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Abstract: The southern Bay of Bengal (BOB) cold pool (SCP) plays an important role in the regional
climate fluctuation of the BOB. However, the interannual variability in the SCP is still unknown.
Multisource satellite remote sensing data and assimilation have been applied to explore the interan-
nual variability in the SCP and its relationship with El Niño–Southern Oscillation (ENSO) events for
the period 1982–2020. The anomalous SST of the SCP in the summer following the peak phase (i.e.,
winter) of the ENSO was closely related to the ENSO events. El Niño (La Niña)-induced the warm
(cold) anomaly of the SCP starting from May and persisted throughout August with a peak value
appearing in June during the El Niño (La Niña) decaying years. In the El Niño decaying years, the
southwest monsoon current (SMC) was weakened, forced locally by the weakening southwesterly
wind and remotely by the easterly wind anomaly at the equator associated with El Niño. The El
Niño-related weakening SMC and the associated less cold advection led to the warm anomaly of the
SCP. In addition, El Niño-related atmospheric heating also made a comparable contribution to the
evolution of the SCP’s SST. In the early stage (15 May to 10 June), its contribution to the warming of
the SCP was much larger than that of the SMC, whereas from mid-June to August, it reversed to have
a cooling effect and partially offset the advection heating induced by the SMC on the SCP. In the La
Niña decaying years, similar oceanic and atmospheric processes operated but in an opposite way.

Keywords: Bay of Bengal; atmosphere–ocean interaction; El Niño–Southern Oscillation; ocean
dynamics; southwest monsoon current

1. Introduction

The Bay of Bengal (BOB), located in the northeastern Indian Ocean, is an important
part of the Eastern Indian Ocean warm pool. It is dominantly driven by the South Asian
monsoon. The northeast monsoon occurs between November and the subsequent March
and the southwest monsoon prevails from May to September, with the latter being signifi-
cantly stronger than the former [1–4]. Driven by a strong southwest monsoon, a unique
area with a relatively low sea surface temperature (SST) is formed in the southern BOB
during summer (June–August), called the southern cold pool (SCP) [5–7]. The SCP plays
an important role in modulating the climate over the study region and beyond. It can
greatly affect local fishery resources by causing variability in biological production in Sri
Lankan waters and beyond [8–10]. In addition, by using remote sensing data, including
Tropical Rainfall Measuring Mission (TRMM) rainfall data, TRMM Microwave Imager
(TMI) SST data, and QuickSCAT wind data, it was found that the SCP influences the active
break cycles of the monsoons and rainfall over the BOB and its surrounding countries by
forming an SST gradient between the SCP and the warm SST in the northern part of the
bay [5,11–15]. As one of the key factors regulating the regional climate over the BOB, the
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SCP and its climate effects are some of the key issues in the international research area of
the Indian climate research program initiated by the Indian Department of Science and
Technology and the Ministry of Earth Sciences [7,16].

The SCP was first observed by Joseph et al. [5], located in the southern bay between
3◦ and 10◦N with SSTs lower than 28.1 ◦C, using TMI SST. Based on multisource satellite
observations of the SST, wind, and net heat flux (NHF), together with model assimilation
data, subsequent studies [9,17,18] further showed that the SCP appears in May, peaks
during June and August, and decays from September onward. The maximum cloud band
appears over the SCP and decreases shortwave radiation (SWR), enhances latent heat flux
(LHF) release during the early stage (mid-May to early June), and consequently leads
to the rapid cooling of the SCP during this stage [7,19]. In the peak phase of the SCP
from June to August, the upwelling cold water from the southern coast of Sri Lanka and
India is continuously transported to the southern bay via the southwest monsoon current
(SMC) [20,21], which plays a vital role in the development and maintenance of the cold
pool [6,16,17,22]. In addition, cold water from the Sri Lankan cold eddy (Figure 1a) also
contributes to the SCP through advection and vertical entrainment [23,24].
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box (4°N–10°N, 83°E–90°E) in (a) is defined as the SCP. The Sri Lankan cold eddy and SMC are 
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propagation path of the planetary waves. The pink dots on the orange curves represent the selected 
stations for tracking wave propagation. 
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variations is relatively lacking. The El Niño–Southern Oscillation (ENSO) is an important 
climate mode affecting the interannual variability in the BOB [25–27]. In general, ENSOs 
appear in summer, peak in the subsequent winter, decay, and vanish in the proceeding 
spring and summer [28]. Li et al. (2018) [29] found that the ENSO may affect the variations 
in the summer monsoon in the BOB by regulating the outgoing longwave-radiation 
intraseasonal oscillation propagating northward from the eastern Indian Ocean. It induces 

Figure 1. (a) The climatological SST (unit: ◦C) in summer from 1982 to 2020, and (b) logarithms
(log10) of chlorophyll-a (shading, unit: mg m−3) and GC (vectors, unit: m s−1) in summer for the
period 1998 to 2020. The grey contours in (a,b) indicate 28.60 ◦C and 0.50 mg m−3, respectively. The
black box (4◦N–10◦N, 83◦E–90◦E) in (a) is defined as the SCP. The Sri Lankan cold eddy and SMC are
represented by the blue and red curves, respectively. The orange dots and curves in (b) denote the
propagation path of the planetary waves. The pink dots on the orange curves represent the selected
stations for tracking wave propagation.

However, previous studies predominantly focused on the seasonal evolution of the
SCP, and the understanding of the characteristics of the year-to-year (i.e., interannual)
variations is relatively lacking. The El Niño–Southern Oscillation (ENSO) is an important
climate mode affecting the interannual variability in the BOB [25–27]. In general, ENSOs
appear in summer, peak in the subsequent winter, decay, and vanish in the proceeding
spring and summer [28]. Li et al. (2018) [29] found that the ENSO may affect the varia-
tions in the summer monsoon in the BOB by regulating the outgoing longwave-radiation
intraseasonal oscillation propagating northward from the eastern Indian Ocean. It induces
an anticyclonic (cyclonic) atmospheric circulation anomaly over the BOB in the summer
during the decaying year of the positive (negative) phase of the ENSO, i.e., El Niño (La
Niña), which consequently weakens (strengthens) the southwest monsoon there [30–32].
This teleconnection between the ENSO and the South Asian monsoon may cause changes in
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the SST in the BOB from the associated atmospheric heating anomalies [33]. In addition, the
variabilities in the SMC and equatorial planetary waves [34] driven by the aforementioned
southwest monsoon anomalies associated with the ENSO may inevitably cause changes
in the SCP through their influence on the upper thermohaline structure of the southern
bay [35,36]. This raises questions about how the SST of the SCP responds to ENSO events
and what the dynamic mechanisms are for the related variability in the SCP. These two
questions are addressed in this study.

With an unprecedented collection of ocean data from satellites over the past three
decades, an observational image of the interannual variability in the SCP can be compiled
as satellite observations have been used to explore the intraseasonal and seasonal variations
in the SCP [5–7,17,18]. In this paper, we examine the interannual variability associated with
the ENSO using multisource satellite observations, and the related mechanisms are also
explored. The remaining sections are as follows: Section 2 introduces the data and methods,
Section 3 analyzes the characteristics of the interannual variability and the mechanisms of
the SCP associated with ENSO events, and Section 4 presents the discussion and conclusion.

2. Data and Methods
2.1. Data

The daily optimally interpolated SST (OISST) data used in this study were provided
by the National Oceanic and Atmospheric Administration (NOAA) with a spatial reso-
lution of 0.25◦ × 0.25◦ [37,38]. The time span used in this study was 1982 to 2020. In
addition, monthly ocean chlorophyll-a data with a spatial resolution of 4 km provided by
the Ocean Colour Climate Change Initiative (OC-CCI) for the period 1998–2020 were also
used [39]. These two datasets were applied to explore the climatological characteristics and
interannual variability in the SCP.

The daily sea surface wind field data were cross-calibrated multiplatform (CCMP) data
with a spatial resolution of 0.25◦ × 0.25◦ obtained from the Physical Oceanography Dis-
tributed Active Archive Center of the National Aeronautics and Space Administration [40].
The available time range of the CCMP wind data was from July 1987 to April 2019. Since
the data from 1988 and 1989 were missing in some time periods, this study selected January
1990 to December 2018. Daily sea level anomaly (SLA), absolute dynamic topography
(ADT), and geostrophic current (GC) data with a spatial resolution of 0.25◦ × 0.25◦ for
the period 1993–2020 were provided by the Copernicus Marine Environment Monitoring
Service [41]. Additionally, the Simple Ocean Data Assimilation reanalysis (SODA) (version
3.4.2) provided by the University of Maryland was also used, with a spatial resolution
of 0.5◦ × 0.5◦ and a temporal resolution of 5 days. The time span was January 1982 to
December 2020 [42]. SODA data, together with the aforementioned multisource satellite ob-
servations, were used to analyze the dynamic mechanism of the ENSO-related interannual
variability in the SCP.

2.2. Definition of ENSO Events

The monthly Niño 3.4 index released by the U.S. Climate Prediction Center (CPC)
(https://ggweather.com/enso/oni.htm accessed on 21 May 2022) was used to identify
ENSO events. Referring to previous studies [28,43,44], when the season mean winter
(December to next February) Niño 3.4 index was greater (less) than 0.6 ◦C (−0.6 ◦C), it was
defined as an El Niño (La Niña) event [29,45,46]. Based on this definition, 13 El Niño events
and 13 La Niña events (Figure 2b) were recognized during 1982–2020 in this study, which
is consistent with the results given by the CPC [32].

https://ggweather.com/enso/oni.htm
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of each year for the SCP SSTA (Niño 3.4 index). The grey curves in (a) represent 0 °C, and the solid 
black lines at 10°N and 4°N represent the north and south boundaries of the SCP, respectively. The 
red (blue) asterisks in (b) represent El Niño (La Niña) events. 
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Figure 2. (a) Time-latitude diagram of monthly SSTA (unit: ◦C) for each summer month from June to
August, averaged for the zonal extent (i.e., 83◦E–90◦E) of the SCP from 1982 to 2020; (b) Time series
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2.3. Heat Budget of the Mixed Layer

To quantify the relative contribution of atmospheric heating and ocean dynamic
processes to the interannual variability in the SCP’s SST, the heat budget of the mixed layer
was calculated. According to Nigam et al. [47], the formula is as follows:

∂T
∂t

=
Qnet
ρCph

−
[∣∣∣∣ →u ∣∣∣∣∂T

∂x
+

∣∣∣∣→v ∣∣∣∣∂T
∂y

]
−

∣∣∣→w∣∣∣∆T

h
+ residual (1)

where T is the mixed-layer temperature; Qnet is the surface NHF; ρ is the density of seawater,
which is 1020 kg m−3; Cp is the seawater-specific heat, which is 4300 J (kg ◦C)−1; h is the

mixed-layer depth;
→
u and

→
v are the zonal and meridional mixed layer flow velocities,

respectively; and
→
w is the entrainment velocity. The formula on the left side of the equation

is the temperature trend term of the mixed layer, and the formulas on the right side of
the equation are the surface heat forcing term, horizontal advection term, and vertical
entrainment term. ∣∣∣∣ →W∣∣∣∣= ∂h

∂t
+

∣∣∣∣ →We

∣∣∣∣+∣∣∣∣→uEK

∣∣∣∣·∇h (2)

where ∂h
∂t is the variability tendency,

∣∣∣∣ ⇀We

∣∣∣∣ is the Ekman pumping velocity, and
→
uEK is the

Ekman advection velocity.
∣∣∣→uEK

∣∣∣ = →τ ×→k /
(
ρ
→
f h
)

,
→
τ is the wind stress;

→
f is the Coriolis

force, and
→
f = 2 × →ω sin(ϕ),

→
ω= 7.27·10−5 s−1, andϕ represent the latitude. When

∣∣∣→w∣∣∣ > 0,
the cold water below the mixed layer gushes into the mixed layer; conversely, the warm
water in the mixed layer sinks below the mixed layer.
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2.4. Ekman Pumping Velocity

The Ekman pumping velocity
⇀

We formula [48,49] is:∣∣∣∣ →We

∣∣∣∣ = 1

ρ

∣∣∣∣→f ∣∣∣∣∇×
→
τ (3)

where ∇×→τ is the wind stress curl (WSC), whose calculation formula is

∇×→τ =
∂
→
τy

∂x
− ∂

→
τx

∂y
(4)

where
→
τx = ρaCd

→
u
∣∣∣∣→V∣∣∣∣, →τy = ρaCd

→
v
∣∣∣∣→V∣∣∣∣, ∣∣∣∣→V∣∣∣∣ =

√
→
u2 +

→
v2. ρa is the air density of

1.22 kg m−3; Cd is the drag coefficient; and
∣∣∣∣→V∣∣∣∣ is the wind size. The formula for Cd [50]

can be represented by

Cd × 103 =



= 1.2,
∣∣∣∣→V∣∣∣∣ ≤ 11 ms−1;

= 0.49 + 0.065×
∣∣∣∣→V∣∣∣∣, 11 <

∣∣∣∣→V∣∣∣∣ ≤ 19 ms−1;

= 1.364 + 0.0234×
∣∣∣∣→V∣∣∣∣−0.0002 ×

∣∣∣∣→V∣∣∣∣2, 19 <

∣∣∣∣→V∣∣∣∣ ≤ 100 ms−1

(5)

3. Results
3.1. Interannual Variability in the SCP

First, the distributions of the SST climatology and chlorophyll-a over the BOB in
summer (Figure 1) are shown to illustrate the general characteristics of the SCP. A large
area of low-temperature (<28.60 ◦C) seawater appears in the southwestern bay (Figure 1a),
which can be further transported into the central BOB and the Andaman Sea, where its
temperature becomes somewhat higher due to mixing during the advection processes [6,11].
The cold water of the SCP may be partly obtained from the upwelling water along the
southern coasts of India and Sri Lanka, which is transported to the location of the SCP along
the path of the SMC (Figure 1a). A high concentration (>0.50 mg m−3) of chlorophyll-a
extending from the coastal regions of India and Sri Lanka to the SCP (Figure 1b) further
underpins the fact that the advection of the upwelling water from the Indian and Sri
Lankan coasts is an important source of cold water for the development and maintenance
of the SCP.

Similar to the method of Das et al. [7], the rectangular region (4◦N–10◦N, 83◦E–90◦E)
is selected as the SCP’s core area based on an SST below 28.60 ◦C (Figure 1a). Figure 2a
presents the time-latitude distribution of the monthly SST anomaly (SSTA) averaged for
the zonal extent (i.e., 83◦E–90◦E) of the SCP for each summer month from June to August
1982–2020. One can see that the summer series SSTA of the SCP presents an obvious
year-to-year variability. Previous studies [25,45] showed the significant influence of ENSO
events on the SST in the BOB during its decaying year. To illustrate its possible influence
on the SCP’s SST during the summer of the ENSO’s decaying year, the winter series of the
Niño 3.4 index from 1981 to 2019, together with the corresponding summer series of the
SCP’s SSTA from 1982 to 2020, is shown in Figure 2b. We can see that most of the El Niño
(La Niña) events led to an abnormally warm (cold) SSTA in the SCP during the subsequent
summer of the events. For example, the temperature of an abnormally warm SCP was
up to 0.55 ◦C in the summer of 1983 and 0.41 ◦C in the summer of 1987, corresponding to
the El Niño events in the winter of 1982 and 1986, respectively. Similarly, the temperature
of an abnormally cold SCP was down to −0.45 ◦C in the summer of 1985 and −0.39 ◦C
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in the summer of 1989, corresponding to the La Niña events in the winter of 1984 and
1988, respectively. The correlation between the winter Niño 3.4 index and the subsequent
summer SCP’s SSTA was 0.64, significant at the 99% confidence level. This good correlation
between them indicates that the interannual variability in the SCP’s SSTA was closely
related to ENSO events.

When the summer SSTA of the SCP exceeds ± one standard deviation of its index, it
is defined as a warm (cold) event of the SCP. Based on this definition, there were a total of
seven warm events and eight cold events during 1982–2020 (Figure 3). Among the seven
warm events (i.e., 1983, 1987, 1991, 1997, 1998, 2015, and 2020), four were El Niño decaying
years (i.e., 1983, 1987, 1998, and 2015) and the remaining three were normal years (1991,
1997, 2020). In addition, six out of the eight cold events were La Niña decaying years
(i.e., 1985, 1989, 1999, 2000, 2012, and 2018) and the remaining two were normal years
(1994, 2013). This good correspondence between the abnormal events of the SCP and the
ENSO decaying years further suggests that the ENSO had a significant influence on the
interannual variability in the SCP during the ENSO decaying years.
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Figure 3. Scatter plot of the winter Niño 3.4 index (unit: ◦C) from 1981 to 2019 and the corresponding
subsequent summer (unit: ◦C) of the SCP’s SSTA from 1982 to 2020. The vertical and horizontal
dashed lines represent the positive (negative) one standard deviation of the SSTA and ±0.6 ◦C of
the Niño 3.4 value, respectively. Triangles, circles, and squares denote the warm anomalies, normal
anomalies, and cold anomalies of the SCP, respectively. Red, green, and blue represent El Niño,
non-ENSO, and La Niña events, respectively.

To explore the evolution process of the SCP associated with ENSO events, monthly
SSTA and surface wind anomalies from May to August were composited for the afore-
mentioned four warm events of the SCP during the El Niño decaying years (Figure 4e–h)
and the six cold events during the La Niña decaying years (Figure 4i–l), respectively. First,
Figure 4a–d show the climatological monthly difference in the SST (dSST, the difference in
the SST between the current month and the preceding month) from May to August. One
can see that the SCP began to form in May and reached its peak in August, with the largest
cooling rate appearing during June (Figure 4b). In the presence of El Niño and La Niña
events, the SSTA of the SCP indicated significantly different patterns. During the El Niño
decaying years, a positive SSTA occupied the whole SCP and peaked in June (Figure 4e–h).
A similar evolution pattern occurred during the La Niña decaying years but in an opposite
way, with a negative SSTA (Figure 4i–l).
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Figure 4. (a) The climatology dSST (shading, unit: ◦C) in May. (b–d) as in (a) but for June, July, and
August. (e–h) as in (a–d) but for the SSTA (shading, unit: ◦C) and wind anomalies (vectors, unit:
m s−1) composited for four El Niño decaying years (1983, 1987, 1998, and 2015). (i–l) as in (e–h)
but for six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and 2018). The black dots in (e–l)
indicate that the composite is significant at a 95% confidence level and the black, blue, and red dashed
rectangles in each panel denote the SCP study area.

3.2. Mechanisms for the Interannual Variability in the SCP’s SSTA Associated with ENSO Events

Composited surface wind for the summer months during the El Niño (La Niña) de-
caying years indicates that an anomalous anticyclonic (cyclonic) surface wind appeared in
the BOB, with intensity peaks around June (Figure 4e–l). The anomalous wind pattern may
have weakened (strengthened) the summer monsoon (i.e., southwestward wind) in the mid-
dle and southern part of the bay during the El Niño (La Niña) decaying years (Figure 4e–l),
which is consistent with previous studies [30–32]. These interannual variations in the
summer monsoons remotely induced by the ENSO were through the atmospheric tele-
connection of the Walker Circulation [30–32]. The changes in the southwest monsoon
associated with ENSO events tended to affect the strength of the SMC and sea surface heat-
ing [51], causing variations in the SST of the SCP in the ENSO decaying years. Therefore,
we then examined the role of the SMC and surface heat fluxes in the anomalous SST of the
SCP associated with the El Niño and La Niña events, respectively.

3.2.1. The Possible Influence of the SMC on the SCP

The ADT and GC anomalies in the summer composited for the El Niño and La Niña
decaying years are shown in Figure 5a,b. During summer in the El Niño decaying years,
the SCP was dominated by a cyclonic anomaly and an anomalous anticyclone was found to
the northwest of the cyclone. Therefore, the anomalous southwestward current appeared
between them, which greatly weakened the SMC and consequently reduced the cold
advection from the upwelling region along the southern Indian and Sri Lankan coasts
(Figure 1a), thus leading to the warm anomaly of the SCP. During summer in the La
Niña decaying years, similar processes operated but in an opposite way. Based on the
composited WSC (Figure 5c,d), one can see that the aforementioned anomalous cyclones
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and anticyclones in the El Niño and La Niña decaying years (Figure 5a,b) were primarily
caused by the anomalous WSC, which is consistent with previous studies [52,53]. This
mirroring response of the SMC to the ENSO’s two phases (i.e., El Niño and La Niña)
suggests an important role of the ENSO in the SMC and the SST of the SCP.
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Figure 5. (a) The ADT anomaly (shading, unit: m) and GC anomalies (vectors, unit: m s−1) in the
summer composited for the four El Niño decaying years (1983, 1987, 1998, and 2015). (b) as in (a) but
for the six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and 2018). (c,d) as in (a,b) but for the
WSC anomaly (shading, unit: N m−3) from May to July. The areas indicated by the red rectangles
(region A) in (a,b) represent the main region of the SMC and the black dashed rectangles denote the
region of the SCP.

To further illustrate the relationship between the ENSO, SMC, and SCP’s SSTA, region
A (Figure 5a), located along the main axis of the SMC, was selected, and then the meridional
current anomalies averaged in region A were used as a proxy for the intensity of the SMC.
The time series of the winter Niño 3.4 index during 1981–2019, the SMC intensity (i.e.,
meridional current anomalies in region A), and the SSTA in the SCP for the proceeding
summers during 1982–2020 are shown in Figure 6. Although the correlation between the
SMC intensity and Niño 3.4 was not very high (−0.31), in most (six out of nine) of the
El Niño decaying years, the SMC was weakened, whereas in most (8 out of 10) of the
La Niño decaying years, the SMC was strengthened. In addition, the SMC intensity was
well corrected with the SSTA of the SCP, significant at a 95% confidence level (Figure 6b),
underpinning the aforementioned fact that a weaker (stronger) SMC tended to result in a
warmer (cooler) SCP. These good relationships between the Niño 3.4 index and the SMC
and the SMC and the SCP’s SSTA suggest that the ENSO-induced variability in SMC via
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the local monsoon may have had a remarkable effect on the SCP’s SSTA during the ENSO
decaying years.
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associated with El Niño prevailed in the equator from mid-March to the end of April 
during the El Niño decaying years (Figure 7a). The anomalous upwelling Kelvin wave 
was driven by the easterly anomalies and propagated eastward along the equator, and 
was then propagated to the west coast of Sumatra and the BOB (between Station 7 and 
Station 10) as a coastal Kelvin wave from early April to mid-April. From there (i.e., Station 
10, shown in Figure 1b), the westward anomalous upwelling Rossby wave was triggered 
by the coastal Kelvin wave, and the Rossby wave reached the SCP in late May (Figure 7a), 
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SCP, thus contributing to the weakening of the SMC. Similar processes occurred in the La 
Niña decaying years but in an opposite way (Figure 7b). 

Figure 6. Time-series diagrams of (a) the winter Niño 3.4 index (unit: ◦C) from 1992–2019 and the
corresponding subsequent summer meridional component of the SMC anomaly (SMC_vA, unit:
m s−1) averaged for region A from 1993 to 2020, respectively. (b) as in (a) but for the SCP’s SSTA
(unit: ◦C) and SMC_vA (unit: m s−1) in the summer for the period 1993 to 2020. The bottom (top)
tick marks in (a) denote the summer (winter) of each year for the SCP’s SSTA (Niño 3.4 index). The
pink and blue hollow circles in (a) represent El Niño and La Niña events, respectively. Region A is
shown in Figure 5a.

Besides the important influence of local wind on the upper ocean circulation in the
southern bay mentioned above, previous studies [54,55] pointed out that the equatorial
wind also remotely modulates the upper-layer circulation in the southern bay through
planetary wave processes. Thus, its possible role in the SMC was then examined and the
results are shown in Figure 7. During the El Niño phase, easterly wind anomalies associated
with El Niño prevailed in the equator from mid-March to the end of April during the El
Niño decaying years (Figure 7a). The anomalous upwelling Kelvin wave was driven by the
easterly anomalies and propagated eastward along the equator, and was then propagated
to the west coast of Sumatra and the BOB (between Station 7 and Station 10) as a coastal
Kelvin wave from early April to mid-April. From there (i.e., Station 10, shown in Figure 1b),
the westward anomalous upwelling Rossby wave was triggered by the coastal Kelvin wave,
and the Rossby wave reached the SCP in late May (Figure 7a), which strengthened the
anomalous cyclone (Figure 5a) induced by the local winds in the SCP, thus contributing to
the weakening of the SMC. Similar processes occurred in the La Niña decaying years but in
an opposite way (Figure 7b).
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the early stage (May 15 to June 10, Figure 8a,b), but these reversed to negative anomalies 
and thus resulted in cooling from June 10 to the end of August (Figure 8a,c). 

Considering that atmospheric heating had the same warming effect on the SST of the 
SCP as the SMC (Figure 5a), consequently, the warming magnitude of the SCP peaked in 
June (Figure 4f), which was the most essential period for the development of the warm 
anomaly of the SCP [7,18]. From mid-June to August, the atmospheric heat flux reversed 
to cooling and partly offset the SMC warming effect on the SCP so that the warming of 
the SCP could be further developed until August. 

Figure 7. Time–station diagram of (a) SLA anomalies (shading, unit: m) and zonal wind anomalies
(contours, unit: m s−1) composed for the four El Niño decaying years (1983, 1987, 1998, and 2015).
(b) as in (a) but for the six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and 2018). The
positions of the stations are shown in Figure 1b. The SLA and wind field data are band-filtered for
30–120 days. The solid and dashed contours represent the westerly and easterly wind anomalies,
respectively. Blue and red arrows in (a,b) represent the propagation processes of the upwelling and
downwelling planetary waves, respectively.

3.2.2. Possible Effects of Atmospheric Heating on the SCP

To examine the effects of sea surface heating on the SSTA of the SCP, the daily time
series of the NHF anomaly and SSTA in the SCP composited for the El Niño and La Niña
decaying years from May to August were measured and are shown in Figure 8a. In the El
Niño decaying years, the positive NHF anomalies led to the warming of the SCP during
the early stage (May 15 to June 10, Figure 8a,b), but these reversed to negative anomalies
and thus resulted in cooling from June 10 to the end of August (Figure 8a,c).

Considering that atmospheric heating had the same warming effect on the SST of the
SCP as the SMC (Figure 5a), consequently, the warming magnitude of the SCP peaked in
June (Figure 4f), which was the most essential period for the development of the warm
anomaly of the SCP [7,18]. From mid-June to August, the atmospheric heat flux reversed to
cooling and partly offset the SMC warming effect on the SCP so that the warming of the
SCP could be further developed until August.

Figure 9 shows an examination of the role of each atmospheric heating component on
the SSTA of the SCP. One can see that in the El Niño decaying years, the NHF anomaly was
predominantly caused by the SWR anomaly and, to a lesser degree, by the LHF anomaly.
During the La Niña decaying years, processes similar to the atmospheric heating mentioned
above operated but in an opposite way.



Remote Sens. 2022, 14, 6169 11 of 15Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. (a) Time series of the NHF anomaly (unit: W m−2) and SSTA (unit: °C) of the SCP 
composited for the four El Niño decaying years (1983, 1987, 1998, and 2015) are shown as “NHF El 
Niño Warm” and “SSTA El Niño Warm”, respectively, and composited for the six La Niña decaying 
years (1985, 1989, 1999, 2000, 2012, and 2018) are shown as “NHF La Niña Cold” and “SSTA La Niña 
Cold”. (b,c) The NHF anomaly (unit: W m−2) in the 15 May-10 June and 15 July-10 August periods, 
respectively, composited for the four El Niño decaying years (1983, 1987, 1998, and 2015). (d,e) as in 
(b,c), respectively, but for six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and 2018). The 
two green rectangles in (a) represent the periods of 15 May–10 June and 15 July–10 August, 
respectively. The black dashed rectangles in (b–e) denote the region of the SCP. 

Figure 9 shows an examination of the role of each atmospheric heating component 
on the SSTA of the SCP. One can see that in the El Niño decaying years, the NHF anomaly 
was predominantly caused by the SWR anomaly and, to a lesser degree, by the LHF 
anomaly. During the La Niña decaying years, processes similar to the atmospheric heating 
mentioned above operated but in an opposite way. 

 

Figure 8. (a) Time series of the NHF anomaly (unit: W m−2) and SSTA (unit: ◦C) of the SCP
composited for the four El Niño decaying years (1983, 1987, 1998, and 2015) are shown as “NHF El
Niño Warm” and “SSTA El Niño Warm”, respectively, and composited for the six La Niña decaying
years (1985, 1989, 1999, 2000, 2012, and 2018) are shown as “NHF La Niña Cold” and “SSTA La
Niña Cold”. (b,c) The NHF anomaly (unit: W m−2) in the 15 May–10 June and 15 July–10 August
periods, respectively, composited for the four El Niño decaying years (1983, 1987, 1998, and 2015).
(d,e) as in (b,c), respectively, but for six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and
2018). The two green rectangles in (a) represent the periods of 15 May–10 June and 15 July–10 August,
respectively. The black dashed rectangles in (b–e) denote the region of the SCP.
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3.2.3. Heat Budget in the Mixed Layer in the SCP

To quantify the relative contributions of the atmospheric and oceanic factors to the
SST change in the SCP, a heat budget analysis was carried out (Figure 10). As shown in
Figure 10a, for the El Niño decaying years, during May and June, the mixed-layer warm
anomaly term (0.38 ◦C month−1, 0.06 ◦C month−1) of the SCP was primarily caused by
surface heating (0.42 ◦C month−1, 0.04 ◦C month−1) and, to a lesser degree, by horizontal
advection (0.04 ◦C month−1, 0.02 ◦C month−1). The effect of entrainment was so weak
(−0.05 ◦C month−1, 0.00 ◦C month−1) that it can be neglected compared to the surface
heat forcing in May and June. Similar important effects of surface heating and horizontal
advection also appeared in the mixed cooling anomaly in August. However, in July, the
mixed-layer anomalous cooling (−0.04 ◦C month−1) was mainly dominated by vertical
entrainment (−0.06 ◦C month−1) and surface heat forcing (−0.02 ◦C month−1) and was
partially offset by horizontal advection (0.03 ◦C month−1).
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Figure 10. (a) The heat budget components (unit: ◦C month−1) of the mixed-layer temperature
anomaly in the SCP, composited for the four El Niño decaying years (1983, 1987, 1998, and 2015).
(b) as in (a) but for the six La Niña decaying years (1985, 1989, 1999, 2000, 2012, and 2018). The trend
is the tendency of the mixed-layer temperature anomaly. Q, horiz, and verti are the tendencies of the
mixed-layer temperature anomaly caused by surface heat forcing, horizontal advection, and vertical
entrainment, respectively.

Similarly, sea surface heating played a key role in the mixed temperature tendency for
La Niña cases, particularly during July (Figure 10b). Horizontal advection had a comparable
influence on surface heating, particularly in June.

4. Conclusions

In this study, multisource satellite SST, chlorophyll-a, CCMP wind, ADT, SLA, and GC
data, together with SODA reanalysis, were used to analyze the interannual variability in
the SCP and its dynamic mechanism. Our results indicated that the interannual variability
in the SCP’s SST was closely related to ENSO events. During 1982 and 2020, among the
seven warm anomaly events of the SCP, four were related to El Niño events, and six out of
the eight cold anomaly events were associated with La Niña events. Composite analysis
indicated that the El Niño (La Niña)-induced warm (cold) anomaly of the SCP started in
May and persisted throughout August, with a peak value appearing in June during the El
Niño (La Niña) decaying years.

During the summers of the El Niño decaying years, the southwest monsoon weakened
over the BOB through the atmospheric teleconnection of the anomalous Walker Circulation
associated with El Niño. The El Niño-related weakening summer wind produced a positive
WSC anomaly over the SCP, which greatly reduced the SMC, thus reducing the advection
of cold water to the SCP from the upwelling region along the southern coast of India and
Sri Lanka. Consequently, the weakened SMC and the associated less cold advection led
to the warm anomaly events of the SCP. In addition, during mid-March and April of the
El Niño decaying years, easterly wind anomalies associated with El Niño triggered the
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upwelling Kelvin wave in the equator. This upwelling Kelvin wave of equatorial origin
also contributed to the weakening of the SMC, thus amplifying the warming anomaly of
the SCP through the processes of planetary wave propagation in the bay.

Besides the aforementioned important role played by the oceanic dynamic processes,
El Niño-related atmospheric heating also had a comparable contribution to the development
of the anomalous warming of the SCP. In the early stage (15 May to 10 June), the warming
of the SCP was primarily induced by the positive NHF anomaly due to the enhanced SWR.
From mid-June to August, the NHF anomaly reversed to negative values and partially
offset the advection heating on the SCP. During the La Niña decaying years, similar oceanic
and atmospheric processes operated but in an opposite way.
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