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Abstract: Drought is one of the most devastating disasters and a serious constraint on agricultural
development. The reflectance-based vegetation indices (VIs), such as Normalized Difference Vegeta-
tion Index (NDVI), have been widely used for drought monitoring, but there is a lag in the response
of VIs to the changes of photosynthesis induced by drought. Solar-induced chlorophyll fluores-
cence (SIF) is closely related to photosynthesis of vegetation and can capture changes induced by
drought timely. This study investigated the capability of SIF for drought monitoring. An intelligent
irrigation control system (IICS) utilizing the Internet of Things was designed and constructed. The
soil moisture of the experiment plots was controlled at 60–80% (well-watered, T1), 50–60% (mild
water stress, T2), 40–50% (moderate water stress, T3) and 30–40% (severe water stress, T4) of the
field water capacity using the IICS based on data collected by soil moisture sensors. Meanwhile, SIF,
NDVI, Normalized Difference Red Edge (NDRE) and Optimized Soil Adjusted Vegetation Index
(OSAVI) were collected for a long time series using an automated spectral monitoring system. The
differences in the responses of SIF, NDVI, NDRE and OSAVI to different drought intensities were fully
analyzed. This study illustrates that the IICS can realize precise irrigation management strategies and
the construction of regulated deficit irrigation treatments. SIF significantly decreased under mild
stress, while NDVI, NDRE and OSAVI only significantly decreased under moderate and severe stress,
indicating that SIF is more sensitive to drought. This study demonstrates the excellent ability of
SIF for drought monitoring and lays the foundation for the future application of SIF in agricultural
drought monitoring.

Keywords: drought; SIF; vegetation index; winter wheat

1. Introduction

In arid and semiarid areas such as the North China Plain, water is a scarce and valuable
resource [1]. Agricultural irrigation accounts for 70% of irrigation-related withdrawals
and is the largest freshwater consumption source in the world from a statistical analysis
reported by the Food and Agriculture Organization of the United Nations [2,3]. Population
growth and industrial development have led to intensified competition for water resources,
resulting in fewer water resources for agricultural irrigation [4]. Therefore, rational plan-
ning of irrigated amounts and durations to improve the crop water use efficiency (WUE)
has become increasingly important. One way to improve the WUE is to enhance the yield
per unit of water used while reducing the waste of ineffective water resources [5,6]. The
purpose of irrigation is to minimize water use and maximize crop yields [7,8]. The irrigation
strategy determines the irrigation time and amount on the basis of crop types, growing
periods and environmental conditions [9].
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To implement irrigation strategies accurately, the levels of water stress must be clearly
understood. According to the type of water stress, irrigation strategies can be implemented
based on the soil water balance (WB), soil moisture monitoring methods, and plant water
stress degrees [10]. The WB approach has been widely employed to determine irrigation
requirements for various crops. In this method, the water input into the plant-soil system
needs to be counterpoised with the output [11]. Crop evapotranspiration (ETc), which
considers both soil evaporation and plant transpiration, is the most important component
of the WB [12,13]. ETc is estimated by the product of the crop coefficient Kc and the
reference crop evapotranspiration (ETo). The formula is expressed as ETc = Kc × ETo,
where Kc estimates the amount of evapotranspiration by integrating the biophysical and
physical differences between a reference plant and the target plant, while ETo expresses
the requirements for crops under certain environmental conditions. The advantage of the
WB-based irrigation method is that it can predict the water demand of crops at a specific
growth stage, and the irrigation strategy can be reasonably adjusted according to this
feature [14]. However, the accuracy of this method in terms of its practical applications
is questioned, because even for specific crops, the value of Kc may vary due to planting
density and direction [15], plant variety [16] and canopy structure [17]. In addition, it
is difficult to accurately obtain the parameters of the WB method. Therefore, the simple
irrigation strategy is based on soil moisture measurements. By setting upper and lower
thresholds, irrigation begins when the soil moisture decreases to the lower threshold, and
irrigation stops when the soil moisture rises to the upper threshold [18,19].

To address these concerns, a decision support system has been developed [20]. It is
employed to help decision makers gather useful information to identify problems and
formulate optimized strategies [21]. The simplest decision system implements automatic
irrigation based on the soil volumetric water content data obtained from a real-time mon-
itoring capacitive soil water sensor [22,23]. Irrigation is started or stopped when the
sensor measurement value is below or above the predetermined threshold value [24,25].
Some researchers have used the decision support system to implement irrigation strat-
egy which demonstrated regulated deficit irrigation could be achieved without human
intervention [26]. However, one drawback of this approach is the lag in the soil moisture
response. Since it takes time for the irrigated water to seep through the soil profile, the
amount of irrigation may exceed the expected value by the time the soil moisture sensor
reaches the upper limit set to terminate irrigation. Thus, the solution of this study is to
improve the current decision support system by establishing upper and lower irrigation
thresholds, calculating the amount of irrigation needed for soil moisture to reach the upper
limit from the set lower limit, and automatically terminate the system processing when the
irrigation reaches the set amount after initiation.

With the development of remote sensing technology, solar-induced fluorescence (SIF)
offers unique opportunities for environmental stress (drought and high temperature) moni-
toring and estimation of gross primary productivity (GPP). Several studies have explored
the application of SIF. For example, Lee et al. [27] used SIF and Enhanced Vegetation Index
(EVI) to detect the effects of drought in Amazon forest, and they showed that SIF showed a
significant decrease in the central Amazon forest during the dry season, while the change
in EVI was not significant. Liu et al. [28] explored the response of SIF and the NDVI of
winter wheat to different drought intensities. They found that SIF was significantly reduced
under severe and extreme drought conditions, while the NDVI was significantly reduced
only under extreme drought. Moreover, the results showed that SIF was significantly and
positively correlated with soil moisture, indicating that SIF can capture agricultural drought
information based on the value of soil moisture. The above results suggest that SIF is more
suitable for agricultural drought monitoring. Song et al. [29] used SIF, the NDVI and EVI
to monitor the effects of high temperature stress on wheat in Northwestern India. The
results showed that satellite SIF has great potential for timely monitoring of heat stress and
large-scale assessment of its impact on wheat yield. Since SIF contains information on plant
physiological, biochemical and metabolic properties, it is considered a suitable proxy for



Remote Sens. 2022, 14, 6157 3 of 19

vegetation photosynthesis. Previous studies have found that SIF can accurately estimate
GPP in different ecosystems and that SIF can also capture changes in GPP due to drought
in a timely manner.

In the context of climate change, drought is occurring more and more frequently, and
in order to reduce the impact of drought on agriculture, real-time drought monitoring is
essential. Currently, drought indices, meteorological parameters and vegetation indices
(VIs) are commonly used for drought monitoring [30]. However, they are all inadequate in
monitoring the physiological changes of vegetation caused by drought. VIs based on sur-
face reflectance, are more sensitive to the greenness of vegetation. However, the vegetation
biomass and canopy structure are not the result of instantaneous photosynthesis, but the
photosynthetic yield accumulated over time, so the VIs may not respond to drought in a
timely manner [31]. On the other hand, drought indices such as standardized precipitation
evaportranspiration index (SPEI) and Palmer drought severity index (PDSI) are calculated
using surface water balance based on observed precipitation and temperature data [32].
However, drought indices do not accurately reflect the water stress on vegetation, because
plant water effectiveness is also influenced by factors, such as groundwater conditions
and soil properties [33]. Soil moisture (SM) is a direct indicator of plant water effective-
ness. However, it is a difficult task about how to accurately monitor soil moisture. In
contrast, SIF is considered as a direct probe of vegetation photosynthesis, which can cap-
ture drought-induced physiological changes in vegetation in a timely manner [34]. Thus,
SIF is considered to be a good indicator in monitoring drought. Therefore, the aims of this
research were: (1) to design and construct an intelligent irrigation control system utilizing
the IoT and (2) to evaluate the responses of SIF and NDVI to different drought conditions.

2. Materials and Methods
2.1. Experimental Design

The work was performed at Fangshan Comprehensive Experimental Station (39◦35′N
and 115◦42.5′E), Beijing, China, in a warm temperate semi-humid climate (Figure 1) [35].
Rainfall is unevenly distributed throughout the year, with less rainfall in spring and winter
and more rainfall in summer and autumn, and the average annual precipitation is 602.5 mm.
The soil type of the experimental plot is loam, and the properties are detailed in Table 1.
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Table 1. Soil properties in the experimental field.

Soil Properties Value

soil organic matter 10.36 g/kg
total nitrogen 0.95 g/kg

total phosphorus 0.28 g/kg
clay 14.5%
silt 40.8%

sand 44.7%
field capacity 25%

soil bulk density 1.39 g/cm3

The experiment was carried out in four 3 × 4 m plots. Four different water stress
gradients were constructed by using the IICS to control the irrigation amount, and three
replicates were selected randomly. We controlled the soil moisture of the plots at 60–80%
(well-watered, T1), 50–60% (mild water stress, T2), 40–50% (moderate water stress, T3) and
30–40% (severe water stress, T4) of the field water capacity.

2.2. Field Management

Winter wheat named Jinnong 7 was planted at the station on 10 October 2018, with
a planting density of 52.5 kg/ha2 and rows spaced 20 cm apart. The winter wheat was
harvested on 10 June 2019. Chicken manure was fertilized to each experimental plot at
4000 kg/ha2 before the winter wheat planting.

To improve the emergence rate of the winter wheat samples, all of the experimental
plots were irrigated with an irrigation amount of 1.05 m3 on 20 November 2018 (41 DAP,
days after planting). To ensure the healthy growth of the winter wheat, all of the plots were
irrigated at 1.0 m3 on 5 March 2019 (146 DAP).

2.3. Description of the Intelligent Irrigation Control System (IICS)

In order to achieve precise irrigation, the IICS based on the IoT was developed
(Figure 2). The IICS consists of a soil moisture monitoring system and an automatic irriga-
tion system. It integrates sensors, controllers, actuators and communication equipment.
Web-based software can monitor real-time information such as soil moisture, irrigation
volume, irrigation times and valve status (open/close).
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2.3.1. Soil Moisture Monitoring System

The soil moisture monitoring system consisted of 6 sets of data collectors (MC302 L),
48 Hydra Probe II (Stevens, Portland, Oregon, USA) soil moisture sensors and installation
accessories (Figure 3a). The system automatically monitored soil moisture in the 12 plots.
Four soil moisture sensors were installed in each plot at depths of 10, 20, 50 and 80 cm
below the surface (Figure 3b). Each collector measured data in two control pots through
a SDI-12 bus. Data were recorded every 5 min and sent to a cloud server simultaneously.
Users can directly log into the website to view, download and analyze the data.
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Figure 3. (a) Soil moisture monitoring system; (b,c) are the components of the soil moisture monitor-
ing system. It mainly includes solar panel, data collector and soil moisture sensors. The sensors were
installed in each plot at depths of 10, 20, 50 and 80 cm below the surface.

Hydra Probe II is an improved version of Hydra Probe soil sensor. The Hydra probe II
is calibrated to the soil moisture according to the true dielectric constant, and the calibration
is less affected by the soil properties, so the measured data are more accurate. The Hydra
Probe II soil sensor supports both SDI-12 and RS-485 communication protocols, providing
users with more choices. Different from other soil sensors, the Hydra Probe II soil sensor
integrates multiple measurement elements. One measurement can obtain multiple element
data such as soil moisture, conductivity, salinity and soil temperature, and it responds
quickly, making it easy for users to obtain more information. The sensor can be connected
with various types of data collectors and has good compatibility. Hydra Probe II adopts a
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compact integrated design and exquisites manufacturing technology to make it suitable for
long-term field measurement work without special maintenance.

MC302 L is a low cost, low-power consumption, multifunction data collector with
an integrated solar charging controller, polymer lithium battery, GPRS/GPS, true color
touch screen and other components. MC302 L can realize measurement and data storage
with analogs, switches, frequencies and other interface sensors and is able to send the data
remotely through the network.

2.3.2. Automatic Irrigation System

The main control element of automatic irrigation system is the programmable logic
controller (PLC). PLCs control irrigation according to the set irrigation conditions. The PLC
controls the water meter and pulse solenoid valve of each plot. The PLC simultaneously
measures the irrigation volume and monitors the state of the solenoid valve (on/off).
Automatic irrigation system can monitor data and manage irrigation strategies, agricultural
activities, user information, etc. Users can query real-time data, view variable historical
data curves, view irrigation records and view irrigation details in the “real-time monitoring”
module and add, delete, modify and query agricultural activities in the “farm management”
module. Furthermore, users can manage user information in the “system management”
module (Figure 4).
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Figure 4. Hardware (a) and software (b) of automatic irrigation system (AIS). Each data collector
controls two pots (A and B).

• Real-time monitoring: Data analyses can be performed to view the historical data
curve of selected variables within a day, two days interval, a week, a month or a
custom time period.

• Irrigation strategy management: Irrigation strategies can be managed, and users
can add, delete and modify the starting and ending strategies according to the real
conditions. For example, the user can set multiple end conditions, and when any end
condition is met, the valve will automatically close.

• View total irrigation records and irrigation details: Users can view the number of irri-
gation times, irrigation times and irrigation amounts in one day-, two day-, one week-
or one-month-long intervals or custom time periods as needed.

2.4. Irrigation Scheduling

Measuring the soil moisture is important for optimizing irrigation. The mass balance
method was used to calculate the irrigation amounts. The mass balance method, sometimes
referred to as scientific irrigation scheduling, is an irrigation schedule determined by calculat-
ing how much water is needed based on accurate soil moisture readings and estimates of the
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soil properties. Equation (1) can be used to calculate the amount of irrigation needed. The
following equation utilizes terms commonly used in soil hydrology studies:

Irr = A × H × SD × FC × ∆SM, (1)

In which Irr (m3) is the irrigation amount, A (m2) is the irrigation area, H (m) is the
irrigation depth, SD (g/cm3) is the soil bulk density, FC (%) is the field water capacity and
∆SM (%) is the difference between the upper and lower limit of the soil moisture threshold.

2.5. Measurements of SIF and VIs

The automatic spectral monitoring system was used to collect long-time spectral data
in contact (Figure 5). The system consists of QEpro (Ocean Optics, Inc., Largo, FL, USA)
spectrometer, electronic switch, optical fiber, cosine corrector and so on. The spectrometer is
a QEpro with spectral range of 640~800 nm and spectral resolution of 0.35 nm. One fiber is
equipped with a cosine corrector at the end and is used to collect downward solar radiation
within a field of view of 180◦; the other fiber collects upward radiation reflected from the
canopy with a field of view of 25◦. These two fibers are fixed to a robotic arm that can be
rotated by stepper motors to achieve simultaneous acquisition of spectra between different
plots. They are placed in a 23 ◦C thermostat, which reduces the effect of temperature on the
spectrometer. The motor-driven robot arm rotation can continuously collect solar incident
spectra and vegetation reflection spectra from four plots.
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Figure 5. The automatic spectral monitoring system. The system consists of QEpro spectrometer,
electronic switch, optical fiber, cosine corrector and so on. T1, T2, T3 and T4 represent well-watered,
mild water stress, moderate water stress and severe water stress, respectively.

The data processing mainly includes dark current correction, Savitzky–Golay (SG) filter,
radiation correction, quality control, extraction of SIF and calculation of VIs. The raw data
are dark current corrected to eliminate the effect of dark current on the spectral data. After
that, the spectral data are filtered using the SG filter method with a quadratic polynomial of
30 × 30 window to eliminate the influence of other noise. The spectral data output from this
step are radiation corrected to convert solar radiation and vegetation canopy radiation into
irradiance (E, mW/m2/nm) and radiance (L, mW/m2/nm/sr) with energy units, respectively.
The SIF is extracted, and the VIs are calculated after quality control.

In this paper, the Spectral fitting method (SFM) is chosen as the extraction algorithm
for SIF. The SFM assumes that both fluorescence values and reflectance changes near the
Fraunhofer lines can be fitted by mathematical functions. Since SIF has a certain filling effect
on the Fraunhofer lines, the SIF at the Fraunhofer lines can be extracted by algorithmic
analysis of the measured vegetation canopy upward radiance in the band within the
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absorption line and the simulated downward radiance spectrum. The measured canopy
upward radiance L(λ) can be expressed as:

L(λ) = rMOD(λ)E(λ)/π + FMOD(λ) + ε(λ) = LMOD(λ) + ε(λ), (2)

where rMOD(λ) is the mathematical function of reflectance used for fitting, FMOD(λ) is
the mathematical function of fluorescence value used for fitting, LMOD(λ) is the radiance
simulated by the algorithm and ε(λ) is the difference between the observed and fitted
values in each band, representing the error of the model in each band. The parameters of
rMOD(λ) and FMOD(λ) are obtained by solving the system of linear equations using the
least squares method to calculate F and r.

The NDVI, NDRE and OSAVI are calculated as follows:

NDVI = (R750 − R685)/(R750 + R685), (3)

NDRE = (R790 − R720)/(R790 + R720), (4)

OSAVI = 1.16 × (R800 − R670)/(R800 + R670 + 0.16) (5)

2.6. Physiological Measurements
2.6.1. Relative Water Content (RWC)

The RWC was measured by the weighing method. Six healthy winter wheat samples
were selected from each plot randomly; a fully expanded leaf from each winter wheat plant
was cut off and quickly weighed to determine the fresh weight of the leaves (G1). Then,
the leaves were placed in distilled water and soaked for 6–8 h. The leaves were shaded to
avoid photosynthesis. Dry and clean absorbent paper was used to absorb the moisture on
the surface of the leaves, and the saturated weight of the leaves was quickly weighed (G2).
Then, they were placed in a paper bag, put in an oven after numbering, dried to a constant
weight at 85 ◦C and weighed to measure the dry weight of the leaves (G3). The formula for
the RWC is as follows:

RWC = (G1 − G3) × 100/(G2 − G3), (6)

2.6.2. Biomass and Yield

Biomass is a characterization of the photosynthetic efficiency of crops and represents
the changes in a crop’s physiological structure under different water stress treatments. The
biomass was mainly collected from the aboveground portion of the winter wheat and mea-
sured by the drying method. Ten healthy winter wheat samples were collected from each plot,
and dried to constant weight at 80 ◦C. The weight after processing was the biomass.

After the winter wheat was mature, we randomly selected 1 m2 of winter wheat for
harvest in each plot on 10 June. The grain yield was weighed after threshing and drying.
The 1000-grain weight was obtained by weighing a thousand grains.

2.7. Statistical Analysis

Analysis of variance (ANOVA) was implemented using statistical software SPSS21
(IBM, Armonk, NY, USA). Differences between means were detected using the LSD test
with a significance level of p < 0.05.

3. Results
3.1. Response of the Automated Irrigation Scheduling

Different water stress treatments began on 4 April 2019 (176 DAP). According to
the subsequent irrigation strategies, T1 was irrigated automatically on 176 DAP, 187 DAP,
192 DAP, 203 DAP, 207 DAP, 209 DAP, 212 DAP and 215 DAP, with a total irrigation amount
of 1.8 m3, while T4 was irrigated only once on 11 May, with an irrigation amount of only
0.2 m3. T2 and T3 were irrigated four times and three times, respectively, with irrigation
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amounts of 1.1 m3 and 0.7 m3, respectively. Compared with T1, the irrigation amounts of
T2, T3 and T4 decreased by 18.18%, 28.57% and 41.56%, respectively. The irrigation times
and irrigation amounts of experimental plots under different water stresses are shown
in Table 2.

Table 2. Irrigation times and irrigation amounts of experimental plots under different water stresses.

Plot No. of Irrigations Irrigation Amount (m3)

T1 9 3.85
T2 6 3.15
T3 4 2.75
T4 3 2.25

Since the roots of winter wheat were densely distributed at 0–50 cm, the soil moisture
in this study was represented by the average soil moisture at depths of 10, 20 and 50 cm.
Before the water stress treatments, the soil moisture values of each plot were similar. When
the irrigation strategies of each plot were establishing using an IICS based on the IoT,
automatic irrigation was implemented, and the soil moisture of each plot showed varied
trends. On 176 DAP, as the soil moisture of plots T1 and T2 reached the lower threshold
of irrigation conditions, the IICS irrigated the two plots and their soil moisture increased.
The soil moisture of plots T3 and T4 plots had not yet reached the threshold for irrigation
conditions, so their soil moisture continued to decline, and irrigation was not initialized
until the threshold of irrigation conditions was reached. We can know that the soil moisture
of T1 fluctuated more frequently (Figure 6). This was because the threshold of the soil
moisture for irrigation conditions must be set high to achieve a drought-free state, more
irrigation events are triggered. However, T4 was set to receive the severe water stress
treatment, and the threshold of the soil moisture for irrigation conditions was set very
low; therefore, only one irrigation was carried out on 213 DAP. In the other cases, the
fluctuations in the soil moisture values were caused by precipitation.
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After receiving the water stress treatment, the soil moisture of each plot was main-
tained under user-defined conditions, expressed as T1 > T2 > T3 > T4, which showed that
the IICS was able to realize automatic irrigation and control the soil moisture at an ideal
level (Figure 7).
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In this study, the T1 plot was selected to explore the variation characteristics of soil
moisture in different layers. The trends of soil moisture values at 10 cm and 20 cm were
similar, and their fluctuations were relatively severe (Figure 8). The soil moisture changes
observed at 50 cm and 80 cm were relatively gentle. This was because the soil sensors at
10 cm and 20 cm were close to the ground surface and were greatly affected by irrigation.
The soil moisture at 20 cm was the highest value observed, because it was greatly affected
by irrigation and was less affected by evapotranspiration. The soil moisture at 50 cm was
the lowest and was even lower than that at 80 cm. This was because, although the soil
moisture values at 50 cm and 80 cm were not greatly affected by irrigation, the soil moisture
at 80 cm was less affected by evapotranspiration.
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3.2. Physiological Results
3.2.1. Relative Water Content

The RWC is an indicator of water stress. The larger the value is, the higher the water
content is. From Figure 9, it can be seen that the RWC of each plot showed a slowly
decreasing trend. This was due to the gradual senescence of the leaves as the winter
wheat grew; the water-holding capacity of the leaves therefore decreased. During the
growing season, the RWC showed an overall trend of T1 > T2 > T3 > T4, which resulted
from different soil moisture. This also suggested that the construction of the water stress
gradient was successful.
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3.2.2. Biomass and Yield

This study showed that the aboveground biomass of winter wheat varied with differ-
ent water stress levels (Figure 10). From jointing to maturity, the biomass produced by plot
T1 was significantly higher than that of plots T3 and T4.

In addition, the 1000-grain weights of winter wheat were significantly reduced in T3
and T4, while there was no significant change in T2 (Table 3). Relative to T1, the 1000-grain
weights of T3 and T4 decreased 23.22% and 14.28%, respectively. The grain weights of the
winter wheat samples were affected by water stress. The grain weight of T2 only decreased
by 7.27%, while the grain weights of T2 and T3 decreased by 32.73% and 43.64%, respectively.
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Figure 10. Seasonal variations of biomass under different water stresses. Each point and bar indicate
the mean value ± standard deviation (SD). DAP means days after planting. Values with different
letters indicate significant differences at p < 0.05.

Table 3. Irrigation times and irrigation amounts of experimental plots under different water stresses.
Each value indicates the mean ± standard deviation (SD). In a column, values with different letters
indicate significant differences at p < 0.05.

Plot 1000-Grain Weight (g) Grain Weight (kg/m2)

T1 41.27 ± 1.71 a 0.55 ± 0.02 a
T2 42.08 ± 2.46 a 0.51 ± 0.04 a
T3 35.38 ± 1.64 b 0.37 ± 0.02 b
T4 31.69 ± 2.42 b 0.31 ± 0.03 c

3.3. Responses of SIF and VIsto Water Stress

To explore the response of SIF, NDVI, NDRE and OSAVI to different water stresses, we
calculated the mean values of SIF, NDVI, NDRE, OSAVI and SM from 5 April to 21 May.
As shown in the Figure 11, different water stresses caused different effects on SIF and VIs,
while the responses of the NDRE, OSAVI and NDVI to water stress were similar. By one-way
ANOVA, SIF decreased significantly under mild drought, while the NDVI, NDRE and OSAVI
did not change significantly under mild drought and decreased significantly only under
moderate and severe drought. This indicated that SIF is more sensitive to drought.
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Figure 11. The responds of (a) SIF, (b) the NDVI, (c) NDRE, (d) OSAVI and (e) SM under different
water stresses. Values with different letters indicate significant differences at p < 0.05. The hollow
blocks in the figure represent the average values, which were calculated using the data collected from
177 DAP to 223 DAP.

To investigate the response of SIF and VIs to irrigation and precipitation in depth, we
also analyzed the variation characteristics of SIF and VIs during the growing season. The
NDVI, NDRE and OSAVI were relatively stable during the growing season, showing a
trend of increasing and then decreasing, while SIF showed fluctuating changes, mainly
due to the influence of irrigation or precipitation (Figure 12). The SIF showed a decreasing
trend on 186 DAP and a sudden increase on 191 DAP, followed by a decreasing trend until
the next irrigation, while the SIF showed similar changes on 199 DAP and 203 DAP. The
NDVI, NDRE and OSAVI did not show frequent fluctuations, and only plot T1 showed
fluctuations on 191 DAP. The above results indicate that SIF is sensitive to soil moisture
and can respond to changes in the soil moisture after irrigation.
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Figure 12. The seasonal changes of (a) SIF, (b) NDVI, (c) NDRE and (d) OSAVI under different water
stresses. The red, yellow, blue and green solid circles represent well-watered, mild stress, moderate
stress and severe stress, respectively. All values are averaged from 9:00 to 16:00. DAP means days
after planting.

3.4. Cost Analysis

Table 4 shows the list and description of projects used to design and implement
irrigation control and automatic spectral acquisition equipment. The cost analysis is
expressed in U.S. dollars (USD). Due to the fluctuation of the exchange rate in the global
market, these costs will also change accordingly. The costs shown here do not include
transportation costs and labor costs. It can be seen from Table 4 that the cost of the IICS is
$35,111.8 USD, and the cost of the automatic spectral monitoring system is $19,429 USD,
totaling $54,540.8 USD. We think this set of equipment is expensive and not suitable for
farmers to use directly. The most expensive of this set of equipment is the soil moisture
sensors and spectrometer, with the prices of $33,472.8 USD and $17,433.75 USD, respectively.
As we are conducting basic scientific research, considering the accuracy requirements,
we use the instruments with the highest accuracy produced in the United States, which
directly increases the cost of investment. Nowadays, some domestic equipment can meet
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the requirements of agricultural production. Most importantly, domestic equipment has
greatly reduced the cost and made it affordable for farmers.

Table 4. Cost analysis of the Intelligent Irrigation Control System and Automatic Spectral Monitoring System.

NO. Category Item Description Unit
Quantity

Unit Price
($)

Amount
($)

1.

Intelligent irrigation
control system

Data collectors (MC302 L) 6 20.25 121.50
2. Soil moisture sensors (Hydra Probe II) 48 697.35 33,472.80
3. Mounting brackets 6 25.86 155.16
4. Solar panels 6 10.63 63.78
5. Electrolytic capacitor 6 5.89 35.34
6. Resistors 6 8.62 51.72
7. 12-V Relay Module External Trigger Delay Adjustable 6 7.59 45.54
8. Module Light Emitting Diode 4 3.46 13.84
9. Digital Temperature, Humidity Sensor Module 4 7.84 31.36

10. Water Meter 12 4.28 51.36
11. Air temperature and humidity sensor 4 267.35 1069.40

Subtotal 1 108 35,111.80

12.

Automatic spectral
monitoring system

QEpro spectrometer 1 17,433.75 17,433.75
13. electronic switch 1 285.71 285.71
14. optical fiber 2 714.29 1428.58
15. cosine corrector 1 166.67 166.67
16. Robotic arm 1 71.43 71.43
17. Stepping motor 1 42.86 42.86

Subtotal 2 7 19,429.00

Total 115 54,540.80

4. Discussion
4.1. Mechanisms of the Drought on SIF and Physiological Parameters

From jointing to maturity, the biomass produced by plot T1 was significantly higher
than that of plots T3 and T4 (Figure 10). These findings were consistent with previous
studies, which reported reductions in biomass under water stress. Under moderate and
severe stresses, the aboveground biomass decreased significantly, which was attributed to
the decreased photosynthetic activities caused by water deficits. As a result, the growth of
leaves was affected and could not be fully extended. The intercepted photosynthetic active
radiation (PAR) of winter wheat was reduced, leading to a decrease in the plant height and
substance assimilation accumulation, resulting in a decrease in the biomass. However, when
compared with T1, the aboveground biomass of T2 was not significantly decreased. This
could be because photosynthetic activities were not largely affected under mild stresses. The
1000-grain weights of T3 and T4 decreased due to the decreased grain filling time, which
resulted in a shorter duration and a lower dry matter accumulation. Thus, the seeds in T3
and T4 developed less, which led to a lower 1000-grain weight. It was interesting that the
1000-grain weight of T2 increased by 1.95% compared to T1, which could be attributed to
the fact that the photosynthesis of the winter wheat plants in T2 was not weakened [36]. The
grain weight of T2 only decreased by 7.27%, while the grain weights of T2 and T3 decreased
by 32.73% and 43.64%, respectively (Table 3). This was similar to the results of Ref. [37], who
noted that crop yields decrease under water stress conditions. This study suggested that
water stress conditions may reduce the yield by decreasing the 1000-grain weight. As we
all know, moderate and severe water stress conditions significantly shortened the duration
of carbon assimilation, reduced the photosynthesis rate and affected the transformation of
photosynthetic products to the yield, which resulted in a reduction in the yield of winter
wheat in plots T3 and T4. Winter wheat maintained a higher photosynthetic rate in T2, which
was conducive to full grain filling. Therefore, the yield of T2 was not reduced significantly,
which mirrored previous research results [38].

When drought occurs, the decrease in SIF is mainly due to changes in chlorophyll
fluorescence quantum yield and absorbed photosynthetically active radiation (APAR) [39].
Drought causes stomatal closure of vegetation, which reduces CO2 uptake and leads to a
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decrease in vegetation photosynthetic rate. At the same time, drought decreases the leaf
area index (LAI) of vegetation, which causes a corresponding decrease in the fraction of
photosynthetically active radiation (FPAR) and ultimately leads to a decrease in vegetation
photosynthesis and chlorophyll fluorescence excitation energy [40]. The APAR absorbed
by vegetation is mainly used for photosynthesis, heat dissipation and emitted fluorescence.
There is a competitive relationship between them, but in fact, the relationship between their
three is more complex and not unique. For example, the relationships between fluorescence
and photochemical reactions were negatively and positively correlated under low and high
light stresses, respectively [41]. Although drought reduces the proportion of APAR used
for photosynthesis, the fluorescence quantum yield changes are more complex due to the
complex heat dissipation mechanism of vegetation [42]. Therefore, the effect of drought
on SIF needs further in-depth study. However, it is clear that, when drought occurs, the
photosynthetic rate of vegetation decreases significantly (Table 3). SIF has also been shown
to have the ability to monitor the decline of photosynthesis in plants.

4.2. Potential Application of SIF in Drought Monitoring

In this study, SIF and VIs of winter wheat were monitored over a long period of
time during the growing season to investigate the differences in SIF and VI responses to
different water stresses. This study will provide valuable support for the application of SIF
in drought monitoring.

Through ANOVA, we found that SIF was sensitive enough to light drought, while
NDVI, NDRE and OSAVI was significantly reduced only in moderate and severe drought
(Figure 11). This is consistent with the findings of a previous study [27]. They compared
the effects of drought on SIF and the Enhanced Vegetation Index (EVI) of Amazonian
forests, and they noted that SIF in Central Amazonia significantly decreased during the
dry season, while the EVI showed relatively little change. A shortcoming of traditional
Vis is that they reflect changes in the chlorophyll content rather than directly monitoring
the photosynthesis of vegetation. In contrast, SIF is considered to be a direct probe of
photosynthesis and therefore more suitable for drought monitoring.

Some studies have pointed out that, when the LAI exceeds 5, the NDVI will be
saturated, and it will not be able to capture changes in vegetation [43]. Therefore, the
NDVI is not effective for drought monitoring during periods of dense vegetation growth.
The NDRE can be used to monitor the growth of crops at the mature stage, while the
OSAVI is more effective in identifying the chlorophyll content of plants at the early growth
stage. However, our research found that the NDRE and OSAVI also could not monitor
agricultural drought in time. Since SIF and vegetation photosynthesis are closely related,
SIF still has the ability to accurately monitor vegetation changes even when the LAI is high
and vegetation canopy cover is high. Therefore, compared with the NDVI, NDRE and
OSAVI, SIF is more suitable for drought monitoring in areas with high vegetation cover.

By analyzing the seasonal variation patterns of SIF, the NDVI, NDRE and OSAVI,
it can be found that SIF responds to drought more quickly, while the NDVI, NDRE and
OSAVI only respond to drought at a longer time scale (Figure 12). This indicates that SIF
can monitor the occurrence of drought quickly, while the NDVI, NDRE and OSAVI are
suitable for monitoring drought over a long period of time. This is consistent with the
findings of Liu et al. [28]. Liu et al. [28] showed that the correlation between F760/PAR and
the SM was better for shorter time lags but not significant at longer time lags compared to
the NDVI. The late response of the NDVI to changes in the SM may be due to the influence
of changes in the chlorophyll content. Furthermore, background signals such as soil color
and shading also have significant effects on the NDVI [44]. In addition, the vegetation type
also affects the response of SIF, the NDVI, NDRE and OSAVI to drought. Unlike vegetation
types such as crops and grasslands, SIF, the NDVI, NDRE and OSAVI of mixed forests
did not show significant decreases under drought conditions [45]. In summary, the NDVI,
NDRE and OSAVI cannot track the occurrence of early drought in a timely manner, while
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SIF can capture the characteristics of drought-induced changes in vegetation physiology in
real time and is a valuable indicator for agricultural management and disaster monitoring.

4.3. Limitations and Further Directions

In this study, the applicability of SIF obtained from field experiments in drought
monitoring was explored, and good results were obtained. However, to upscale SIF for
satellite remote sensing, a lot of disturbance factors need to be considered, such as the soil
background. With the development of sensor technology and the continuous improvement
of fluorescence extraction algorithm, several new instruments on geosynchronous satellites,
including OCO-3 and Sentinel-4, have been launched or are planned to be launched in
the next few years [46]. At that time, SIF products with higher spatial resolution and data
quality will become a reality. This will greatly promote the research of drought monitoring,
vegetation productivity and terrestrial carbon cycle.

At present, the resolution of satellite SIF products used is relatively coarse. Researchers
have used downscaling methods to obtain continuous high spatial and temporal resolution
SIF data [42]. In addition, the deep learning method has been widely used [47]. In the
future, the deep learning method will be used to downscale the SIF data and to establish a
drought index incorporating SIF to improve the accuracy of drought monitoring.

SIF is the most direct signal used to detect photosynthesis in a terrestrial vegetation
ecosystem, which can accurately capture the response of the vegetation physiological state
to environmental changes. The coarse spatial and temporal resolution of SIF limits its
ability to detect photosynthetic activity in terrestrial vegetation. The relationship between
SIF and photosynthesis differs under the influence of environmental changes, e.g., when
water deficit conditions occur. The nonlinear relationship between SIF and photochem-
ical reactions exists not only at the leaf scale but also at the canopy scale. The complex
relationship between SIF and photosynthesis needs further investigation.

5. Conclusions

An IoT-based IICS was designed and built in this study. This system can monitor
the soil moisture levels of different profile layers in real time and perform calculations
and analyses to realize automatic irrigation. The IICS can be controlled remotely and can
involve other professionals to help users make better decisions. The system also enables
various controlled irrigation treatments. In this study, we successfully constructed different
regulated deficit irrigations through the IICS utilizing the IoT. The soil moisture of each
plot was accurately controlled within the set range. The influential characteristics of SIF,
the NDVI, NDRE and OSAVI of winter wheat on different regulated deficit irrigations
were analyzed. The effects of different drought intensities on SIF, the NDVI, NDRE and
OSAVI were different. Compared to well-watered, mild, moderate and severe drought,
all had significant effects on SIF. In contrast, the NDVI, NDRE and OSAVI did not change
significantly under mild drought and decreased significantly only under moderate and
severe droughts. Moreover, the response of SIF was more drastic than the NDVI, NDRE
and OSAVI when irrigation was performed. The results indicate that SIF is more sensitive
to drought than the NDVI, NDRE and OSAVI and more suitable for drought monitoring.
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