were used with different parameter values.

3.2. Delineation Maps

The three case study areas posed different challenges to the delineation methods. Case
study area 1 had a large continuous area of the natural forest without clear stand boundaries
(Figure 9). In addition, there were narrow strips in the east–west direction that consisted of
trees taller than the surrounding areas (lower-left corners of the maps of Figure 9). Usually,
SA and SOM delineated these strip-like areas into distinct segments better than RG and
CA. In general, all methods created delineations that look usable according to the maps
in Figure 9. Careful inspection of the RG map shows, however, that a few stands consist
of sub-areas with quite different tree heights (HP95 correlates closely with canopy height).
In the SOM map, some boundaries are very rugged, and they most probably need to be
smoothed for practical use.
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The challenge in case study area 2 was the narrow strips of young trees between
clear blocks of planted tall trees. The SOM and SA methods most often delineated them
into separate segments. In the RG map, the continuous areas of a rather similar forest
in the upper part of the maps of Figure 10 were divided into several small segments,
which is a different outcome compared to the other methods. There seem to be some
unnecessary segment borders in all maps of Figure 10, which is most probably due to the
aim at the circular shape and the fact that increasing the stand area was considered to be an
improvement only until about 1.5 hectares (see Figure 4).
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Figure 10. Segmentations produced by the four methods in case study area 2 (1.5 km × 1 km)
overlaid with the 95th percentile of the height distribution of the echoes. Light tone indicates a high
percentile value.

The third case study area had large continuous areas where the tree height was almost
constant. In addition, there was a long narrow shape caused by a road and another narrow
shape near the western edge of the area. The maps in Figure 11 indicate that RG had
difficulties in dealing with the narrow shapes. They were often joined to the adjacent very
different segments or were demarcated too widely. In CA, the road area was demarcated
narrow enough, but in some places, it was connected to the adjacent forest. SA and
SOM were the best methods to deal with the long, narrow shapes. In practical use of the
segmentation methods, the road would most probably be masked off (not included in
automated segmentation), but we kept it to see if it could reveal systematic differences
between the four segmentation methods.
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3.3. Numerical Statistics

The proportion of variation in the LiDAR metrics that was explained by the delineation
was mostly the best for the SA method, but in some cases, SOM was the best (Table 2).
The RG method produced lower R2 values than the three other methods, which means
that the segments were the most heterogeneous in the RG method. The results of Table 2
suggest that the RG method is not competitive with the other methods if the aim is to create
segments that are homogeneous in terms of the LiDAR metrics.

The CA method resulted in the smallest number of segments and the largest average
segment area (Table 3). The results were similar in all three case study areas. The three
other methods (RG, SOM, SA) were close to each other in terms of average stand area.

The proportion of segments smaller than 0.3 ha was the highest in the RG method,
followed by the CA method. The SA method always produced the smallest percentage of
small segments, and the SOM method was always the second best.

The statistics that describe the shape of the segments were the best for the CA and SA
methods. A short mean distance and a high percentage of cells that are within a circular
area indicate that the segments have roundish shapes. In this criterion, the SOM and RG
methods performed worse than CA and SA and were close to each other. However, the
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differences between the methods in the shape metrics were small and the values of the
shape metrics were good for all methods.

Table 2. Proportion of variance explained by the segmentation. The method with the highest (best)
R2 is in boldface.

Region
Growing

Cellular
Automaton

Self-Organizing
Map

Simulated
Annealing

Region 1
R2 of H95 0.707 0.791 0.805 0.802
R2 of AH5 0.641 0.729 0.752 0.748
R2 on IV 0.503 0.544 0.556 0.561
Mean R2 0.672 0.754 0.770 0.767

Region 2
R2 of H95 0.755 0.862 0.851 0.861
R2 of AH5 0.742 0.829 0.827 0.832
R2 on IV 0.491 0.517 0.510 0.547
Mean R2 0.726 0.821 0.812 0.824

Region 3
R2 of H95 0.692 0.787 0.797 0.806
R2 of AH5 0.632 0.717 0.733 0.740
R2 on IV 0.576 0.604 0.612 0.637
Mean R2 0.668 0.755 0.766 0.776

Table 3. Mean segment area and other statistics related to the size of segments. The method with the
best value of the statistic is in boldface.

Region
Growing

Cellular
Automaton

Self-Organizing
Map

Simulated
Annealing

Region 1
Mean area, ha 1.000 1.304 0.909 1.030
% small segments 14.7 13.4 4.8 3.8

Region 2
Mean area, ha 0.872 1.229 0.903 0.955
% small segments 14.0 11.4 4.5 2.5

Region 3
Mean area, ha 1.006 1.515 0.887 1.071
% small segments 10.7 8.8 7.2 5.6

4. Discussion

To increase the knowledge and understanding of the potential usability of alternative
methods proposed for automated stand delineation, this study analyzed the performance
of four different segmentation algorithms, analyzed using LiDAR metrics calculated for 5 m
by 5 m raster cells as the data source. The study showed that all the segmentation methods
can be used to segment forests into stands when LiDAR scanning data are available. Laser
scanning can capture such characteristics of forest canopies that are essential for delineating
stands in large areas [28].

All the automated segmentation methods tested in this study provide feasible options
for stand delineation in the context of forest management, especially in plantations. Our
study corroborated the results of several recent studies [3,4,9]. In the analyses of this study,
however, CA, SOM, and SA outperformed the region-growing method since they produced
more homogeneous segments than region-growing. For wider generalization, this result
needs to be confirmed in other types of forests and datasets.

The algorithms used in this study are easy to implement in computer programs. In
this respect, the SOM might be the easiest one (see the meta code provided in Pukkala,
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2021) [9]. It is also the fastest method to use. The simulated annealing algorithm needs
much longer times to run, the cellular automaton being between SOM and SA. On the
other hand, Tables 2–4 suggest that the delineations produced by the SA method may be
evaluated to be slightly better than those obtained from CA and SOM.

Table 4. Statistics related to the shape of segments. The method with the best value of the statistic is
in boldface. AW stands for “area-weighted” and means that the average value of the statistic among
the segments was calculated using segment area as the weight.

Region
Growing

Cellular
Automaton

Self-Organizing
Map

Simulated
Annealing

Region 1
Mean distance 0.772 0.737 0.793 0.762
AW mean distance 0.793 0.732 0.771 0.744
% in circle 75.2 79.5 73.3 78.6
AW % in circle 72.6 80.6 75.6 80.7

Region 2
Mean distance 0.772 0.758 0.788 0.771
AW mean distance 0.767 0.743 0.763 0.759
% in circle 75.6 77.3 75.0 80.6
AW % in circle 75.6 78.5 77.3 79.0

Region 3
Mean distance 0.767 0.768 0.822 0.764
AW mean distance 0.764 0.736 0.761 0.741
% in circle 76.7 77.7 72.2 77.4
AW % in circle 76.0 81.1 77.4 83.4

We used 25 m2 raster cells of three UAVLS variables to segment the forest, which
together represent most of the information contained in the nearly 90 LiDAR metrics
calculated for the raster cells [4]. Sun et al. (2022) also suggested that the use of a fourth
metric, namely, a texture variable describing the variation of HP95 within the 5 m × 5 m
raster, might be useful [21]. This possibility was also checked in the current study, and
it was found that texture varied significantly only in one of the three sub-areas. The
contribution of the texture variable to the delineation result would have remained small in
the other sub-areas.

Increasing the initial stand area had a clear effect on the delineation result. Because
SOM, SA, and CA methods cannot produce new segments (new segment numbers) but
segments may disappear during the segmentation process, small initial segments usually
lead to better results than the use of large initial segments. However, the conclusion might
be different if renumbering is applied during the segmentation run [3]. Renumbering
means that disconnected parts of the segments are given different stand numbers. We did
not implement this possibility during the CA, SOM, and SA runs (but only afterwards)
because we wanted to compare the basic versions of these methods to the region-growing
algorithm. Renumbering during the segmentation process can be expected to improve the
performance of the methods, and it makes the algorithms less dependent on the initial
segment area.

In the present study, the region-growing method was the poorest of the four tested
segmentation methods, especially in terms of R2. Region growing was more competitive in
the stand area and shape statistics, although these variables were not used as criteria in
the region-growing algorithm. Perhaps the fact that the segment area was not used as a
criterion was the reason why the number of small segments (<0.3 ha) was higher in RG
than in the other methods. On the other hand, the region-growing method can prevent
the creation of small stands simply by setting a large enough minimum size for the initial
growth seeds.
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The use of very small initial segments may also be harmful since several adjacent
initial segments may be demarcated within the same large homogeneous stand. Some
of the methods, especially CA, do not move the initial segment boundaries easily in a
homogeneous region, resulting in segmentations where large stands are unnecessarily
divided into several small segments. This shortcoming could be mitigated by increasing
the weight of the area criterion and modifying its priority function. Based on our study, it
may be concluded that the optimal initial stand size is around 1 ha when UAVLS data are
used for stand delineation in the forests of Heilongjiang province.

CA differs from the other methods in such a way that the common border between
a cell and the adjacent segments is taken into account. Therefore, the method often leads
to smoother stand boundaries than SA and SOM [4,7]. On the other hand, rugged stand
borders can easily be smoothed afterward by using mode filtering.

The main objective of stand delineation is to find a balance between a low within-
stand variation and suitable stand size and regular stand shape. In most cases, the forest
managers require that the stands are homogeneous, the stand shape is regular, and the
stand boundaries are smooth.

If the delineation criteria emphasize too much low within-stand variation, the result
might be unsatisfactory in terms of stand size and shape. There are no official standards for
stand delineation as the requirements depend on the preferences of the forest manager and
the purpose of the delineation. For example, some forest managers focus on creating larger
size segments that correspond to traditional stand compartments, while another possibility
would be to create smaller segments for a more accurate prediction of the development
of the forest [13,21]. Modern forest planning methods make it possible to aggregate small
stands used in calculations into larger continuous treatment units [8,29]. Regarding the
capability of modern forest planning methods, a large number of small homogeneous
stands is a better option than a low number of large and less homogeneous stands [8].

Our study indicated that all segmentation methods were capable of producing good
stand delineations in homogeneous plantation forests. Failures are more likely to happen
in natural forests that are often spatially heterogeneous with small trees occurring in the
gaps of a higher canopy. As discussed in Pukkala (2021), SOM has the advantage that it
can divide a heterogeneous forest into two or more overlapping sub-stands, one for the
small trees or canopy gaps and the other for areas of taller trees [9]. The overlapping stands
may consist of several disconnected parts. This feature of the SOM may also be useful in
retention forestry where groups of retention trees are left in regeneration areas. Delineating
all groups of retention trees as different stands may not be an ideal solution as the groups
can be very small.

Additional possibilities to improve the delineation of heterogeneous forests into stands
would be to use K-means clustering or other similar methods to create the initial segments
for the CA, SOM, and SA methods [30]. This would mitigate the problem that some methods
may unnecessarily split large stands into several small segments when a systematic layout
of small squares is used as initial stands.

In Chinese forest management, it is not permitted to change the boundaries of forest
compartments. This increases the need for delineating compartments that are useful for
forest management for long periods. Currently, the Chinese compartment demarcation
uses topographic and land type data and can therefore distinguish the forest and non-forest.
The methods analyzed in this study could also make use of additional layers, one of which
could mask off cells that represent non-forest land uses [8,11,31]. When compartments are
large and permanent, it might be worthwhile to repeat the segmentation separately for each
compartment. This would make it possible to deal with within-compartment heterogeneity
in the simulation of forest development.

LiDAR has a restricted spectral resolution, generally covering a single spectral range in
the near-infrared region, which may not be optimal for the interpretation of species compo-
sition [32]. Therefore, new studies should be conducted on integrating multi-source remote
sensing data for improved stand delineation. Hyperspectral data may be particularly useful
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in mixed forests to characterize the tree species composition [33], biochemical features [34],
and some biophysical properties such as the leaf area index (LAI) and biomass [35].

5. Conclusions

The study showed that all four segmentation methods compared in this study (RG,
CA, SOM, and SA) can be used for automatic stand delineation based on laser scanning
data collected by an unmanned aerial vehicle. The performances of the methods were
close to each other in terms of the shape and area of the segments but CA, SOM, and SA
produced more homogeneous segments than RG. Overall, SA was evaluated to be the best
method for automatic stand delineation. The results suggest that methods based on cellular
automata, self-organizing maps, and combinatorial optimization should be used more in
the automated delineation of forest stands.
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