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Abstract: Thermal infrared imagery plays an important role in a variety of fields, such as surface
temperature inversion and urban heat island effect analysis, but the spatial resolution has severely
restricted the potential for further applications. Data fusion is defined as data combination using
multiple sensors, and fused information often has better results than when the sensors are used alone.
Since multi-resolution analysis is considered an effective method of image fusion, we propose an
MTF-GLP-TAM model to combine thermal infrared (30 m) and multispectral (10 m) information
of SDGSAT-1. Firstly, the most relevant multispectral bands to the thermal infrared bands are
found. Secondly, to obtain better performance, the high-resolution multispectral bands are histogram-
matched with each thermal infrared band. Finally, the spatial details of the multispectral bands are
injected into the thermal infrared bands with an MTF Gaussian filter and an additive injection model.
Despite the lack of spectral overlap between thermal infrared and multispectral bands, the fused
image improves the spatial resolution while maintaining the thermal infrared spectral properties as
shown by subjective and objective experimental analyses.

Keywords: SDGSAT-1; thermal infrared image; multispectral image; data fusion; multi-resolution
analysis (MRA)

1. Introduction

Thermal infrared (TIR) imaging can determine the nature, state, and change patterns
of ground objects by measuring the differences in infrared properties reflected or radiated
by the ground. In addition to its importance to global energy transformations and sustain-
able development, it has been extensively researched in the fields of surface temperature
inversion, urban heat island effect, forest fire monitoring, prospecting, and geothermal
exploration [1,2]. Due to the limitations of remote sensors, the thermal infrared band gener-
ally has a coarser spatial resolution than the visible band, which reduces its accuracy. As a
result, improving the spatial resolution of thermal infrared images is of great significance
and value.

In order to produce synthetic TIR images, TIR images can be fused with reflection
bands of higher spatial resolution using image fusion techniques. In most cases, current
image fusion methods assume that there is a significant correlation between panchromatic
(PAN) and multispectral (MS) images. Data fusion of PAN and MS images has been widely
used to create fused images with higher spatial and spectral resolution [3]. Although there
are several image fusion methods available for MS and PAN images, only a few in the
literature claim to be applicable to TIR and reflection data, for example, pixel block intensity
modulation [4], nonlinear transform and multivariate analysis [5], and optimal scaling
factor [6]. There are two problems with the current methods: (i) Since the TIR spectral range
is far off from the reflectance spectral range, the correlation between TIR and reflectance
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data is generally weak, resulting in blurred images or significant spectral distortions.
(ii) TIR and reflection data fusion models are currently subject to strong subjective influences
on parameter selection for different scenes.

Previous research on PAN and MS image fusion methods revealed that multi-resolution
analysis (MRA) is widely used due to its high computational efficiency and excellent fusion
performance. The MRA method primarily uses wavelet transforms, Laplacian pyramids,
etc. The aim is to extract information about spatial structure that is affected by spatial
resolution and inject it into the hyperspectral image to enhance its spatial detail. Inspired
by this, we propose a Generalized Laplacian Pyramid with Modulation Transfer Function
matched filter model to fuse the thermal infrared band (30 m) and multispectral band
(10 m) information (MTF-GLP-TAM) of SDGSAT-1. There are three payloads in SDGSAT-1:
a thermal infrared spectrometer, a microlight, and a multispectral imager. The synergistic
observation performed by these three payloads round the clock provides short-time phase,
high-resolution, and high-precision image data for the fine portrayal of human traces,
offshore ecology, urban heat island effect, and polar environment. The multispectral imager
(MSI) is one of its main optical payloads, containing a total of seven bands, mainly in
380~900 nm, with a spatial resolution of 10 m. The thermal infrared spectrometer (TIS)
mainly collects three thermal infrared bands with a spatial resolution of 30 m [7–10]. The
low resolution of images in the thermal infrared band compared with the MS band limits
their further application. Thus, it is necessary to integrate SDGSAT-1 MS images with TIS
images. It is important to preserve the spatial information of the multispectral bands while
maintaining the spectral properties of the three thermal infrared bands in the fused images.

This paper is organized as follows: In Section 2, we review different methods for
remote sensing image fusion and analyze the applicability of these methods on thermal
infrared and multispectral data fusion. In Section 3, we describe the whole framework of
the image fusion algorithm in detail. In Section 4, we compare the results of the proposed
method with those of other methods in a comprehensive manner, and we select several
scenes to demonstrate its performance after fusion. In Section 5, we discuss the fusion per-
formance of the proposed algorithm on Landsat series satellite images and compare it with
those of other advanced algorithms. Finally, Section 6 summarizes the main conclusions.

2. Related Works

Remote sensing image fusion algorithms have a wide range of applications and a
variety of data sources [10]. The purpose of this section is to present recent studies relating
to the application of TIR and MS fusion algorithms in remote sensing. Furthermore, we
present some fusion algorithms between PAN and MS bands to analyze their potential
application to thermal infrared data.

In the early days, Liu et al. developed a pixel block intensity modulation (PRIM)
method to add spatial details to Landsat Thematic Mapper (TM) thermal band images
at 120 m resolution using spatial information in the reflectance spectral band at 30 m
resolution [4]. However, the PRIM method can only improve the topographic resolution
of thermal images and not the spectral resolution. University of Lausanne researchers
have proposed a generalized Bayesian data fusion (BDF) method for improving the spatial
resolution of ASTER thermal images [11]. In this method, the variation in support is
explicitly taken into account when combining information from the visible and near-
infrared (VNIR) bands (15 m and 90 m). The fused image retains the local spectral values
of the original image while adding spatial detail from the 15 m VNIR band, but it exhibits
local blurring in some areas. In urban areas with spectral and spatial diversity, Landsat
TM TIR bands have a spatial resolution of 120 m, which is too coarse to depict surface
temperatures. University of York researchers addressed this problem by proposing an
algorithm that uses nonlinear transformations and multivariate analysis to fuse 30 m
resolution reflectance band data with Landsat TM thermal infrared data [5]. Meanwhile,
Seoul National University researchers proposed an effective method to fuse Landsat 8
PAN and TIR images using an optimal scale factor to control the trade-off between spatial
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detail and thermal information [6,12]. In addition, the authors emphasized that the method
can also be used to fuse (1) VNIR and TIR images from ASTER or MODIS data products
and (2) PAN and MIR (mid-infrared) images from Kompsat-3A. The optimal scale factor
method is, however, subject to subjective factors when setting parameters. The model is
not generalizable. Infrared channel data from geostationary meteorological satellites can be
used for meteorological research and applications, but their spatial resolution is poor. As
a result, Ocean University of China researchers proposed a correction method based on
thermophysical properties for fusing geostationary meteorological satellite infrared (4 km)
and visible (1 km) images [13]. In spite of this, this method requires high-quality data, which
is highly dependent on the solar elevation angle at the time of data acquisition. Chonnam
National University researchers investigated an efficient method for fusing Landsat 7 PAN
and TIR images using the sparse representation (SR) technique [14]. The missing details of
TIR images are estimated using the SR algorithm to enhance their spatial features. However,
the optimal parameters for fusion using the SR algorithm are not consistent for different
regions. University of Tehran researchers quantitatively and qualitatively evaluated the
performance of TIR and PAN band fusion using a wavelet transform and different filters for
the Landsat 8 satellite [15]. Several deep learning-based image fusion algorithms also have
excellent performance in remote sensing image fusion, since they generally have strong
nonlinear mapping capabilities. They require a lot of computational resources and training
data, which are not easily accessible in the image fusion field due to the lack of underlying
facts. Since all deep learning methods use synthetic data for training, their performance in
the fusion of real data from novel satellites is limited [16–18].

Based on the above advancements in integrating thermal infrared images with other
bands, it is evident that the main difficulties with current methods relate to the preservation
of spatial and spectral information, as well as the generality of model parameters. The
most studied remote sensing image fusion method is fusing MS images with PAN images
accordingly, and this process is called panchromatic sharpening. In pansharpening, MS
images are merged with PAN images to achieve the same spectral and spatial resolution as
PAN images [19]. The pansharpening method has been applied to many Earth observation
satellites, such as IKONOS, QuickBird, GeoEye-1, WorldView-2, and ZiYuan-3, which are
capable of acquiring both high-resolution PAN images and low-resolution MS images [20].
Object detection [21], land cover classification [22], and other applications can benefit from
high-resolution MS images obtained with fusion. Even though pansharpening is well
known, few studies have applied these algorithms to the fusion of thermal infrared and
multispectral data. On the one hand, it is because of the long spectral range of both; on
the other hand, previous thermal infrared remote sensing instruments have low spatial
resolution, for example, 90 m for Terra/ASTER and 100 m for Landsat 8/TIRS; therefore,
it is difficult to use classical pansharpening methods directly when spatial enhancement
is needed.

Component Substitution (CS) algorithms and multi-resolution analysis (MRA) meth-
ods constitute two classical methods in the field of generalized sharpening. The CS ap-
proaches are also referred to as spectral methods. They are based on the projection of
the original MS image in a transformed domain [23]. This class includes algorithms
such as intensity–hue–saturation (IHS) [24], principal component analysis (PCA) [25], and
Gram–Schmidt (GS) spectral sharpening [26]. The CS class fusion algorithm exploits the
differences between linear combinations of PAN and MS image channels to extract details.
However, applying that into TIR and MS bands requires the establishment of a nonlinear
synthesis relationship between their two channels, which is hard to achieve. Another
method, the multi-resolution analysis (MRA) method, uses spatially invariant linear filters
to extract spatial details from high-resolution images and add them to multispectral im-
ages [27]. Based on the MRA method, we extracted the spatial details from the MS band
and injected them into the three SDGSAT-1 bands. While maintaining the original thermal
infrared spectral information, the fused image introduces spatial details to increase thermal
spatial resolution.
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3. Methodologies

We refined the method based on multi-resolution analysis and applied it to multispec-
tral and thermal infrared remote sensing image fusion. The contribution of multispectral
images to the spatial detail of the final fusion product is achieved by calculating the
difference between the higher-resolution multispectral images and their low-pass compo-
nents. The method obtains the spatial details with the multi-scale decomposition of the
high-spatial-resolution multispectral images and injects them into the thermal infrared
image bands obtained with scaled up-sampling based on the multispectral image size. The
main advantages of the fusion technique based on multi-resolution analysis are as follows:
(1) good temporal coherence; (2) strong spectral consistency; and (3) robustness to blend-
ing under appropriate conditions. The flow chart of our proposed algorithm is shown
in Figure 1. Specifically, the fusion algorithm in this paper can be decomposed into the
following sequential processes: (1) up-sample the thermal infrared image according to
the dimensions of the multispectral image; (2) calculate the low-pass components of the
multispectral image with filters for an R-fold sampling ratio; (3) calculate the injection gain;
and (4) inject the extracted details.
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Figure 1. The entire flow chart of the proposed algorithm, where MS image indicates multispectral
image and TIR image indicates thermal infrared image. Circles with a straight or diagonal cross in
the middle indicate additive binding or multiplicative injection, respectively.

The thermal infrared image has three bands, which we denote as TIRk, where k = 1, 2, 3.
The multispectral image has seven bands we denote as MSn, where n = 1, 2, . . . , 7. We
find the multispectral band with the maximum correlation coefficient with the thermal
infrared band by calculating the correlation number, which we denote as MS. The goal
of our algorithm is to inject the high-resolution details from the MS image into the three



Remote Sens. 2022, 14, 6159 5 of 17

thermal infrared bands. Accordingly, a formula describing this fusion process is given by
Expression (1).

T̂ IRk = T̃ IRk + Fk[∆MS] (1)

where subscript k (ranging from 1 to B) indicates the spectral band and B is the number of
the TIR bands. T̃ IRk and T̂ IRk are the kth channels of the TIR image up-sampled to the
MS size and of the fused product, respectively. ∆MS indicates the MS details obtained as

the difference in MS image
^

MS and its low resolution version,
^

MSL. The specific formula is

shown in (2), where
^

MS is the result of the histogram matching of MS with each TIR band, as
shown in Equation (3). In Equation (3), µ denotes the mean value of the image, and σ denotes
the variance. Finally, Fk [·] are the functions that modulate the injection of the MS details into

the TIR bands and distinguish, together with the method used for producing
^

MSL.

∆MS =
^

MS −
^

MSL (2)

^
MS = (MS − µMS)·

σT̃ IRk

σMSL

+ µT̃ IRk
(3)

In fact, Equation (1) is a generalization of the MRA approach, where each band is
independently treated. Almost all classical approaches employ a linear function Fk [·],
which is obtained through the pointwise multiplication (indicated by ◦) of the MS details

by a coefficient matrix Gk. There are different ways for obtaining low-pass component
^

MSL
and defining Gk form.

Fk[∆MS] = Gk ◦ ∆MS (4)

There are usually two types of Gk forms. Global gain coefficients: for all k = 1, 2, 3,
Gk = 1 is a matrix of appropriate size with all elements equal to a fixed constant. This
definition is the so-called additive injection scheme. Pixel-level gain coefficients: for all

k = 1, 2, 3, Gk = T̃ IRk/
^

MSL. In this case, the details are weighted by the ratio between
the up-sampled thermal infrared image and the low-pass filtered multispectral image in
order to reproduce the local intensity contrast of the multispectral image in the fused image.
However, the local intensity contrast in the multispectral image does not reflect the true
thermal contrast information, so we use global gain coefficients here.

In this paper, we use the classical MTF-GLP-based model, which is based on MTF
Gaussian filters for detail extraction and an additive injection model, where Gk = 1 for each
k = 1, 2, 3. Therefore, the final fusion equation of the TIR image and the MS image is
shown in (5). In order to better show the spectral changes of the three bands of thermal
infrared after fusion in the results, its three bands B1B2B3 are pseudo-colored according to
the RGB channel, and finally, color image T̂ IRPC is Obtained.

T̂ IRk = T̃ IRk +
^

MS −
^

MSL (5)

4. Experiment and Results
4.1. Test Data and Fusion Methods for Comparison

The TIR and MS images taken in Shanghai on 8 April 2022 and in Beijing on 3 May
2022 were used as examples to evaluate the fusion algorithm proposed in this paper.
Among them, the specific parameter information of TIR and MS images is shown in Table 1.
The size of the real thermal infrared image was 336 pixels × 336 pixels, and the size of
the corresponding multispectral image was 1008 pixels × 1008 pixels. In the simulation
experiments, we triple-down-sampled the TIR and MS images, i.e., we obtained images of
size 112 × 112 pixels (90 m resolution) and 336 × 336 pixels (30 m resolution), respectively.
After fusion, we obtained 30 m resolution thermal infrared images, which were compared
with the real 30 m resolution thermal infrared data before degradation to obtain quantified
analysis results.
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Table 1. SDGSAT-1 TIS/MII main technical specifications.

Payload Band Wavelength Resolution (m)

Multispectral imager
(MII)

B1 0.38~0.42 µm 10 m

B2 0.42~0.46 µm 10 m

B3 0.46~0.52 µm 10 m

B4 0.52~0.6 µm 10 m

B5 0.63~0.69 µm 10 m

B6 0.765~0.805 µm 10 m

B7 0.805~0.9 µm 10 m

Thermal infrared
spectrometer (TIS)

B1 8~10.5 µm 30 m

B2 10.3~11.3 µm 30 m

B3 11.5~12.5 µm 30 m

To better illustrate the superiority of the MTF-GLP-TAM model, we applied five other
different types of image fusion methods to the test data: Gram–Schmidt (GS) expansion [26];
P + XS [28]; MTF-GLP-HPM [29]; OSF [6]; and SRT [14]. Among them, GS is a typical
component replacement method (CS); P + XS is an algorithm for variable classification; and
MTF-GLP-HPM is one of the multi-resolution analyses using pixel-level gain coefficients.
Because our algorithm is based on the MTF-GLP model and is applied to TIR band images
and MS band images, we named our algorithm MTF-GLP-TAM. OSF and SRT are two
newer algorithms that have been successfully applied to multi-sensor image fusion for
satellites such as KOMPSAT-3A, Landsat7, and Landsat8.

4.2. Evaluation Criteria

The three thermal infrared bands were pseudo-colored after resolution enhancement
in order to evaluate the images after fusion using different methods. Using pseudo-colored
thermal infrared images, we can better assess the variation in spatial details and spectral
distortion in the fused images. In addition, besides the subjective evaluation, we also used
some objective quality evaluation indexes to assess the quality of the fused obtained images.

In real datasets without high-resolution TIR images as reference images, fusion perfor-
mance is usually evaluated at reduced resolution. The evaluation of degraded resolution is
based on Wald’s protocol [30]. The original real TIR image is used as the reference image.
Then, the low-resolution TIR and MS images obtained by downscaling are used to obtain
the fused images using a fusion algorithm. Finally, the fused image is compared with the
original TIR image using the quality evaluation index to complete the objective quality
evaluation of downscaled resolution. In this thesis, different fusion methods were analyzed
objectively and quantitatively at reduced resolution using the commonly used metrics of
CC, SAM, RMSE, UIQI, and ERGAS.

(1) Cross Correlation (CC)

CC is a spatial evaluation metric describing the geometric distortion of the fused image
and is defined as

CC =
σH,Ĥ

σHσĤ
(6)

where H denotes the reference TIR image, Ĥ denotes the fused sharpened image, σH,Ĥ
denotes the covariance of images H and Ĥ, and σH and σĤ are the standard deviations of
H and Ĥ, respectively. The closer the value of CC is to 1, the better the performance of the
sharpening algorithm is.

(2) Spectral Angle Mapper (SAM)
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The SAM is a spectral quality index defined as

SAM
(
uH(i), uĤ(i)

)
= arccos (

〈
uH(i), uĤ(i)

〉
‖ uH(i) ‖2‖ uĤ(i) ‖2

) (7)

where uH(i) and uĤ(i) represent the spectral vector corresponding to the ith pixel point on
images H and Ĥ, respectively,

〈
uH(i), uĤ(i)

〉
represents the dot product operation between

uH(i) and uĤ(i), and ‖ ‖2 represents the two-parametric operation. It should be noted that
the spectral angle distortion of the TIR image is obtained by averaging the spectral angle
distortion values of all the pixels on the image. The closer the SAM value is to 0, the smaller
the spectral distortion caused by the sharpening algorithm is.

(3) Root Mean Squared Error (RMSE)

The RMSE is used to quantify the amount of distortion for each pixel in the fused
image. The root mean square error between the fused image and the reference image is
defined as

RMSE
(

H, Ĥ
)
=

√
‖ H − Ĥ ‖2

λN
(8)

where λ is the number of pixel points and N denotes the number of bands. The value of RMSE
is equal to 0 when there is no deviation between the fused image and the reference image.

(4) Relative Dimensionless Global Error In Synthesis (ERGAS)

The ERGAS represents the spatial and spectral differences between the two images of
the fused image and the reference image, i.e., a parameter indicating the overall quality of
the fused image, and is defined as

ERGAS
(

H, Ĥ
)
= 100R

√
1
N ∑N

k = 1 (
RMSEk

µk
)

2
(9)

where µk denotes the mean value of the kth band of the reference image and R denotes
the ratio of the linear resolutions of the MS and TIR images. The closer ERGAS is to 0, the
better the performance of the fusion algorithm is.

(5) Universal Image Quality Index (UIQI)

The UIQI is the similarity index for identifying spectral and spatial distortions. The
covariance, variance, and the mean values of both the fused and reference images affect the
value of the UIQI. Therefore, it is a measure of correlation loss, luminance distortion, and
contrast distortion. The closer the value of UIQI is to 1, the better the quality of the fused
value image is.

UIQI =
σH,Ĥ

σHσĤ

2µHµĤ
µH2 + µĤ

2
2σHσĤ

σH2 + σĤ
2 (10)

where H denotes the reference TIR image; Ĥ denotes the fused sharpened image, σH,Ĥ
denotes the covariance of images H and Ĥ; σH and σĤ are the standard deviations of H
and Ĥ, respectively; and µH and µĤ are the mean values of H and Ĥ, respectively.

4.3. Simulation Data Experiment

The results of the different fusion algorithms tested on the simulated data are shown
in Figures 2–5. Four different groups of scenes were selected for the experiment: ports,
residential areas, airports, and mountains. The large image on the left is the TIR triple-
band pseudo-color image used as the reference image. The small image on the right is a
zoomed-in view of the local details within the red and green boxes. The images below
the red- and green-boxed vignettes on the right are the results of the difference between
the corresponding regions and the GT images. GT indicates the original 30 m resolution
thermal infrared band image, which we used as the reference image. The spectral distortion
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caused by the GS algorithm was particularly noticeable compared with the reference image,
as its fusion resulted in a larger color difference from the reference image. Compared with
the GS algorithm, the PX+S algorithm showed some improvement in spectral fidelity, but
the spatial quality was still not satisfactory. The a priori assumptions of the PX+S algorithm
are not applicable to the problem of TIR image and MS image fusion, so the final fused
image did not obtain better results. MTF-GLP-HPM was similar to the method in this paper
in terms of fusion results, and both are essentially MRA methods. The main difference is
that the former adopts a multiplicative injection scheme to reproduce the local intensity
contrast of the MS image in the fused image. However, the multiplicative injection scheme
produced some distorted details when applied to TIR image fusion, such as the black area
in the lower right corner of the red box in Figure 3. The algorithms based on OSF and SRT
fused images with clearer ground details, but their retention of thermal infrared spectral
properties was low. Moreover, due to the inconsistency of this method for different scene
parameters, the performance of its algorithm was very unstable, which we are able to see
from the data of the airport in Figure 4.

Table 2 gives the objective quality evaluation metrics of the algorithm used in this
paper and the other five different classes of fusion algorithms at reduced quality resolution.
Consistent with the subjective analysis, the results of the evaluation metrics show that
the performance of the GS algorithm was much lower than those of the other four. The
performance of the two MRA-based algorithms was similar and better than that of the
algorithm with variable classification. The OSF and SRT algorithms had better performance
in the mountain data. Their poor performance in the airport data confirmed the lack of
scene generalization due to the uncertainty of the parameters. Overall, the methods used
in this paper basically achieved optimal values for all quality evaluation metrics. This
further demonstrates that the MTF-GLP-TAM algorithm used in this paper can obtain a
trade-off between good spectral fidelity and spatial clarity when fusing TIR images and
MS images. To better illustrate the universality of our algorithm, we selected 36 scenes
covering different time periods. Since the RMSE provides the standard error between the
fused image and the reference image, it is measurable that the fused image contains spatial
and spectral distortion, which usually matches the visual evaluation results. We plotted
RMSE for different algorithms, and the results are shown in Figure 6. We can see from the
figure that the RMSE of the method proposed in this paper was minimal in most scenarios.
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Table 2. Objective evaluation indexes of the method in this paper and several advanced fusion algorithms.

Scene Method CC SAM RMSE ERGAS UIQI

Port

GS 0.357 1.776 23.376 14.847 0.302

PX+S 0.862 2.345 10.212 5.586 0.475

MTF-GLP-HPM 0.893 1.685 9.414 6.139 0.839
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Remote Sens. 2022, 14, 6159 10 of 17

Table 2. Cont.

Scene Method CC SAM RMSE ERGAS UIQI

Residential area

GS 0.482 2.025 23.649 12.509 0.319

PX+S 0.856 2.104 11.079 5.987 0.508

MTF-GLP-HPM 0.907 1.954 10.031 5.495 0.793

OSF 0.814 2.315 15.672 11.827 0.346

SRT 0.897 1.917 10.936 5.534 0.782

Ours 0.909 1.885 9.675 5.371 0.802

Airport

GS 0.392 1.749 34.142 18.726 0.284

PX+S 0.827 1.985 10.773 6.738 0.423

MTF-GLP-HPM 0.893 1.559 9.071 5.182 0.817

OSF 0.842 2.018 15.734 10.967 0.361

SRT 0.864 1.682 12.362 8.945 0.825

Ours 0.908 1.517 8.034 4.681 0.836

Mountains

GS 0.512 1.902 16.813 9.853 0.487

PX+S 0.765 1.937 9.789 5.770 0.624

MTF-GLP-HPM 0.903 1.892 9.528 5.635 0.895

OSF 0.925 1.864 9.834 6.018 0.431

SRT 0.928 1.919 9.637 5.831 0.869

Ours 0.916 1.931 9.455 5.183 0.902
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4.4. Real-Data Experiment

Figures 7–10 show the fusion results of different fusion algorithms on real data. The
large image on the left side shows the multispectral grayscale image used for fusion. The
small images on the right side show the local details of the different algorithms after fusion.
For better visual comparison before and after fusion, we used the result after the triple
interpolation of the TIR image using bilinear interpolation as the reference image. The
result of the up-sampling of the thermal infrared image using bilinear interpolation is
the initial input of the thermal infrared image before fusion. This simpler interpolation
does not introduce additional spatial information and is more reflective of the increased
ground detail in the fused image by making comparisons. By observing the local details,
we could find that the fused images are more informative, such as some details of the
ground buildings in Figure 7 and the textures on the airport tracks in Figure 8. The GS and
OSF algorithms could maintain high spatial performance, but their fused images all had
spectral distortion. The PX+S algorithm could maintain good spectral performance, but the
fused images had obvious blurring. The algorithm proposed in this paper provided the
best visual results among all the fusion algorithms compared.
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5. Discussion

In this section, the application of our proposed algorithm on other satellites is discussed,
and two advanced multi-sensor fusion algorithms are selected for visual comparison. The
results of the experiments are shown in Figures 11–13, where Figure 11a shows the thermal
infrared data taken by the Landsat8 TIRS payload and Figure 11b shows the panchromatic
band data taken by the OLI payload; Figures 12a and 13a show the thermal infrared data
taken by the Landsat9 TIRS payload, and Figures 12a and 13b show the panchromatic band
data taken by the OLI payload; and Figures 11c–e, 12c–e and 13c–e show the fusion results of
OSF, SRT, and our proposed algorithm, respectively. The OSF algorithm has been successfully
applied to Landsat8 and KOMPSAT-3A satellites, and it controls the trade-off between spatial
details and thermal information through the optimal scaling factor. The SRT algorithm is
mainly applied to Landsat7 satellites, and it mainly uses the sparse representation technique
for the fusion of panchromatic and thermal infrared bands. From the experimental results,
we could see that the OSF fusion algorithm had clearer ground details, but it had poorer
retention of the spectral properties of the thermal infrared bands, such as the circular building
in Figure 11 and the airport runway in Figure 13. This approach controls the trade-off
between spatial detail and thermal information by introducing a scaling factor, with the
disadvantage that its optimal scale factor needs to be re-estimated for each set of images.
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For different scenarios, the optimal value changes. However, it has better performance in
specific application scenarios, for example, when more spatial details are needed for military
applications of remote sensing, which can be achieved by increasing the scale factor. The
SRT fusion algorithm results was visually close to that of our proposed algorithm, but using
the SRT algorithm requires human judgment of the best fusion parameters for each scene.
In addition, we calculated some statistics of the grayscale values of thermal infrared images
before and after fusion, mainly including the maximum value, minimum value, mean value,
and standard deviation, and the results are shown in Table 3.

Table 3. Summary of some statistics of thermal infrared images before and after fusion.

Scene Method Max Min Mean SD

Figure 11
(Landsat 8)

Original image 36,408 30,276 34,042 779

OSF 34,107 27,564 31,653 1067

SRT 36,275 29,637 33,581 864

Ours 36,397 30,184 33,892 812

Figure 12
(Landsat 9)

Original image 24,029 20,459 22,517 524

OSF 25,693 21,634 23,179 853

SRT 24,682 20,547 22,963 625

Ours 24,310 20,493 22,638 539

Figure 13
(Landsat 9)

Original image 24,067 20,586 21,867 486

OSF 25,427 20,427 22,374 617

SRT 24,861 20,537 22,073 532

Ours 24,157 20,569 21,937 493
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Figure 11. Experimental results of different fusion algorithms on Landsat8 data: (a) Landsat8 thermal
infrared band image resolution of 100 m; (b) Landsat8 panchromatic band image resolution of 15 m;
(c) fusion results of OSF algorithm; (d) fusion results of SRT algorithm; (e) experimental results of our
proposed algorithm.
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Overall, the method proposed in this paper achieved the best results in terms of
both subjective visual evaluation and some objective statistical measures of metrics. This
excellent performance was achieved thanks to the contribution of multispectral images
to the spatial detail of the final fusion results performed by calculating the difference
between the high-resolution images and their low-pass components. The difference among
the successive orders of the Gaussian pyramid that we employ defines the Laplacian
pyramid. The Gaussian filter can be tuned to simulate the sensor modulation transfer
function by adjusting the Nyquist frequency. This facilitates the extraction of details from
high-resolution images that cannot be captured by thermal infrared sensors due to their low
spatial resolution and can effectively improve the performance of the fusion algorithm. In
this case, the only parameter characterizing the entire distribution is the standard deviation
of the Gaussian distribution, which is determined using sensor-based information (usually
the amplitude response value at the Nyquist frequency provided by the manufacturer or
using in-orbit measurements).

Using this image fusion method, the thermal infrared band can be improved from 30 m
resolution to 10 m resolution. Higher spatial resolution thermal infrared remote sensing can
better solve many practical environmental problems. Thermal details can be obtained with
10 m resolution in surface temperature inversion. We can fuse images to finely portray the
spatial distribution of high-energy sites and residence types in urban areas. The method can
also be applied to detect the precise movement conditions of volcanic lava, the radioactive
exposure of nuclear power plants, and land cover classification, among others.
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6. Conclusions

Thermal infrared images record radiometric information radiated from features that is
invisible to the naked eye and use this information to identify features and invert surface
parameters (e.g., temperature, emissivity, etc.). However, the low spatial resolution severely
limits its potential applications. Image fusion techniques can be used to fuse TIR images
with higher spatial resolution reflectance bands to produce synthetic TIR images. The multi-
sensor fusion of MS and TIR images is a good example of improved observability. In this
paper, a fusion algorithm based on the MTF-GLP model is proposed for fusing TIR images
of SDGSAT-1 with MS images. The fusion method was experimented on real images and
simulated images with three-fold degradation in spatial resolution. Compared with the
existing image fusion methods, the synthesized TIR images performed better in visualization
and did not suffer from spectral distortion anymore. The proposed method in this paper
achieved optimal performance in the quantitative evaluation metrics such as CC, SAM, RMSE,
UIQI, and ERGAS. Finally, we successfully applied the algorithm to the fusion of thermal
infrared data from Landsat series satellites with panchromatic band data, and we obtained
better results in visual evaluation compared with several advanced fusion algorithms.
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