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Abstract: Convolutional neural network (CNN)-based hyperspectral image (HSI) classification
models have developed rapidly in recent years due to their superiority. However, recent deep learning
methods based on CNN tend to be deep networks with multiple parameters, which inevitably resulted
in information redundancy and increased computational cost. We propose a dual-branch attention-
assisted CNN (DBAA-CNN) for HSI classification to address these problems. The network consists
of spatial-spectral and spectral attention branches. The spatial-spectral branch integrates multi-scale
spatial information with cross-channel attention by extracting spatial–spectral information jointly
utilizing a 3-D CNN and a pyramid squeeze-and-excitation attention (PSA) module. The spectral
branch maps the original features to the spectral interaction space for feature representation and
learning by adding an attention module. Finally, the spectral and spatial features are combined and
input into the linear layer to generate the sample label. We conducted tests with three common
hyperspectral datasets to test the efficacy of the framework. Our method outperformed state-of-the-art
HSI classification algorithms based on classification accuracy and processing time.

Keywords: hyperspectral image (HSI) classification; pyramid squeeze-and-excitation attention (PSA);
spatial–spectral; cross-channel attention

1. Introduction

Hyperspectral imaging technology has improved with the advancement of remote
sensing technologies. The image data captured by hyperspectral sensors are more accurate,
which has promoted the use of hyperspectral images (HSI) in numerous applications, in-
cluding target detection [1,2], environmental monitoring [3,4], military reconnaissance [5,6],
agricultural assessment [7,8], etc. Compared with ordinary images, HSIs have hundreds of
continuous spectral bands with rich spectral information and higher resolution [9], so they
can distinguish feature categories precisely. The application of HSI classification [10–12] is
one of the main research directions in the field of remote sensing at present and determining
methods for classifying each pixel quickly and accurately is the core of this problem [13].

A growing number of scholars have investigated HSI classification [14,15] in recent
years. Awad et al. [14] proposed a supervised algorithm for HSI classification using spectral
information. Wambugu et al. [16] provide a full discussion of the problem with insufficient
training samples and summarize the main current solutions. Fabiyi et al. [17] proposed
a folded LDA method for dimensionality reduction of small sample data and reduced
memory requirements. Polynomial logistic regression [18–20], the K-nearest neighbor
(KNN) algorithm [21], and support vector machines (SVM) are examples of traditional
classification methods [22–24], which are mainly divided into two steps: feature extraction
and training classifier. However, these methods rely on human judgment and labeling
because they depend on manual features, which can be labor-intensive and time-consuming.
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It is hard to enhance the accuracy of classification further since the information extracted
by traditional methods is often limited and has weak generalization ability.

Deep learning models have been demonstrated to provide enormous advantages in the
computer vision field during the last decade [25–28]. By using an end-to-end framework to
generate more discriminative features, deep learning-based algorithms (unlike conventional
classification methods) may optimize both the feature extraction task and the classification
problem. Some deep learning models, such as Stacked Auto Encoder (SAE) [29] Networks,
Deep Belief Networks (DBN) [30], and Recurrent Neural Networks (RNN) [31], have also
been widely employed in the field of HSI classification. However, all these networks
require vector data inputs, so they are more suitable for extracting spectral information,
but inevitably cause the loss of spatial information. CNNs, a more popular deep learning
model [32], extract features more flexibly through local contacts and significantly lower the
number of parameters by sharing weights.

HSI classification models based on CNNs can automatically learn and extract distin-
guishable features in images without much human intervention. Hu et al. [33] designed
a method for extracting spectral features using a 1-D CNN. Although pixels in a region can
be classified based on spectral information, the results obtained by using spectral informa-
tion alone are not accurate enough due to the existence of homospectral and heterospectral
phenomena in HSI, and combining spatial information can significantly increase the clas-
sification accuracy. To emphasize the importance of using spatial information for feature
extraction, Makantasis et al. [34] proposed a 2-D CNN. However, these methods did not
take full advantage of the 3-D nature of HSI, so researchers proposed 3-D CNN-based
methods [35–37] to directly extract 3-D spatial–spectral information using 3-D convolution
kernels. To address the gradient disappearing issue, Zhong et al. constructed an end-to-end
spatial–spectral residual network (SSRN) [38], which can use 3-D blocks as the original
inputs and add residual connections. For HSI classification, Paoletti et al. presented
a deep pyramidal residual network [39]. By including the residual structure, the suggested
pyramid structure gradually raises the convolutional layer’s feature mapping dimension,
which reduces the time complexity while obtaining more feature information. However,
the deep 3-D CNN model inevitably causes an increase in time and computational effort.
A HybridSN network that merged 2-D and 3-D CNNs to jointly extract spatial–spectral in-
formation and generate improved classification results was developed by Roy, S.K. et al. [40]
as a solution to this issue. Some research has attempted to create a dual-branch network,
where one branch obtains spatial information while the other obtains spectral information
and the combined results are input to the classifier, in an effort to further reduce the number
of parameters and time spent. For example, 1-D and 2-D CNNs are employed to extract
spectral features and spatial information, respectively, in the parallel dual-branch model
presented in [41].

It is well known that HSI, with spatial information and rich spectral information along
with different spectral bands and spatial locations, contributes differently to classification
prediction. Making full use of this information can be very helpful for classification.
Researchers have added attention mechanisms to computer vision tasks in an effort to
imitate human visual perception [42–44]. For HSI classification, attention mechanisms have
recently been used widely [45–47]. For example, Haut et al. [45] suggested a model mixing
residual networks and attention mechanisms and Sun et al. [46] developed serial spatial-
spectral attention networks (SSAN). A double-branch dual-attention (DBDA) mechanism
network that captures spatial–spectral features separately was also proposed by Li et al. [47].
It can be observed that adding attention mechanisms to CNNs can give better classification
performance and contribute more to the prediction of spectral bands.

Transformer is a new deep learning model that introduces a self-attentive mechanism
and a feed-forward neural network. There has been a great success with the transformer
model in natural language processing (NLP) [48,49]. Recently, transformer models, named
“vision transformer”, have also been used to classify images [50]. Hu et al. [51] proposed
an unsupervised framework for HSI classification based on a transformer model and con-
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trastive learning. Qing et al. [52] proposed a self-attention-based transformer (SAT) model
and Hong et al. [53] presented a novel transformer-based network model (SpectralFormer),
which implements grouped spectral embedding. By naturally combining a backbone
CNN with a transformer structure, Sun et al. [54] created the spatial–spectral tokenization
transformer (SSFTT) method.

Existing methods have demonstrated good results, but the model is too complex,
leading to long training and testing periods. The current attention-based classification
methods simply mix spatial and spectral features, which leads to the neglect of the special
structure of HSI. In addition, the use of deeper 3-D CNNs increases the risk of the overfitting
phenomenon, which reduces the classification performance of HSI. We designed a novel
dual-branch CNN based on spatial–spectral attention for HSI classification to address these
problems. The spatial–spectral branch extracts the spatial–spectral information jointly by
combining 3D convolution and pyramid squeeze-and-excitation attention (PSA) modules,
and via the use of a designed spectral band attention module, the spectral attention branch
effectively extracts the spectral information. Then, the features of the dual-branch are
connected and each pixel’s label is determined using a softmax-based linear classifier. The
contribution of this paper can be summarized as threefold:

1. To fully utilize the spatial-spectral features of HSI, we propose a new dual-branch
network for classification. It can extract enough different information, where the
spectral attention branch extracts more effective spectral features from HSI and con-
nects with the features extracted by the spatial–spectral branch, to achieve higher
classification accuracy.

2. Considering the limited training samples, the spatial–spectral branch is designed to
extract shallow spatial–spectral features using 3D convolution, and then to use the
PSA module to learn richer multi-scale spatial information, while adaptively assigning
attention weights to the spectral channels.

3. We designed the spectral attention branch, which uses 2-D CNN to map the original
features into the spectral interaction space to obtain a spectral weight matrix, so as to
obtain more discriminative spectral information.

The rest of the article is organized as follows. Section 2 presents materials and methods,
including convolution, attention mechanisms and the DBAA-CNN classification method.
Section 3 describes the datasets and experimental results. Section 4 offers a comprehensive
analysis. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Related Work
2.1.1. Basics of CNNs for HSI Classification

CNNs use shared weights for each input, which greatly reduces the number of param-
eters. In addition, CNNs use local connectivity to extract contextual feature information.
Thus, CNNs tend to have better generalization ability when dealing with image problems.
In this paper, three types of CNN are used for feature extraction—1-D, 2-D and 3-D. Usually,
2-D CNNs are used in the image processing field. The convolutional layer is the main
difference between the three CNNs, which we describe in detail.

The 1-D convolution uses a 1-D convolution kernel to perform sliding in one dimension
to achieve feature extraction in the spectral dimension. The following is the calculation
equation for vx

i,j, which indicates the neuron at position x on the j-th feature map and the
i-th layer.

vx
i,j = f

(
∑
m

Li−1

∑
l=0

kl
i,j,mv(x+l)

(i−1),m + bi,j

)
(1)

where f (·) is the activation function, m is the feature map’s index in the (i− 1)-th th layer,
Li is the length of one-dimensional convolution kernel, l is the index of convolution kernel,
kl

i,j,m is the value of the convolution kernel, and bi,j is the bias.
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2-D CNN is a two-dimensional convolutional kernel that slides along two dimensions
on the data. The value of the neuron vx,y

i,j at position (x, y) on the j− th feature map in the
i− th layer can calculated by:

vx,y
i,j = f

(
∑
m

Li−1

∑
l=0

Wi−1

∑
w=0

kl,w
i,j,mv(x+l),(y+w)

(i−1),m + bi,j

)
(2)

where kl,w
i,j,m is the value of the convolution kernel at position (l, w) and Wi is the width of

the convolution kernel.
The 3-D CNN computes the 3D feature map from the three-dimensional input data

with a 3D convolutional kernel, which can realize the sharing of weights at different
locations and in pixel and depth space. The equation calculating vx,y,z

i,j , which represents
the neuron at position (x, y, z) of the j th feature map in the i th layer, can be expressed by:

vx,y,z
i,j = f

(
∑
m

Li−1

∑
l=0

Wi−1

∑
w=0

Di−1

∑
d=0

kl,w,d
i,j,m v(x+l),(y+w),(z+d)

(i−1),m + bi,j

)
(3)

where kl,w,d
i,j,m is the weight of the convolutional kernel at position (l, w, d) on the m th feature

map, Di is the spectral dimensions of the convolution kernel.
As shown in Figure 1, we used the cube block xk in layer k as input, where xk con-

sisting of nk features of size wk × wk × bk and a 3D convolution layer Dk+1 in layer k + 1
consisting of nk+1 convolution kernels of size dk+1 × dk+1 × mk+1 with step size set to
(s1, s1, s2). The convolution operation can generate a 3D feature cube xk+1 consisting of
nk+1 features of size wk+1 × wk+1 × bk+1, where the output features have width and height
wk+1 = (wk − dk+1 + 1)/s1, and spectral dimension bk+1 = (bk −mk+1 + 1)/s2.
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Figure 1. The structure of 3-D convolution. Figure 1. The structure of 3-D convolution.

2.1.2. Squeeze-and-Excitation (SE) Block

Many studies have demonstrated the critical role of visual attention mechanisms in
the field of human perception. Inspired by this, many researchers have tried to introduce
attentional mechanisms into the field of computer vision [38–40] to improve the efficiency
of models, and have had good results.

Recently, Hu et al. [44] presented a light modular SE block that selectively empha-
sizes the significance of each channel by modeling the interdependencies across channels,
increasing speed while reducing the model parameters. The SE block usually has two
components: squeeze and excitation. As shown in Figure 2, we let X ∈ RH×W×C represent
the input feature map, where W, H, C denotes its width, height and the number of input
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channels, respectively. The squeeze operation was performed using a global average pool-
ing operation on X. The features were compressed along the spatial dimension, the spatial
dimension of X was compressed from H ×W to 1× 1. Each two-dimensional feature
map becomes a real number, which was equivalent to the pooling operation with a global
perceptual field, and the number of channels C was kept constant, and for each channel,
there was a real number corresponding to it. The feature map thus obtained has a global
perceptual field. The following equation was used to compute the global average pooling
(GAP) operation:

SC =
1

W × H

W

∑
i=1

H

∑
j=1

XC(i, j) (4)
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Figure 2. SE block.

The squeeze operation embedded the global information into the feature vector
SC ∈ R1×1×C, followed by the excitation operation, wherein two fully connected (FC)
layers obtained the feature weights for each channel in the feature map. The weighted
features were used as input to the next layer of the network. The attention weight of the
c-th channel in the SE block can be calculated as follows:

EC = σ(W2δ(W1(SC))) (5)

where symbols δ and σ denote the ReLU and sigmoid activation functions, respectively,
W1 ∈ C

r × C and W2 ∈ C× C
r denote the weights of the two FC layers, where r represents

the reduction ratio. The output feature channels of SC were matched with the input feature
channels of EC. The SE block allowed the output vector EC to obtain global information
and recalibrated the feature cube X in the channel dimension, enhancing the contributing
features and suppressing the useless ones.

2.2. Proposed Method

The proposed dual-branch CNN with spatial–spectral attention is shown in Figure 3.
It has two branches: a spatial–spectral branch and another for spectral attention. The
first branch includes a spatial–spectral feature extraction module and a PSA module.
Shallow spatial–spectral features are directly extracted from the input 3D cut blocks with
the spatial–spectral feature extraction module using 3D convolution. The PSA module
further extracts spatial–spectral features using multi-scale spatial blocks and cross-channel
attention mechanism. The second branch extracts the spectral features by giving the
spectral bands weights via spectral attention mechanism. The details of the three modules
are specified below.
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2.2.1. Spatial–Spectral Branch

(1) Spatial–spectral feature extraction module

The original HSI input data is represented as D ∈ Rm×n×l , where m and n are the
width and height of the spatial dimension, respectively, and l denotes the number of
spectral bands. HSI contains more bands and each band carries different information for
classification. Using all the bands for feature extraction would lead to data redundancy,
and the dimensionality reduction method of PCA [55] will drop some bands, which will
inevitably cause information loss. Therefore, we performed feature compression in the
spectral dimension using 1× 1 convolution to remove useless spectral information for the
purpose of dimensionality reduction.

We used I ∈ Rm×n×b to denote the input after dimensionality reduction, where b
represents the number of bands after dimensionality reduction.

Then, the HSI data I is subjected to a blocking operation, and each 3D adjacent region
block is represented by P ∈ Rs×s×b, where s× s denotes the size of the block. Each block’s
center pixel location is denoted by

(
xi, xj

)
, where 0 ≤ i < m and 0 ≤ j < n. The label of

the center pixel determines the category label for each block. Since the edge pixels cannot
extract the adjacent regions, a fill operation is carried out on them. The size of the fill is set
to (s− 1)/2. Thus, all pixels and bands are covered by the above operation, and the final
number of cut blocks obtained is m× n. The unlabeled samples are also removed, and the
remaining data are split into two parts: the training sets and test sets.

Compared with 2D convolution to extract features in spatial dimension, 3D convolu-
tion can jointly extract spatial–spectral features of HSI, but it also increases the computa-
tional effort. Next, the spatial–spectral information of each block is extracted using two
3D convolutional layers. The 3D convolutional layers accept each block of size s× s× b as
input data. Equation (3) can be used to calculate the value. Assume that the 3D convolution
layer contains d0 convolution kernels of size d1 × d2 × d3. By convolving this layer, d0
blocks of 3D cubes of size (s− d1 + 1)× (s− d2 + 1)× (b− d3 + 1) are generated. After
two layers of 3D convolution operations, we add the rearrangement operation to adjust the
feature map and input it to the PSA module.

(2) PSA module.

The shallow spatial–spectral features that can be obtained after two layers of 3D con-
volution operations are not sufficient to fully describe the feature information. The PSA
module [56] can learn richer multi-scale feature representations and adaptively recalibrate
the cross-channel attention weights. Due to the lightweight advantage of the module, it
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can also improve the model’s speed. Figure 4 shows the specific flow of the PSA mod-
ule. The module consists of four main steps. First, the spatial information at different
scales on each channel feature map is obtained through the multi-scale pyramid structure.
After that, multi-scale feature maps are input into the SE block to establish the attention
mechanism on the multi-scale feature maps channels. Next, the multi-scale attentional
channel weights are recalibrated by the softmax algorithm. To obtain the end result, the
weights are multiplied by the feature map in the first step to generate a rich multi-scale
spatial-spectral representation.
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In the SAC module, the multiscale pyramid structure implements the extraction of
multiscale features. We extracted features in parallel by means of multiple branches, with
each branch using a differently-sized convolutional kernel to obtain features with different
perceptual fields; the number of input channels for each branch is C, and C/g is the output
channel dimension of each branch, where g is the number of groupings. Additionally,
padding should be added to ensure that each branch has the same size output feature
map. Concatenate the feature maps of multiple branches are to obtain the entire multiscale
feature map F ∈ RH×W×C, which is obtained from the following equation:

F = Concat([Conv(ki × ki)(X)]), i = 0, 1, 2 · · · g− 1 (6)

where k × k is the convolution kernel size, and the convolution kernel size is set to
ki × ki = (2i + 3)× (2i + 3) in this paper.

The attention weights may be obtained by the SE block from feature maps of multi-
scale. The feature maps’ attention weights are recalculated at different scales using the
softmax operation, and this step achieves the interaction of local and global information.
Afterwards, the feature vectors and attention weights are concatenated to obtain multiscale
feature weights. After multiplying the weights with the feature maps of the corresponding
scales, the concatenation operation is used to construct the complete feature representation.
The following is the specific formula:

Ti = Fi ⊗ Softmax(SEWeihgt(Fi))i = 0, 1, 2, · · · g− 1 (7)

Z = Concat
([

T0, T1, · · · , Tg−1
])

(8)

where Fi represents the feature map at different scales, Ti is the feature map that is given the
multi-scale channel attention weight, and ⊗ is the multiplication operation on the channel.
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2.2.2. Spectral Attention Branch

The HSI has hundreds of narrow spectral bands, unlike RGB images, which only have
three channels. We not only used the spectral information of HSI for feature extraction,
but the information on the spectral band also has a significant impact on the classification.
In order to effectively utilize the spectral information of HSI and reduce the redundancy
among the bands, we designed the spectral branching based on the attention mechanism,
as shown in Figure 3. Using the slice data P ∈ Rs×s×b after dimensionality reduction as the
input of the spectral attention branch, we first used two-layer 2D convolution to extract
shallow features while adjusting the spatial size, thus reducing the number of parameters.
Then, a reshape operation was performed to obtain two feature matrices, and the features
were mapped to the spectral interaction space by matrix multiplication to obtain I. Next,
each pixel in the region is given an attention weight by a two-layer 1× 1 1D convolution,
and a weight feature matrix HSBA was utilized to obtain the relationship between the
spectral channels. The process can be expressed as follows:

HSBA = ϕ(Fin)σ(Fin)
T(CSAB + I)QSAB (9)

where ϕ(·) and σ(·) represent the reshape operation. The obtained spectral feature matrix
is reshaped by adding jump connections for back projection to allow the fusion of the next
two branches. Specifically, we employed a 1× 1 convolution on the generated feature
matrix HSBA. Then, the feature matrix was converted into a vector by the reshape operation
and the obtained feature vector was connected to the result of another branch. Finally,
through the linear layer, the softmax function calculated the likelihood that the input fell
into a certain category.

3. Results
3.1. Data Description

A total of three publicly datasets (https://github.com/gokriznastic/HybridSN (ac-
cessed on 14 March 2022) were selected for the experiments to validate the classification
performance of the proposed model, namely Indian Pines (IP), Pavia University (PU) and
Salinas Valley (SV).

The IP data set consists of 145 × 145 pixels. It includes 220 contiguous spectral bands
in the wavelength range of 400–2500 nm. The spatial resolution was 20 m. It was collected
by a sensor in northwestern Indiana (AVIRIS). After removing 20 absorption bands, we
selected the remaining 200 bands for study. The data were divided into 16 categories
containing a variety of crops, such as corn, soybeans, etc. The samples were unevenly
distributed, as detailed in Table 1. We randomly selected 10% of each category as the
training set. The false-color image and ground-truth map correspond to (a) and (b) in
Figure 5, respectively.
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Table 1. Training and test sample division of each class in the IP dataset.

NO. Class Train Test

1 Alfalfa 5 41
2 Corn—notill 143 1285
3 Corn—mintill 83 747
4 Corn 24 213
5 Grass–pasture 48 435
6 Grass-tree 73 657
7 Grass–pasture–mowed 3 25
8 Hay—windrowed 48 430
9 Oats 2 18
10 Soybeans—notill 97 875
11 Soybeans—mintill 245 2210
12 Soybeans—clean 59 534
13 Wheat 20 185
14 Woods 126 1139
15 Buildings–grass–trees 39 347
16 Stone–steel–towers 9 84

Total 1024 9225

The PU dataset was obtained by spectral imager in the wavelength range of 430–860 nm
and contains 115 bands in total. The spatial resolution was 1.3 m. It was collected by the
Reflection Optical System Imaging Spectrometer (ROSIS). We removed 12 noisy bands and
used the remaining 103 bands for the experiments. The dataset covered 610 × 340 pixels
and contained 9 feature classes in total. Table 2 shows the details of the dataset. We used
5% of the data for training. The false-color image and ground-truth map correspond to
(a) and (b) in Figure 6, respectively.

Table 2. Training and test sample division of each class in the PU dataset.

NO. Class Train Test

1 Asphalt 332 6299
2 Meadows 932 17,717
3 Gravel 105 1994
4 Trees 153 2911
5 Metal sheets 67 1278
6 Bare soil 251 4778
7 Bitumen 67 1263
8 Self-Blocking bricks 184 3498
9 Shadows 47 900

Total 2138 40,638Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
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The Salinas dataset is an image of the SV taken by the VIRIS imaging spectrometer
with a spatial resolution of 3.7 m, and collected by the Airborne Visible Infrared Imag-
ing Spectrometer (AVIRIS) in Salinas Valley, California. The original dataset consists of
224 bands; we remove the water absorbing bands and the bands affected by noise and use
the remaining 204 bands for the experiment. The dataset has a size of 512 × 217 and contains
16 categories, mainly various crops, such as broccoli green weeds, celery and Lettuce_romaine,
etc. Table 3 shows the details of the dataset. We use 5% of the dataset for training. The
false-color image and ground-truth map correspond to (a) and (b) in Figure 7, respectively.

Table 3. Training and test sample division of each class in the SV dataset.

NO. Class Train Test

1 Broccoli green weeds_1 100 1909
2 Broccoli green weeds_2 186 3540
3 Fallow 99 1877
4 Fallow_rough_plow 70 1324
5 Fallow_smooth 134 2544
6 Stubble 198 3761
7 Celery 179 3400
8 Grapes_untrained 564 10,707
9 Soil_vinyard_develop 310 5893
10 Corn_senesced_green_weeds 164 3114
11 Lettuce_romaine_4wk 53 1015
12 Lettuce_romaine_5wk 96 1831
13 Lettuce_romaine_6wk 46 870
14 Lettuce_romaine_7wk 54 1016
15 Vinyard_untrained 364 6904
16 Vinyard_vertical_trellis 90 1717

Total 2707 51,422
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3.2. Experimental Setting

A total of six classification evaluation metrics are used in this paper: OA, AA, Kappa,
training time, testing time, and accuracy of each class. In addition, we offer visualization of
the classification results. To ensure fairness, we conducted ten independent experiments on
each dataset, and each experiment randomly selected 10% of the data on the IP dataset, 5%
of the data on the PU and SV datasets as the training set, and the rest as the test set.

The proposed method was run in the PyTorch environment. All experiments in this
paper were implemented on the same computer running on an NVIDIA GeForce RTX 3060
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GPU and an 11th Gen Intel(R) Core(TM) i7-11700 CPU with 16 GB of RAM. The initial
learning rate was set to le − 3, and the initial optimizer chosen was the Adam optimizer.
The batch size of all three datasets was 64, and 100 training epochs were set for each dataset.

3.3. Classification Performance

We compared the method presented in this paper with several state-of-the-art HSI
classification methods to evaluate its hyperspectral classification performance. These
included CNN-based methods, namely 1-D CNN [33], 2-D CNN [57], 3-D CNN [35], 3D-2D
hybrid CNN method HybridSN [40], the double-branch dual-attention mechanism method
DBDA [47], and the transformer-based method SSFTT [54]. For the sake of fairness, we
used uniform settings for all methods and conducted experiments on each of the three
datasets. We took the best results from ten experiments for presentation, where the best
results in each row are bolded.

On the IP dataset, the 1-D CNN method had the shortest training and testing times.
Since only spectral information was used for classification, the accuracy was low. The
2-D CNN method using spatial information for classification further improved the results
compared to the 1-D CNN method. In 3-D CNNs, spatial and spectral information were
used jointly to further improve classification accuracy, but this took more time. HybridSN
combines 3D and 2D to reduce the time cost while improving the classification accuracy.
DBDA introduced the attention mechanism for classification. SSFTT combined Transformer
with CNN and achieved good classification results. The classification accuracy of our
method was approximately 1.2% higher than SSFTT and outperformed other methods
in eleven categories, six of which had no incorrect pixels. The results of the comparison
experiments on the IP dataset are shown in Table 4. To compare the classification results
more visually, Figure 8 shows the ground-truth map and the classification result plots for
the seven experiments. It can be observed that the 1-D CNN had a large amount of noise
in the visual images and the classification accuracy was low, followed by the 2-D CNN
with relatively poor classification results. The 3-D CNN, HybridSN, DBDA and SSFTT had
relatively smooth visual images. Compared with other methods, the classification map
produced by our method was closest to the ground-truth map, and the edges of the features
were clearer.

Table 4. Classification results by different methods for the IP dataset (optimal results are bolded).

Class No. 1-D CNN 2-D CNN 3-D CNN HybridSN DBDA SSFTT Ours

1 26.83 85.37 48.78 68.29 97.56 97.56 100
2 71.75 88.48 92.14 99.84 89.96 94.24 96.73
3 53.68 79.92 98.53 95.72 96.79 97.05 99.06
4 52.11 76.06 87.79 92.49 99.06 97.65 100
5 86.90 90.34 98.39 94.71 99.54 99.08 97.93
6 94.06 98.48 96.35 100 97.11 98.32 99.85
7 44.00 84.00 100 60.00 92.00 88.00 100
8 98.84 97.91 100 100 99.77 100 100
9 33.33 83.33 72.22 100 100 72.22 100

10 66.40 91.89 96.80 96.00 97.03 96.91 98.74
11 81.44 94.21 96.38 98.69 98.64 98.73 99.64
12 76.40 85.96 94.19 96.07 96.63 98.31 96.25
13 98.38 99.46 98.38 100 96.22 97.28 99.46
14 95.52 95.43 99.39 98.95 95.87 100 100
15 63.98 79.54 91.07 96.54 97.98 97.11 99.42
16 79.76 88.10 80.95 44.05 89.29 89.16 98.80

OA(%) 78.38 90.10 95.75 97.27 96.49 97.69 98.89
AA(%) 70.21 88.65 90.71 90.08 96.47 95.10 99.12

Kappa × 100 75.17 89.70 95.18 96.88 95.39 97.36 98.74
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Table 5 shows the results of the PU dataset comparison experiments. Our proposed
method achieved higher accuracy on OA, AA and Kappa than any other method. We achieved
higher accuracy in six categories, three of which reached 100% accuracy. Figure 9a–h show
the classification maps of the ground-truth map, 1-D CNN, 2-D CNN, 3-D CNN, HybridSN,
DBDA, SSFTT and our method, respectively. The classification maps of our method are
closest to the ground-truth map, in which the blue lake region (category 6) is easily mixed
with green pixels by the other methods; our method could better identify the category in
this region. In addition, it verified the accuracy of our method’s classification.

Table 5. Classification results by different methods for the PU dataset (optimal results are bolded).

Class No. 1-D CNN 2-D CNN 3-D CNN HybridSN DBDA SSFTT Ours

1 94.22 95.22 87.93 98.84 97.98 99.13 99.17
2 97.17 96.65 99.77 99.98 98.78 99.60 99.92
3 82.55 87.66 96.74 98.99 98.45 98.40 96.58
4 93.82 98.97 98.28 98.97 96.74 98.21 99.66
5 100 99.77 100 99.37 100 100 100
6 90.79 92.97 96.40 100 98.35 99.98 100
7 86.70 88.92 95.09 99.92 97.47 100 100
8 82.91 79.25 94.37 96.11 96.31 98.48 98.83
9 100 99.89 99.67 97.11 100 96.56 99.78

OA(%) 93.61 94.15 96.68 99.27 98.25 99.27 99.54
AA(%) 92.02 93.26 96.47 98.81 98.23 98.93 99.33

Kappa × 100 91.53 92.28 95.59 99.03 97.89 99.09 99.39

The results of the comparison experiments on the SV dataset are shown in Table 6.
Our proposed method achieved higher accuracy on OA, AA and Kappa than any other
methods. We achieved the best accuracy in twelve categories. To compare the classification
results more intuitively, Figure 10 shows the false-color image, ground-truth map and the
classification result images of the seven experiments. We can conclude from comparing
the border regions in the image that our method produces the best delineation of the
boundaries, thus validating the effectiveness of our method’s classification.
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Table 6. Classification results by different methods for the SV dataset (optimal results are bolded).

Class No. CNN1D CNN2D CNN3D HybridSN DBDA SSFTT Ours
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5 94.58 98.82 99.88 99.49 99.92 99.80 99.88
6 99.02 99.92 100 100 98.78 98.70 99.89
7 99.94 99.59 99.97 99.70 98.74 99.91 99.47
8 87.82 94.23 99.99 99.93 100 99.93 99.96
9 99.81 100 100 100 99.54 100 100

10 97.05 98.72 100 100 99.87 99.58 100
11 96.65 99.01 100 99.70 99.80 100 100
12 100 100 100 100 100 97.76 100
13 98.97 100 100 100 99.89 99.43 100
14 89.67 99.21 99.90 100 99.31 99.61 99.61
15 77.87 93.14 96.48 98.19 98.60 99.83 99.46
16 98.95 99.65 99.71 100 99.83 99.30 99.59

OA(%) 93.60 97.64 99.48 99.71 99.53 99.55 99.85
AA(%) 96.22 98.85 99.68 99.77 99.49 99.38 99.87

Kappa × 100 92.87 97.99 99.42 99.67 99.51 99.50 99.83
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A comparison of training and testing times of all methods tested for the three datasets
is shown in Table 7. 3-D CNN requires longer for both training and testing. Our method
uses 3-D CNNs to extract spatial–spectral information, which inevitably increases the time.
On the IP dataset, the training time of DBAA-CNN were faster than the other methods
besides 1-D CNN. The reduction in time spent by our method is also significant on the
PU and SV datasets. In particular, our method’s training time on the SV dataset was
shorter than that of the other compared methods, which further indicates that our method
improves classification accuracy and efficiency while reducing time.

3.4. Parameter Analysis

HSI classification is to determine the class of the central pixel of the cut block. The
larger the cut block is, the more neighboring pixels it contains, which may help to classify
the central pixel, but also inevitably causes an increase in computational cost. Thus, we
analyzed the size of the window on three datasets. Table 8 and Figure 11 show the impact
of the window size of the input data on the classification results. We can observe from
the table that as the window size increases, the complexity of the computation increases
and the training time increases, too. Moreover, the average accuracy rises and then falls
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as the window size increases. Considering the two factors of computational volume and
classification accuracy, the window size used for three datasets was 13 × 13.

Table 7. Training and testing time of all methods for the three datasets (optimal results are bolded).

Methods
IP PU SV

Train(s) Test(s) Train(s) Test(s) Train(s) Test(s)

1-D CNN 39.73 0.36 141.32 1.26 187.38 1.64
2-D CNN 64.77 0.86 220.86 2.23 207.11 1.87
3-D CNN 126.96 1.36 325.96 3.70 296.71 6.52
HybridSN 80.34 1.58 75.59 2.50 94.02 3.21

DBDA 62.03 2.54 196.76 14.20 215.26 15.35
SSFTT 57.13 1.90 237.53 8.03 300.38 10.24
Ours 52.19 1.20 105.71 4.64 88.05 5.32

Table 8. Performance impact of different window sizes.

Window Sizes
OA Testing Time(s)

IP PU SV IP PU SV

9 × 9 98.39 99.19 99.42 0.66 3.01 3.76

11 × 11 98.52 99.44 99.78 0.91 3.79 5.28

13 × 13 98.89 99.54 99.85 1.20 4.64 5.32

15 × 15 98.89 99.45 99.92 1.57 5.64 7.36

17 × 17 98.57 99.47 99.95 1.68 6.36 10.47
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Figure 11. The effect of different window sizes on the OA of DBAA-CNN.

We also chose a different number of bands to test the effects on the classification
performance. In HSI classification, the number of bands determines how much spectral
information is used by the network. The fewer the bands, the less spectral information is
used and the shorter the time spent, and vice versa. The effect of the number of bands on
the classification performance is shown in Figure 12. It can be observed that OA increases
with the number of bands. In summary, the number of bands for three datasets was chosen
to be 80, considering stability and generalization.
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3.5. Ablation Experiments

We evaluate the efficacy of each module in a comprehensive manner by conducting
ablation experiments on the IP dataset. Table 9 displays the experimental results for
different module settings. The study of the ablation experiment data indicates that the
three modules cooperate to produce better classification outcomes, further demonstrating
the efficacy of our suggested paradigm.

Table 9. Effect of different modules in the DBAA-CNN on the IP data set. (optimal results are bolded).

Cases 3D Conv PSA Module Spectral Attention
Branch OA (%) AA (%) Kappa (%)

1 ×
√ √

96.41 94.66 95.90
2

√
×

√
95.70 93.42 95.38

3
√ √

× 97.96 94.42 95.10

4
√ √ √

98.89 99.12 98.74
The “×” in Table 9 indicates that the module is not included.

4. Discussion

Based on the experimental results, the DBAA-CNN performs significantly better than
other classification methods. The 1-D CNN has the worst classification results on the
three datasets because the method loses spatial information due to its one-dimensional
input data. The 2-D CNN method takes into account the spatial information; thus, the
OA was improved compared with the 1-D CNN method. The 3-D CNN method extracts
the features directly from the 3D data, which better preserves the original features of the
data. The HybridSN and DBDA methods combine 2-D and 3-D CNN to extract spatial and
spectral features, integrate them and feed them into the classifier. The SSFTT approach
adds the transformer to extract spectral features. The DBDA approach adds the channel
and spectral attention blocks to improve the classification effect but it consumed more
time on the PU and SV datasets. Our method had the best classification results on the
three datasets. The DBAA-CNN combines advantages of the attention mechanism and also
reduces time consumption, which reduces the training and testing time while improving
the classification results.

Additionally, the performance of classification was evaluated with different window
sizes and the amount of bands. The final window size of 13× 13 was chosen by considering
the OA and testing time. In order to retain more spectral information, we chose a different
number of bands for the experiments, OA increases with the number of bands, but more
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bands inevitably contain redundant information, which causes the OA to rise and then fall,
so the number of bands is finally chosen to be 80. Table 8 shows that our method’s training
and testing times on the three datasets are advantageous, which indicates that we have
improved the efficiency of classification.

As shown in Table 8, the training and testing times of our method on three datasets is
advantageous, which indicates that we have improved the efficiency of classification.

5. Conclusions

We presented a novel DBAA-CNN classification method for HSI in this paper. A spatial–
spectral branch and a spectral attention branch make up the method. The spatial-spectral
branch combines 3-D CNN with multiscale squeeze-and-excitation pyramid attention. 3-D
convolutional layers are used to obtain shallow spatial–spectral features. The multiscale
pyramid module is used to further mine the multiscale information of HSI, and then, inte-
grate the multiscale spatial information with cross-channel attention. The spectral attention
branch maps original features to the spectral interaction space for feature representation
and learning. In order to generate spatial–spectral features for classification, the features of
two branches are finally combined. This enhances the ability of the feature map to extract
valid information by utilizing the attention mechanism. Experiments and analysis of the
three datasets demonstrate that the method effectively enhances classification performance
and reduces time consumption. In future work, we will consider combining graph convolu-
tion networks (GCN) to jointly extract spatial and spectral features, thus further enhancing
the efficiency and accuracy of classification.
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