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Abstract: Assessing vegetation phenology is very important for better understanding the impact
of climate change on the ecosystem, and many vegetation index datasets from different remote
sensors have been used to quantify vegetation phenology from a regional to global perspective. This
study mainly analyzes the similarities and differences in phenology derived from GIMMS NDVI3g
and MODIS NDVI datasets across different biomes throughout temperate China. We applied three
commonly used methods to extract the start and end of the growing season (SOS and EOS) from two
datasets between 2000 and 2015, and analyzed the spatio-temporal characteristics and trends of key
phenological parameters between these two datasets in temperate China. Results showed that the
multi-year mean GIMMS NDVI was higher than MODIS NDVI throughout most of temperate China,
and the consistencies between GIMMS NDVI and MODIS NDVI for all biomes in the senescence
phase were better than those in the green-up phase. NDVI differences between GIMMS and MODIS
resulted in some distinctions between phenology derived from the two datasets. The results of
SOS and EOS for three methods also showed wide discrepancies in spatial patterns, especially in
SOS. For different biomes, differences of SOS in forests were obviously less than that in shrublands,
grasslands-IM, grasslands-QT and meadows, whereas the differences of EOS in forests were relatively
greater than that in SOS. Moreover, large differences of phenological trends were found between
GIMMS and MODIS datasets from 2000 to 2015 in entire region and different biomes, and it is
particularly noteworthy that both SOS and EOS showed a low proportion of the identical significant
trends. The results suggested NDVI datasets obtained from GIMMS and MODIS sensors could induce
the differences of the inversion of vegetation phenology in some degree due to the differences of
instrumental characteristics between these two sensors. These findings highlighted that inter-calibrate
datasets derived from different satellite sensors for some biomes (e.g., grasslands) should be needed
when analyzing land surface phenology and their trends, and also provided baseline information for
choosing different NDVI datasets in subsequent studies on vegetation patterns and dynamics.

Keywords: vegetation phenology; start/end of growing season; GIMMS and MODIS; time series:
biomes; temperate China

1. Introduction

Vegetation phenology can directly reflect the effects of climate change on an ecosystem,
and it plays an important role in reflecting and influencing energy exchange and carbon
cycling in ecosystems [1–5]. There are at present two typical approaches to observing
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vegetation phenology: in situ observation and remote sensing monitoring. The in situ
observation approach can accurately track the plant development process during its whole
life cycle, but may not be suitable for large scales. Time series of satellite datasets have
been regarded as effective tools for monitoring vegetation phenological changes over large
spatio-temporal scales. During the past decades, many have used vegetation index datasets
from different sensors, such as Landsat, Sentinel, AVHRR (Advanced Very High-Resolution
Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) to monitor
vegetation phenology, among which the most widely used is NDVI (Normalized Difference
Vegetation Index) [6–11]. In particular, the longest and most consistent time series of
vegetation index is the archive provided by the AVHRR GIMMS dataset. Recently, the
third generation GIMMS NDVI (NDVI3g) datasets, which were released from 1981 to 2015,
specifically improves the data quality in high latitudes and is eligible for studying changes
of vegetation in the Northern Hemisphere [12–14]. With higher spatial resolution and
better atmospheric correction, MODIS NDVI has been developed for monitoring vegetation
dynamic changes since 2000 and is regarded as an advance over the NDVI dataset from the
AVHRR sensors [15–18]. Currently, AVHRR and MODIS datasets are the mostly used data
sources for monitoring phenology at large scales [11,19–22].

Many recent studies have compared NDVI between AVHRR and MODIS to evaluate
their consistency and discrepancy. These findings indicated that NDVI between AVHRR
and MODIS were overall similar in characterizing vegetation changes, but varied differently
with biomes or ecosystem regions [17,23–26]. Furthermore, the discrepancies of vegetation
indices from different sensors may lead to differing vegetation phenology results [21,23].
For example, the magnitudes of the start, end and length of the growing season (SOS, EOS
and LOS) shifts derived from GIMMS NDVI and MODIS NDVI were obviously different
although the general trends of phenological shifts were similar over the northern high
latitudes [27]. Another study on evaluating the ability of GIMSS NDVI3g to acquire the
phenological events showed that SOS, EOS and LOS from NDVI3g and MODIS NDVI were
significantly different and varied with different land cover types in Central Europe [28]. A
previous study also found that in the Tibetan Plateau, GIMMS NDVI, SPOT-VGT NDVI and
MODIS NDVI exhibited generally consistent SOS during their overlap period. However,
the SOS from GIMMS NDVI differed substantially from SOS based on other two NDVI
datasets where the data quality of the GIMMS NDVI is low [29]. Thus, making use of NDVI
dataset from different sensors and comparing key seasonality parameters derived from
them may be favorable to evaluate the capability of monitoring vegetation phenological
changes from various instruments.

During the past two decades, many studies have quantified phenological changes
at regional, continental and global scales, and some of these findings show that spring
phenology has been earlier and autumn phenology has been delayed due to global warm-
ing, especially in mid and high latitudes in the Northern Hemisphere [1,7,11,30,31]. China
has a variety of terrestrial ecosystems, particularly including the Tibetan Plateau covered
with alpine meadow and steppe. Previous studies indicated that ecosystems in China
are highly susceptive to climate change and phenological changes are spatially heteroge-
neous [8,32–35]. Although the discrepancy of phenology changes from different sensors
has been compared in Tibetan Plateau or Northern Hemisphere [27,29] and the differences
of seasonality parameters extracted from various methods have been evaluated [36,37], it
is unclear how the NDVI from different sensors impact phenology monitoring in diverse
biomes of China.

This study analyzed the similarity and differences of vegetation phenology derived
from GIMMS and MODIS NDVI datasets in temperate China. Specially, three frequently
used methods for extracting phenological information were chosen to determine the SOS
and EOS of different biomes in temperate China, and a comparative analysis were per-
formed for each method. The goals of this study were to: (1) compare and reveal the
spatial patterns and trends of phenology over temperate China during 2000–2015. (2) assess
differences of vegetation phenology across different biomes. We hope the study can provide
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a reference for selecting NDVI datasets from different sensors when analyzing land surface
phenology events in different biomes.

2. Materials and Methods
2.1. Study Area

The temperate biome of China (70–140◦E and 30–55◦N) was chosen as the study area
(Figure 1). This is due to the distinct seasonality of the region and the fact that the NDVI
data are least disturbed by the influence of the solar zenith angle at middle and high
latitudes [8,37,38]. Eight main biomes were identified from a 1:1,000,000 vegetation data
of China (Editorial Board of the Vegetation Map of China, EBVMC) [37]. We excluded
agricultural lands because its phenological changes are highly susceptible to human ac-
tivities [35,39]. In addition, waters, non-vegetation areas and pixels with annual average
NDVI less than 0.1 over the past 16 years were excluded to reduce the influence of bare
soils and sparse vegetation pixels on NDVI trends [30,40].
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Figure 1. Eight biomes of temperate China, including deciduous needleleaf forests (DNF), evergreen
needleleaf forests (ENF), mixed forests (MF), deciduous broadleaf forests (DBF), shrublands, grass-
lands in Inner Mongolia (GRA-IM), grasslands in Qinghai-Tibet Plateau (GRA-QT), and meadows.

2.2. GIMMS NDVI3g Dataset

The GIMMS NDVI 3rd generation (NDVI3g) datasets with a 1/12◦ × 1/12◦ spatial
resolution and 15-day intervals were used in this study, derived from NOAA AVHRR
sensor for the period 2000–2015. These data can be obtained from here (https://ecocast.arc.
nasa.gov/data/pub/gimms/, accessed on 13 January 2022). The GIMMS NDVI3g datasets
have been corrected to minimize the effects of aerosol, clouds, solar angle, sensor errors
and degradation and can be applicable for evaluate the long-term trends in vegetation
activities [12,37,41,42]. In order to reduce the effects of clouds, spectral characteristics and
residual atmospheric effects, the maximum value composites method was adopted for
the NDVI products [43]. In addition, NDVI quality flags are implanted in the data files,
which provide references about per-pixel NDVI status. Flag values of the NDVI3g data
(NDVI3g.v1) range from 0 to 2, NDVI (flag = 1) are acquired from spline interpolation,
whereas flag = 0 indicates good value and flag = 2 indicates possible snow or cloud cover.
NDVI data with flag values of 0 and 1 were used in this research.

2.3. MODIS NDVI Dataset

The latest version (Collection 6) Terra MODIS NDVI product with 1 × 1 km2 spa-
tial resolution and 16-day temporal intervals (MOD13A2) were used in this study. The

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://ecocast.arc.nasa.gov/data/pub/gimms/
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MOD13A2 data product was obtained from Land Processes Distributed Active Archive
Center (LP DAAC) data pool (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on
15 January 2022). The MOD13A2 products are obtained from atmospherically corrected
surface reflectance using the constrained view angle maximum value composite method,
which is used to address the angular variations that are inherent to most space-based
imaging instruments and reduce the impacts of clouds and aerosols [15]. All images from
2000 to 2015 were utilized to be consistent with the temporal extent of GIMMS NDVI3g
datasets (because there is no data about MOD13A2 in the first two months of the year 2000,
mean values for the first two months of 2001–2015 were calculated to obtain a full year
of data). Similar to the GIMMS NDVI3g dataset, the MOD13A2 datasets contain a data
quality assessment (QA) including references on overall usefulness and cloud on per-pixel
status. We excluded pixels with quality flags that are clouds and atmospheric aerosol using
the methodology according to [17,44]. Additionally, it was noteworthy that the expression
of NDVI is non-linear transformation and the spatial resampling of MOD13A2 1 km data
should not performed directly on the NDVI but rather on the surface reflectance. Therefore,
the corresponding MOD13A2 1 km red and near-infrared bands were resampled to match
the spatial resolution of GIMMS NDVI data using the nearest neighbor algorithm before
calculating NDVI.

2.4. Reconstruction of NDVI Temporal Trajectory and Detection of Phenological Metrics

The GIMMS NDVI3g and MODIS NDVI long-term datasets were analyzed using the
time-series analysis program TIMESAT version 3.2 [45]. We used the Asymmetric Gaussian
model (AG), Double Logistic method (DL), and Savitzky-Golay filter (SG) to establish a
smooth NDVI time series curve. Based on the reconstructed NDVI time series, the main
phenological metrics SOS and EOS were identified as points in time where the value has
increased or decreased by a threshold. A 30% threshold for both SOS and EOS was selected
as the optimal value according to analyzing the fitted time-series curves. Details about our
methods can be found in the corresponding papers [45–47].

2.5. Data Analysis

We applied the least squares linear regression from 2000 to 2015 to access the temporal
trends of the two growing season (March–November) NDVI datasets throughout the whole
of temperate China. Then, the Pearson’s correlation analysis was used to examine the
uniformity for the two datasets pixel by pixel based on the multi-year (2000–2015) averaged
NDVI. To quantify the discrepancy between GIMMS and MODIS data NDVI and extracted
phenology, we made the difference among the corresponding data metrics. Considering
the phenology metrics may not meet the assumptions for parametric analysis, the study
used the Theil-Sen trend analysis and nonparametric Mann-Kendall test to compare the
consistencies of SOS and EOS between GIMMS and MODIS datasets [48].

For time-series data, the Sen’s slope was calculated between two random points, and
then the median value was chosen as the final slope in Equation (1).

β = Median(
xi − xj

ti − tj
) (1)

where xi and xj are data values at times ti and tj (i > j), respectively. When β > 0, it means
the time series shows an upward trend, otherwise, it shows a downward trend.

To test the significance of the time series, the Mann-Kendall statistic S were firstly
constructed in Equations (2) and (3). For n ≥ 10, the statistic S approximately normally
distributed with the mean and variance in Equation (4). Then the standardized Z test
statistic was computed by Equation (5).

S =
n−1

∑
k=1

n

∑
j=k+1

sign(xj − xk) (2)

https://ladsweb.modaps.eosdis.nasa.gov/
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sign(xj − xk) =


1 xj − xk > 0
0 xj − xk = 0
−1 xj − xk < 0

(3)

Var(s) =

n(n− 1)(2n + 5)−
g
∑

p=1
tp(tp − 1)(2tp + 5)

18
(4)

Z =


S−1√
Var(s)

S > 0

0 S= 0
S+1√
Var(s)

S < 0
(5)

where n is the number of data points, g is the number of tied groups and tp denotes the
number of ties of extent p. By comparing the Z value with the standard normal variance at
the pre-specified level of statistical significance, we could access the significance of trend.
The phenology parameters were related to a significant trend when the significance level
was set 95% in this study. All statistical analyses and models were carried out in R (version
4.2.0) with “trend” package.

3. Results
3.1. Comparison between GIMMS NDVI3g and MODIS NDVI

Figure 2 showed the annual changes of the spatially mean NDVI values in temperate
China during 2000–2015. The spatially mean GIMMS NDVI was significantly higher than
MODIS NDVI for temperate China (Figure 2a). During the study period, both of them
displayed significant increasing trends (p < 0.05). A pixel-by-pixel correlation analysis was
conducted on the annual GIMMS and MODIS NDVI over temperate China from 2000 to
2015. For the whole study area, the GIMMS versus MODIS NDVI relationship had an
R2 of 0.9209 and they were generally on a 1:1 relationship line (Figure 2b). Spatially, the
multi-year mean GIMMS NDVI was higher than MODIS NDVI in 77.5% of temperate China
with approximately 55.5% of the total pixels have values between 0 and 0.05 (Figure 3).
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Figure 2. (a) Annual changes of the spatially mean NDVI based on the GIMMS and MODIS datasets
during 2000–2015; (b) The scatter plot of the multi-year averaged NDVI for the two datasets from
2000–2015.

Figure 4 showed the mean annual NDVI in overall (entire study area) and eight biomes
from these two NDVI datasets. For different biomes, GIMMS and MODIS NDVI were
moderately well correlated. In spite of the general agreement, some persistent differences
remained. The agreement between GIMMS NDVI and MODIS NDVI for all biomes in
senescence phase were better than that in green-up phase. Particularly, the differences
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between these two NDVI datasets for forests (including DNF, ENF, MF and DBF) in green-
up phase were obvious smaller than that for shrublands, grasslands-IM, grasslands-QT
and meadows.
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Figure 4. Mean annual NDVI from 2000 to 2015 between GIMMS and MODIS datasets for different
biomes.

3.2. Spatial Differences in Multi-Year Mean Phenology

The spatial distributions of absolute differences of SOS and EOS over temperate China
between GIMMS and MODIS data for different methods were summarized from 2000 to
2015 (Figure 5). For each method, the results of the discrepancies between the multi-year
mean SOSg (SOS derived from GIMMS NDVI) and SOSm (SOS derived from MODIS NDVI)
by the three methods are overall very similar, whereas large discrepancies were found for
multi-year mean SOSg and SOSm. The inconsistencies were generally less than 30 days in
SOS across the study area (89.89% for AG, 89.28% for DL and 91.98% for SG). In particular,
the pixels about the discrepancies of less than 10 days between SOSg and SOSm accounted
for 44.51%, 43.78% and 48.74% of the total pixels for AG, DL and SG methods, respectively.
At spatial scale, there were no apparent changes of the differences between SOSg and SOSm
with methods, and then the pixels about the discrepancies of less than 20 days between
SOSg and SOSm were mostly distributed in the central and northeastern China.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

SG). In particular, the pixels about the discrepancies of less than 10 days between SOSg 

and SOSm accounted for 44.51%, 43.78% and 48.74% of the total pixels for AG, DL and SG 

methods, respectively. At spatial scale, there were no apparent changes of the differences 

between SOSg and SOSm with methods, and then the pixels about the discrepancies of less 

than 20 days between SOSg and SOSm were mostly distributed in the central and north-

eastern China.  

 

Figure 5. Discrepancies of the multi-year mean SOS between GIMMS and MODIS datasets during 

2000–2015 for different methods: (a) Asymmetric Gaussians (AG); (b) Double Logistic functions 

(DL); (c) Savitzky-Golay filter (SG). 

Figure 5. Cont.



Remote Sens. 2022, 14, 6180 8 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

SG). In particular, the pixels about the discrepancies of less than 10 days between SOSg 

and SOSm accounted for 44.51%, 43.78% and 48.74% of the total pixels for AG, DL and SG 

methods, respectively. At spatial scale, there were no apparent changes of the differences 

between SOSg and SOSm with methods, and then the pixels about the discrepancies of less 

than 20 days between SOSg and SOSm were mostly distributed in the central and north-

eastern China.  

 

Figure 5. Discrepancies of the multi-year mean SOS between GIMMS and MODIS datasets during 

2000–2015 for different methods: (a) Asymmetric Gaussians (AG); (b) Double Logistic functions 

(DL); (c) Savitzky-Golay filter (SG). 

Figure 5. Discrepancies of the multi-year mean SOS between GIMMS and MODIS datasets during
2000–2015 for different methods: (a) Asymmetric Gaussians (AG); (b) Double Logistic functions (DL);
(c) Savitzky-Golay filter (SG).

Compared to SOS, for the three methods, the inconsistencies between the multi-year
mean EOSg (EOS derived from GIMMS NDVI) and EOSm (EOS derived from MODIS
NDVI) were relatively small (Figure 6). With regards to the pixels about discrepancies of
less than 20 days in EOS, the proportions were 96.19%, 96.61% and 96.75% for AG, DL and
SG, respectively. In addition, the pixels about discrepancies of less than 10 days in EOS
were significantly more than that in SOS (72.29% for AG, 73.51% for DL and 70.14% for SG
in EOS). Spatially, the pixels about the discrepancies of less than 20 days between EOSg
and EOSm were distributed in most areas of temperate China.

3.3. SOS and EOS Differences across Eight Biomes

The SOS and EOS differences were calculated for the GIMMS and MODIS datasets
from 2000 to 2015 in eight biomes for different methods. For each method, the differences
of SOS in forests (DNF, ENF, MF and DBF) were clearly less than that in shrublands,
grasslands-IM, grasslands-QT and meadows (Figure 7). Further analysis showed that for
most biomes of forests except ENF, the pixels about the discrepancies of less than 10 days
between SOSg and SOSm accounted for more than 65% of the total pixels. Nevertheless,
the proportions for the pixels about the discrepancies of less than 10 days between SOSg
and SOSm in grasslands-IM, grasslands-QT were unexpectedly lower than 20% of the
total pixels.
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(c) Savitzky-Golay filter (SG).

As shown in Figure 8, there was somewhat dissimilarity in the overall results of the
differences between EOSg and EOSm compared to the results of SOS. For each method, the
differences of EOS in forests (DNF, ENF, MF and DBF) were relatively greater than that in
SOS (the proportions for the pixels about the discrepancies of less than 10 days between
EOSg and EOSm were mostly lower than 65% of the total pixels). However, the pixels about
the discrepancies of less than 10 days between EOSg and EOSm in shrublands, grasslands-
IM, grasslands-QT and meadows occupied mostly more than 60% of the total pixels (more
than 80% especially in grasslands-QT and meadows), which means that the differences
of EOS in shrublands, grasslands-IM, grasslands-QT and meadows were obviously lower
than that in SOS.
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3.4. Comparison of Phenology Trends between GIMMS and MODIS Datasets

Generally, trend analysis was conducted with 16 years of SOS or EOS trends between
GIMMS and MODIS datasets about different methods (Table 1). For both datasets, SOS
and EOS trends for 16 years were shown insignificant in most areas of temperate China.
For SOS trends, the pixels accounted for shared significantly advanced trends from the
two datasets were more than that shared significantly delayed trends. However, the EOS
trends between GIMMS and MODIS datasets were opposite to that in SOS. Moreover, the
proportion of pixels about significantly opposite trends was low. In addition, for each
method, the proportion of pixels that significantly SOS trend only for one dataset (22.79%
for AG, 19.72% for DL, and 18.33% for SG) were higher than that in EOS trend (17.77% for
AG, 18.65% for DL, and 15.84% for SG).

Table 1. Summary statistics for comparison of SOS or EOS trends between GIMMS and MODIS
datasets about different methods (p < 0.05).

Trends Statistics (%)
SOS EOS

AG DL SG AG DL SG

Both significantly advanced trends 0.62 0.31 0.26 0.08 0.11 0.12
Both significantly delayed trends 0.13 0.24 0.23 1.60 1.49 1.04

Significantly opposite trends 0.78 0.59 0.49 0.13 0.16 0.19
Significantly trend only for one dataset 22.79 19.72 18.33 17.77 18.65 15.84

Both no significantly trends 75.68 79.14 80.69 80.42 79.59 82.81

Table 2 shows the SOS or EOS trends from 2000 to 2015 across eight biomes for different
methods. Only for grasslands-QT and meadows, SOSg had a significantly delayed trend for
all three methods. SOSm of ENF, shrublands and grasslands-IM had significantly advanced
trends for all three methods, and SOSm of DBF also had a significantly advanced trend for
AG and DL methods. For all biomes, EOSg had no significant trend for all three methods.
The EOSm of MF had a significantly delayed trend for all three methods, and the EOSm of
DBF also had a significantly delayed trend for AG and DL methods.

Table 2. Comparison of SOS or EOS trends between GIMMS and MODIS datasets across eight biomes
for different methods (p < 0.05).

Biomes
Asymmetric Gaussians Double Logistic Functions Savitzky-Golay Filter

SOSg SOSm EOSg EOSm SOSg SOSm EOSg EOSm SOSg SOSm EOSg EOSm

DNF 0 0 0 0 0 0 0 0 0 0 0 0
ENF 0 −0.56 0 0 0 −0.43 0 0.22 0 −0.41 0 0
MF 0 0 0 0.20 0 0 0 0.59 0 0 0 0.45
DBF 0 −0.58 0 0.14 0 −0.47 0 0.30 0 0 0 0

Shrublands 0 −0.47 0 0 0 −0.36 0 0 0 −0.33 0 0
Grassland-IM 0 −1.28 0 0 0 −1.15 0 0 0 −1.09 0 0
Grassland-QT 0.64 0 0 0 0.67 0 0 0 0.67 0 0 0

Meadows 0.27 0 0 0 0.30 0 0 0 0.32 0 0 0

Notes: 0 means no significant trend.

4. Discussion

Based on GIMMS and MODIS data in temperate China from 2000 to 2015, this study
compared time series NDVI and key phenological metrics (SOS and EOS). The comparison
revealed that there were large discrepancies between the two datasets. Previous analysis
indicated similar consequences for phenological metrics between GIMMS and MODIS in
Europe [23] and Northern Hemisphere [26]. Overall, it was found in temperate China that
about 45% of pixels had SOS differences less than 10 days (EOS difference was smaller,
which the proportion was about 70%). As for the different biomes in green-up phase, the
differences of SOS in forests (including DNF, ENF, MF and DBF) were obviously less than
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that in shrublands, grasslands-IM, grasslands-QT and meadows (Figure 7), because the
agreement between NDVI from two satellite datasets for forests in green-up phase were
better than that for shrublands, grasslands-IM, grasslands-QT and meadows (Figure 4). A
similar perspective has emerged from the results of EOS for different biomes in senescence
phase. This may be ascribed to the effect of the differences between NDVI from two satellite
datasets. Specifically, the AVHRR and MODIS have different instrumental characteristics,
especially the wavelengths with the red and near-infrared bands required to obtain NDVI
are different. The red and near-infrared bands for AVHRR sensors are 585–680 nm and
730–980 nm, respectively, and these bands were significantly influenced by the absorption
of water vapor in the atmosphere. The bandwidths about MODIS are narrower than that
about AVHRR, with the red (620–670 nm) and near-infrared (841–876 nm) bands. MODIS
removes the influence of the water vapor band in the near-infrared band, while the red
band is more sensitive to the absorption of chlorophyll [49]. The differences in the spectral
characteristics of these bands (such as the central value of the band, the width of the band,
etc.) between AVHRR and MODIS may cause the discrepancies in the process of extracting
phenology from NDVI time series at the green-up or senescence phase. Figure 9 further
showed the difference trend of mean NDVI between GIMMS and MODIS in spring and
autumn. Overall, the difference in spring was higher than that of in autumn, which to some
extent also explained the larger and smaller discrepancy in SOS and EOS, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 9. The mean NDVI difference between GIMMS and MODIS during spring (March–May) 

and autumn (September–November). 

The influences of discrepancies between different NDVI datasets on phenology mon-

itoring indicate there is a caution when analyzing long-term phenological trends. Recent 

studies represented that the NDVI datasets from GIMMS and MODIS were applied to 

detect changes in vegetation phenology at large spatio-temporal scales [20,21,50–52]. 

More especially, Zhang et al. [26] showed that the GIMMS NDVI3g and MODIS NDVI 

reflected varying degrees of phenological trends in the Northern Hemisphere, including 

the opposite trends. Similar findings (Tables 1 and 2) were also found in our study, with 

large differences of phenological trends between GIMMS and MODIS datasets in temper-

ate China from 2000 to 2015. Both the two datasets exhibited significantly trends (includ-

ing advancing and delayed trends) with small proportion of pixels. Additionally, there 

are basically no similar significantly trends of phenology across all the biomes, which to 

a large extent also indicates the discrepancy between the two datasets. 

We used three phenology extraction methods for extracting phenological parameters 

to avoid bias from a single approach, which is also a common practice used in other stud-

ies [53,54]. The extraction methods can affect the results of time-series inversion about 

phenology, according to several studies [55–57]. For instance, Cong et al. [36] compared 

five common methods in extracting spring phenology with NDVI datasets derived from 

SPOT satellites in temperate China. The findings indicated that there was a similar spatial 

pattern of spring phenology estimated by five different methods, but the phenological 

dates were significantly varying. Moreover, our results also suggest that the overall pat-

terns of phenological trends from these three methods were relatively conformable, but 

different methods may also lead to uncertainties in the magnitude of phenological trends. 

In addition, in our study, in general, these methods yield relatively small differences in 

phenology, and there is no need to substitute one method for all others. 

This study highlighted the similarity and discrepancies of vegetation phenology be-

tween GIMMS and MODIS datasets rather than deciding whether GIMMS or MODIS da-

taset was more advantageous to extract phenological information. We found that the in-

consistencies of phenological parameters between these two datasets were in some degree 

attributed to sensor differences based on same data preprocessing and phenology extrac-

tion methods. Moreover, it was important to notice that classification criteria of biomes 

might impact the values of phenological parameters in different biomes. In this study, a 

Figure 9. The mean NDVI difference between GIMMS and MODIS during spring (March–May) and
autumn (September–November).

The influences of discrepancies between different NDVI datasets on phenology moni-
toring indicate there is a caution when analyzing long-term phenological trends. Recent
studies represented that the NDVI datasets from GIMMS and MODIS were applied to
detect changes in vegetation phenology at large spatio-temporal scales [20,21,50–52]. More
especially, Zhang et al. [26] showed that the GIMMS NDVI3g and MODIS NDVI reflected
varying degrees of phenological trends in the Northern Hemisphere, including the opposite
trends. Similar findings (Tables 1 and 2) were also found in our study, with large differences
of phenological trends between GIMMS and MODIS datasets in temperate China from
2000 to 2015. Both the two datasets exhibited significantly trends (including advancing
and delayed trends) with small proportion of pixels. Additionally, there are basically no
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similar significantly trends of phenology across all the biomes, which to a large extent also
indicates the discrepancy between the two datasets.

We used three phenology extraction methods for extracting phenological parameters
to avoid bias from a single approach, which is also a common practice used in other
studies [53,54]. The extraction methods can affect the results of time-series inversion about
phenology, according to several studies [55–57]. For instance, Cong et al. [36] compared
five common methods in extracting spring phenology with NDVI datasets derived from
SPOT satellites in temperate China. The findings indicated that there was a similar spatial
pattern of spring phenology estimated by five different methods, but the phenological dates
were significantly varying. Moreover, our results also suggest that the overall patterns of
phenological trends from these three methods were relatively conformable, but different
methods may also lead to uncertainties in the magnitude of phenological trends. In addition,
in our study, in general, these methods yield relatively small differences in phenology, and
there is no need to substitute one method for all others.

This study highlighted the similarity and discrepancies of vegetation phenology
between GIMMS and MODIS datasets rather than deciding whether GIMMS or MODIS
dataset was more advantageous to extract phenological information. We found that the
inconsistencies of phenological parameters between these two datasets were in some degree
attributed to sensor differences based on same data preprocessing and phenology extraction
methods. Moreover, it was important to notice that classification criteria of biomes might
impact the values of phenological parameters in different biomes. In this study, a 1:1,000,000
vegetation data of China in 2001 from EBVMC was used to determine the classification
of different biomes. In fact, however, the ranges of different biomes might vary with
year during 2000–2015, and it could influence the results and data analysis of phenology
in different biomes when studying long-term time series satellite-derived datasets. In
addition, the values of phenology derived from satellite sensors are also affected by the
quality of data [21], and spatio-temporal resolutions [58] of time series datasets.

5. Conclusions

This study comprehensively performed a comparative analysis of the phenological
characteristics of different biomes in temperate China during 2000–2015 based on NDVI
datasets from GIMMS and MODIS. Spatio-temporal patterns of NDVI, SOS or EOS, and
their trends between these two datasets in the entire region and eight biomes were analyzed.
The primary findings are summarized as follows:

(1) The discrepancies of instrumental characteristics between GIMMS and MODIS sen-
sors induced the inconsistencies of NDVI. Overall, the spatially averaged GIMMS
NDVI across the study area was significantly higher than MODIS NDVI. For different
biomes, the consistencies between GIMMS NDVI and MODIS NDVI for all biomes in
senescence phase were better than that in green-up phase. Furthermore, the differ-
ences between these two NDVI datasets for forests in green-up phases were obviously
smaller than those for shrublands, grasslands-IM, grasslands-QT and meadows.

(2) The differences in NDVI between GIMMS and MODIS induced the inconsistencies
between phenology derived from the two datasets. The discrepancies between the
multi-year mean SOSg and SOSm were large for three methods of extracting phenology.
However, the inconsistencies between the multi-year mean EOSg and EOSm were
relatively small compared to SOS. For biomes, the differences of SOS in forests were
clearly less than that in shrublands, grasslands-IM, grasslands-QT and meadows. For
EOS, however, the differences of EOS in forests were relatively greater than that in
SOS. Moreover, the differences of EOS in shrublands, grasslands-IM, grasslands-QT
and meadows were obviously lower than that in SOS.

(3) SOS and EOS trends (including advanced, delayed and opposite trends) during
2000–2015 for three methods were insignificant in most areas of temperate China.
For most biomes, phenological trends were also insignificant. In addition, a large
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discrepancy of SOS and EOS trends between GIMMS and MODIS datasets appeared
in different biomes.

(4) The discrepancies of phenological parameters and their trends over the entire re-
gion and different biomes highlighted that in order to reduce the uncertainty in
estimating the land surface phenology and further analyze the trend, it is necessary
to combine the result for several sensors, such as by inter-calibrating the time series
across multiple-sensor datasets, especially for some specific biomes (e.g., grasslands
in temperate China).

Future studies should put more emphasis on the demand for the phenology derived
from these sensors compared and validated with field phenology observation, eddy co-
variance measurements, solar-induced chlorophyll fluorescence retrieved from GOSAT or
GOME sensors, and VI products derived from other remote sensors (e.g., MERIS MTCI,
SPOT, and Landsat). Furthermore, follow-up research should focus on comparing the
variations in land surface phenology in temperate China between GIMMS and MODIS
NDVI datasets for their response to climate change.
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