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Abstract: The Temperature–Vegetation–Precipitation–Drought Index (TVPDI) has a good perfor-
mance in drought monitoring in China. However, different regions have different responses to
droughts due to terrain differences. In southeastern Tibet, the drought monitoring capacity of some
drought indices without soil information has to be assessed on account of the poor sensitivity be-
tween temperature and soil humidity. Therefore, soil moisture was added to calculate a new drought
index based on TVPDI in southeastern Tibet, named the Temperature–Vegetation–Soil-Moisture–
Precipitation–Drought Index (TVMPDI). Then, the TVMPDI was validated by using the Standardized
Precipitation Evapotranspiration Index (SPEI) and other remote sensing drought indices, including
the Vegetation Health Index (VHI) and Scale Drought Conditions Index (SDCI), during the growing
seasons of 2003–2018. The Standardized Precipitation Index (SPI) and SPEI were used to represent
meteorological drought and Gross Primary Productivity (GPP) was used to represent agricultural
drought. The relation between TVMPDI and these drought indices was compared. Finally, the time
trends of TVMPDI were also analyzed. The relation coefficients of TVMPDI and SPEI were above 0.5.
The correlations between TVMPDI and drought indices, including the Vegetation Health Index (VHI)
and Scale Drought Conditions Index (SDCI), also had a good performance. The correlation between
the meteorological drought indices (SPI and SPEI) and TVMPDI were not as good as for the TVPDI,
but the temporal correlation between the TVMPDI and GPP was greater than that between the TVPDI
and GPP. This indicates that the TVMPDI is more suitable for monitoring agricultural drought than
the TVPDI. In addition, historical drought monitoring had values that were consistent with those of
the actual situation. The trend of the TVMPDI showed that drought in the study area was alleviated
from 2003 to 2018. Furthermore, GPP was negatively correlated with SPEI (r = −0.4) and positively
correlated with Soil Moisture (SM) drought index (TVMPDI, SMCI) (r = 0.4) in the eastern part of the
study area, which suggests that SM, rather than precipitation, could promote the growth of vegetation
in the region. A correct understanding of the role of soil information in drought comprehensive
indices may monitor meteorological drought and agricultural drought more accurately.

Keywords: drought monitoring; TVMPDI; soil moisture; meteorological drought; agricultural
drought; Southeastern Tibet

1. Introduction

One of the worst and most prevalent natural catastrophes in the world is droughts.
Over 35% of the world’s land surface is composed of arid and semiarid areas. More than
60 nations and areas throughout the world are at risk of drought, which has the Qinghai–
Tibet Plateau (QTP) yearly economic impact of USD 6 to 8 billion, a cost that is significantly
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greater than that of other meteorological disasters [1,2]. Therefore, it is crucial for human
civilization to accurately monitor the incidence of droughts.

Drought is mainly divided into four types, namely meteorological drought, agricul-
tural drought, hydrological drought and socio-economic drought [3]. The first occurrence
of a lack of rainfall that lasts for several months and reaches a specific threshold is me-
teorological drought. [4]. With the continuous evaporation of water and the continuous
reduction in water resources, the shortage of soil water supply gradually leads to agri-
cultural drought. Hydrological drought [5] results from river flows and [5] water storage
in water bodies that are below long-term averages. Due to water shortages, there is an
excessive demand for commercial goods, which has detrimental social, economic and
environmental impacts [6,7]. Social and economic drought is the term used to describe
the anomalous phenomena of a water scarcity brought on by an imbalance between the
natural systems for precipitation, surface and subsurface water distribution, and human
social water consumption and drainage [8].

In the early stage, traditional drought monitoring is mainly performed to conduct
statistical analysis on the monitoring data of ground meteorological stations or hydrological
stations, calculate the corresponding index and finally determine the drought index suitable
for the region, to clarify the time, scope and degree of drought. Three of the most common
drought indexes, including Palmer Drought Severity Index (PDSI) [9], SPI [10] and SPEI [11],
based on one or more hydroclimatic factors, are widely used in meteorological drought
monitoring. SPEI, combined with the characteristics of PDSI and SPI, can describe the
impact of temperature change on drought assessment [12].

The assessment of agricultural drought is based on the lack of SM during the plant
growth season. SM-based agricultural drought index mainly includes the Palmer Z in-
dex [13], CMI [6], Normalized Soil Moisture [14] and Soil Water Deficit Index (SWDI) [15].
In addition to indices based on soil moisture, vegetation-based indices have also been
proposed to describe agricultural drought, such as Vegetation Condition Index (VCI),
Normalized Difference Vegetation Index (NDVI) or GPP [16–18].

Droughts are generally affected by a variety of factors, such as precipitation, tem-
perature and soil moisture. Many researchers have realized that using multiple variables
or parameters can improve the accuracy of dryness assessment [19]. The common com-
prehensive remote sensing dryness index includes monitoring land surface temperature
(LST), vegetation, precipitation, evapotranspiration and soil moisture [20,21]. In addition
to these dryness indices, with the Temperature Vegetation Drought Index (TVDI) [22], it
was found that the spatial relationship between NDVI and Ts was triangular when the
range of vegetation cover change was large and the soil moisture change ranged from lack
to sufficient. With the progress of related research, other normalized indicators, such as the
Soil Moisture Condition Index (SMCI) [23] and Precipitation Condition Index (PCI) [24],
were introduced to the comprehensive remote sensing dryness indices. The present paper
assesses how to fairly balance each indicator in the composite index, including the Scaled
Drought Condition Index (SDCI) and Synthesized Drought Index (SDI) [25,26]. The prin-
cipal component analysis of SDI was calculated, and the first principal component was
emphasized, while other useful drought information was ignored. Thus, the correlation
between the two indices decreases [27]. TVPDI [28] is used to monitor wet and dry condi-
tions in China. In addition to these drought indices, Abhishek and Kinouchi et al. [29] used
GRACE gravity and PCR-GLOBWB model data to quantify the deficiencies of terrestrial
water stocks (LWS) and groundwater stocks (GWS) in Peninsular India, providing new
insights into the groundwater monitoring framework.

Natural habitats vary greatly throughout an area. Tibet, which is situated at a high
altitude in the QTP, is significant as a “river source”. The principal rivers of China origi-
nate there. The environment of Tibet is very vulnerable because of its unique geological,
geographical and meteorological factors [30]. As a result, natural calamities, including
droughts, storms and frosts, frequently affect Tibet. Therefore, further studies are needed
on the features of recent droughts in Tibet and how they relate to climatic variables.
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Many research studies have contributed to drought resistance on the QTP. Fang
et al. [31] established a PDSI reconstruction model from 1440 to 2007 in the southeastern QTP.
They found that temperature changes in this region may be related to SST changes in the
North Pacific and Atlantic oceans. Wang et al. assessed the candidacy of various probability
functions for SPI and SPEI for more than 500 stations in China, including the QTP. Feng
et al. analyzed the elevation dependence in SPEI index by using gauged-based time-series
data of precipitation and temperature at 274 meteorological stations scattered over the
QTP [32,33]. These meteorological drought indexes based on atmospheric precipitation and
evapotranspiration can monitor droughts at a specific time better, but in some regions, soil
moisture is not completely controlled by precipitation and evapotranspiration [34]. TVPDI
contains factors that increase or decrease moisture in the atmosphere, but lacks information
about moisture in the soil. Therefore, it is unknown whether TVPDI can keep track of the
agricultural drought in southeastern Tibet. On the other hand, southeastern Tibet has a
small and irregularly distributed number of weather stations. There may be uncertainties
caused by large spatial variability, due of the restricted ground observations, considerable
regional variability and demographics connected to drought [35].

In this paper, soil moisture was added to TVPDI, named Temperature–Vegetation–Soil-
Moisture–Precipitation–Dryness Index (TVMPDI), based on multi-dimensional Euclidean
distance, considering the influence of atmospheric, soil and vegetation moisture during
agricultural drought. The objectives of the study are to evaluate the performance of
TVMPDI in drought monitoring, and then analyze the spatial and temporal variation
characteristics of TVMPDI in southeast Tibet. We also compare the monitoring effects of
TVMPDI and TVPDI on meteorological drought and agricultural drought, respectively,
and analyze the factors controlling agricultural drought in different regions.

2. Study Area and Materials
2.1. Study Area

The Tibet Autonomous Region (TAR) in China’s southwest frontier is the main body of
the QTP. Due to the strong influence of westerly weather and warm and humid air currents
over the Indian Ocean, there are obvious differences in the dry and wet seasons in Tibet.
The unique hazard-formative environments, coupled with the vulnerability of regional
carriers (social and economic systems), makes it the region where meteorological disasters
occur most frequently in China. The five cities in the southeast of the TAR are the main
agricultural areas in Tibet, as shown in Figure 1, and include more than 70 percent of the
region’s weather stations [36–38].
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Most areas in Tibet belong to arid and semi-arid areas. Affected by monsoon climate
and geographical conditions, they suffer from seasonal drought, which lasts for a long time.
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A drought disaster usually lasts for one month or even several months. The frequent and
sudden occurrence of meteorological disasters in the TAR makes the fragile agricultural
ecological environment and infrastructure protection facilities more vulnerable to damage,
causing serious losses to the work and life of the people, especially farmers and herdsmen.

2.2. Materials

The following are the three categories of datasets that we used: (1) meteorological
datasets, including precipitation and temperature for SPEI calculation, and soil relative
moisture data were obtained through NCDC (http://data.cma.cn/ (accessed on 18 March
2022)). These datasets were calculated for SPEI. (2) The datasets were utilized to assess
the effectiveness of drought indices, such as SPI, SPEI and GPP, on the spatial distribution
of meteorological drought and agricultural drought. (3) Input datasets were used for
calculating drought index, including Precipitation, LST and Enhanced Vegetation Index
(EVI) and SM. Details regarding these datasets are listed in Table 1.

Table 1. The datasets used in the study.

Data Type Production Time Spatial
Resolution

Temporal
Resolution Description Source

MODIS
MOD11A2 LST

2003–2018

0.008333◦
8-Daily

Calculate TVMPDI

NASA
https://mirador.gsfc.nasa.gov

(accessed on 22 March 2022)MOD13A3 EVI Monthly

TRMM TRMM 3B43
precipitation 0.25◦ Hourly

NASA
https://trmm.gsfc.nasa.gov (accessed

on 22 March 2022)

SMC dataset Soil Moisture in
China dataset 0.05◦

Monthly

National Tibetan Plateau Data Center
http://data.tpdc.ac.cn/zh-hans/

(accessed on 23 March 2022)GPP Gross Primary
Production data 0.05◦ As agriculture and

Meteorological
Drought Proxy

SPEI SPEI base Dataset 0.5◦
Global SPEI database

https://digital.csic.es/handle/10261/
(accessed on 23 March 2022)

meteorological
data

Precipitation,
temperature and

soil relative
moisture data sets

None
Calculate SPEI and

assist to validate
remote sensing data

NCDC
http://data.cma.cn/ (accessed on 18

March 2022)

2.2.1. Remote Sensing Data

The Tropical Rainfall Measuring Mission (TRMM) was a joint international project
developed by National Aeronautics and Space Administration (NASA) and the Japan
Aerospace Exploration Agency (JAXA) to study weather and precipitation [39]. TRMM3B43
monthly mean grid precipitation data are the precipitation product of the TRMM satellite,
other satellites and ground observation. This dataset makes the best use of the existing
detection data and provides an optimal estimate of precipitation per grid for each standard
observation time, especially with a good suitable for mid-latitude areas. The alternate
TRMM precipitation abstracts were accumulated monthly. Additionally, precipitation data
were also used to calculate SPI.

The monthly SMC datasets were obtained from the National Tibetan Plateau Data
Center. It is made from 3 passive microwave remote sensing data: Level 3 SM data from The
Japan Aerospace Exploration Agency (JAXA), and soil moisture data for SMOS products
developed by the French Institute of Agricultural Sciences (INRA) and the French Centre
for Space Biosphere Research (CESBIO) [40]. The value of its spatial resolution was unified
as 1km, and then we calculated the SMCI using the monthly soil moisture.

Terra MODIS LST (MOD11A2) and NDVI (MOD13A2) with a resolution of 1 km
were obtained from NASA and EOSDIS, respectively. The TCI and VCI, which were used
to construct the TVMPDI, were determined by using the cumulative monthly LST and
Enhanced Vegetation Index (EVI), respectively.

http://data.cma.cn/
https://mirador.gsfc.nasa.gov
https://trmm.gsfc.nasa.gov
http://data.tpdc.ac.cn/zh-hans/
https://digital.csic.es/handle/10261/
http://data.cma.cn/
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These data also include SMC, SPEI and GPP, which are included in Table 1. SMC
were normalized and again acclimated to account for TVMPDI. The SPEI and GPP as
meteorological and agronomical aridity factors for appraising the achievement of aridity
indices for both droughts.

2.2.2. Meteorological Data

The meteorological station data from the NCDC (http://data.cma.cn/ (accessed on 18
March 2022)) include precipitation, temperature and relative soil moisture, which were used
to calculate the SPEI. These site data can be used as an auxiliary validation of meteorological
drought and agricultural drought when spatial discrimination between SPEI Base datasets
and GPP is insufficient. In addition, the precipitation and soil relative moisture data from
these stations can be used to verify the downscaling of the TRMM and SM datasets.

In addition, the precipitation and soil relative humidity data of these stations can be
used to verify the downscaling of TRMM and SM data: the spatial resolution of TRMM
and SMC was reduced to 1 km by means of resampling. Then, correlation analysis was
conducted between the precipitation and soil relative humidity data of 28 stations in the
study area and the pixel values of the corresponding points after downscaling. The results
show that the correlation coefficients of precipitation and soil moisture data with the data
of corresponding stations were 0.87 and 0.88, respectively, and both passed the significance
test at 0.01.

3. Methodology

Drought in agriculture has a major impact on the development and growth of crops.
The majority of crops are at their height from April to October every year in TAR, and any
drought that occurs during this time has a major negative impact on the agriculture sector
and agricultural output. In addition, because of the special geographical conditions of
Tibet, some remote sensing data records requirements cannot be met in winter. Therefore,
the SPEI and the relative soil humidity of 28 stations in TAR from April to October from
2003 to 2018 were selected as the verifiable indicators, and the remote sensing image data
of corresponding stations were taken to calculate the TVMPDI, including multiple drought
factors (TRMM, LST, SM and EVI).

3.1. Drought Indices
3.1.1. SPEI and SPI

The SPI was created by first computing the precipitation distribution probability and
then normalizing it from a continuous time series of precipitation at a certain time scale.
The SPEI was constructed by introducing potential evapotranspiration on the basis of the
SPI. The SPEI index integrates the advantages of the SPI index and PDSI, which can reflect
regional drought situation more comprehensively. Therefore, it is widely used in drought
monitoring [11]. The Thornthwaite technique was used to determine the probability
distribution functions, which has a scroll probabilistic model.

3.1.2. Scaled Drought Indices

The variables used to calculate the TVMPDI include four kinds of scaled remote
sensing drought indices, which were calculated from four raw variables (TRMM, LST,
SM and EVI) by the normalization processing (Table 2). Additionally, they were scaled
on a vertical ranging from 0 to 1, where 0 denotes dryness conditions and 1 denotes
rainy conditions.

The normalization method is applied by taking the difference between the maximum
and minimum values of the pixel point for many years as the denominator and the dif-
ference between the pixel and minimum values of the month as the numerator (LST: the
difference between the maximum and pixel values), and then using their ratio as the
normalization value.

http://data.cma.cn/
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Table 2. Formulas for the scaled variables.

Index Formula

Scaled EVI (VCI) (EVI − EVImin)/(EVImax − EVImin)
Scaled LST (TCI) (LSTmax − LST)/(LSTmax − LSTmin)

Scaled TRMM (PCI) (TRMM − TRMMmin)/(TRMMmax − TRMMmin)
Scaled Soil Moisture (SMCI) (SM − SMmin)/(SMmax − SMmin)

3.2. Dryness Index

The Euclidean ambit can admeasure the complete ambit amid credibility in a hyper-
space, and in its simplest form, it can be defined as a straight line connecting two points
A and B. Due to its objectivity, science and universality, the Euclidean ambit primarily
acclimates to ecological boredom [28,41,42]. The Euclidean ambit is expressed as follows:

D(x, y) =

√
n

∑
i=1

(xi − yi)
2, (1)

where n is the number of the multidimensional space’s dimension and D(x, y) is the shortest
distance among endpoints X(x1, x2, x3, . . . , xn) and Y(y1, y2, y3, . . . , yn).

The dryness index based on Euclidean distance formula sets a reference point in the
three-dimensional space, which represents the state point with the most severe drought in
each dimension. The shorter the distance, the more severe the drought.

The TRMM, EVI and LST were integrated to establish a three-dimensional environment
and measure dryness [28]. However, the formation of agricultural drought is a very
complicated process. It is difficult to describe the whole information of drought with these
three variables. Therefore, this study added an additional soil moisture variable on the
basis of TVPDI to compare the difference between the two indexes in drought detection,
and the formulas to calculate the two European dryness indices are as follows:

TVPDI =

√
(PCIMIN − PCIi)

2 + (TCIMIN − TCIi)
2 + (VCIMIN −VCIi)

2

3
(2)

TVMPDI =

√
(PCIMIN − PCIi)

2 + (TCIMIN − TCIi)
2 + (VCIMIN −VCIi)

2 + (SMCIMIN − SMCIi)
2

4
(3)

where PCIMIN, TCIMIN, SMCIMIN and VCIMIN represent the driest status. They are (0, 0, 0)
and (0, 0, 0, 0), respectively. PCIi, TCIi, SMCIi and VCIi represent the normalized values at
a point.

We also used several other drought indices in this study, including the VHI, SDCI and
SMCI. They can help us to evaluate the monitoring ability of the TVMPDI more intuitively
and analyze the dry and wet changes in different zones of the study area. The VHI and
SDCI were calculated as follows:

VHI = 0.5× TCI + 0.5×VCI (4)

SDCI = 0.33× TCI + 0.33×VCI + 0.34× PCI (5)

3.3. Accuracy Assessment

In numerous earlier research, the Pearson correlation coefficient was utilized to assess
the relationship between two variables [43,44]. Its calculation is as follows:

R =

m
∑

i=1
(xi − x)(yi − y)√

m
∑

i=1
(xi − x)2

√
m
∑

i=1
(yi − y)2

(6)
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where xi is the simulation value; yi is the observed value; x and y are the average value of
simulation value and observed value, respectively; m is the simple randomization; and i is
the serial number of the observation month.

The TVMPDIs of 28 stations in the growing season were extracted and compared
with the SPEI in the study area, calculated by the corresponding stations for accuracy
verification. The examination of the temporal association between the TVMPDI and several
drought monitoring indices was performed, including the VHI, SDCI, SMCI and TVPDI.

3.4. Classification of TVMPDI

In order to verify the consistency between the regional and chronological incidence
of drought monitored by the TVMPDI and the actual drought events, the drought grade
of the TVMPDI was divided according to the SPEI and SPI drought grade divided by
Meteorological Drought Grade, combined with the correlation between the TVMPDI and
SPI and SPEI and the frequency of each drought grade [45–47]. The TVMPDI calculated in
this study was graded as shown in Table 3.

Table 3. Drought classification.

Drought Classification TVMPDI

No dry 0.50 < TVMPDI
Light dry 0.40 < TVMPDI ≤ 0.50

Moderate dry 0.30 < TVMPDI ≤ 0.40
Sever dry 0.20 < TVMPDI ≤ 0.30

Extreme dry TVMPDI ≤ 0.20

This paper analyzed the spatial distribution of drought in typical dry years in study
area using the TVMPDI to evaluate its performance in monitoring actual drought duration,
according to the statistics yearbook of TAR.

3.5. Theil–Sen Median Trend Analysis and Mann–Kendall Test

In this paper, Theil–Sen median trend analysis and the Mann–Kendall method were
employed to examine the properties of the geographical distribution, temporal variation
characteristics and variation trend of the TVMPDI in southeastern Tibet. These two methods
were combined by many studies to examine the trend of lengthy regression analysis [48–50].

The Theil–Sen median trend assay is an adjustment that could abate the access of
abstract outliers [51]. The Theil–Sen median trend calculates the average abruptness of
n(n − 1)/2 abstract portfolios (n is the arrangement length), and its blueprint is as follows:

STVMPDI = Median
(

TVMPDIj − TVMPDIi

j− i

)
, 2003 ≤ i < j ≤ 2018 (7)

STVMPDI > 0 indicates that the TVMPDI presents a growing trend; otherwise, the
TVMPDI presents a degenerate trend.

The Mann–Kendall assay is a non-parametric statistical analysis adjustment that is
acclimated to adjudicate the acceptation of trend. It is not all-important for samples to chase
an assertive distribution, and it is not diminished by a few outliers [52]. The calculation
formula is as follows:

First, set {TVMPDIi}, i = 2003, 2004, . . . , 2018

Z =


S−1√

s , S > 0

0, S = 0
S−1√

s , S < 0

(8)
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S =
n−1

∑
j=1

n

∑
i=j+1

sgn(TVMDPIj − TVMPDIi) (9)

sgn(TVMDPIj − TVMPDIi) =


1, TVMDPIj − TVMPDIi > 0
0, TVMDPIj − TVMPDIi = 0
−1, TVMDPIj − TVMPDIi < 0

(10)

s = n
(2n + 5)(n− 1)

18
(11)

where TVMPDIi and TVMPDIj represent the TVMPDI value of pixel years i and j; n is the
duration; and sgn is the symbol operation. The statistic Z ranges from −∞ to +∞.

The mean TVMPDI of the five cities in the study area from 2003 to 2018 was statistically
analyzed. When adding more hours to the TVMDI in the study area, it shows that drought
intensifies; so, when the linear regression trend for timing (TVMPDI over time will increase),
the drought trend becomes gradual over time, and when there is a yuan linear regression
trend for negative, the TVMDI gradually decreases with time, with the drought increasing
gradually over time.

These two methods were accumulated to reflect the spatial administration charac-
teristics of the TVMPDI trends in southeastern Tibet from 2003 to 2018. Since there is
basically no range, STVMPDI is equal to 0, with values between −0.0005 and 0.0005 classified
as stable and values greater than or equal to 0.0005 classified as the advance area. STVMPDI
values lower than −0.0005 are classified according to the absolute values of STVMPDI. The
acceptation assay after-effects of the Mann–Kendall assay at 0.05 were divided into cogent
change (Z > 1.96 or Z < −1.96) and bush change (−1.96 ≤ Z ≤ 1.96). Finally, the allocation
after-effects of the Theil–Sen median trend assay and the allocation after-effects of the
Mann–Kendall assay were superimposed to access the TMVPDI trend abstracts at the pixel
scale, and the after-effects were divided into bristle change types (Table 4).

Table 4. Statistics of the TVMPDI trend.

STVMPDI Z Trend of TVMPDI

≥0.005 ≥1.96 Dry
≥0.005 −1.96–1.96 Slight dry

−0.005–0.005 −1.96–1.96 Stable invariance
≤−0.005 −1.96–1.96 Slight wet
≤−0.005 ≤−1.96 Wet

3.6. Cross-Validation of TVMPDI with Meteorological Drought and Agricultural Drought

In order to understand how the association changed over time in various research
areas, we also assessed at the geographical correlation between each drought indicator
and the GPP or meteorological drought indices. We calculated the Pearson correlation
coefficient for each month from April to October from 2003 to 2018 using grid pixels from
the index map, GPP and drought index for a climate system. This analysis shows the
responses of the TVMPDI and other drought indices with soil moisture information to
two kinds of drought, and the changes in the responses of different regions to agricultural
drought in southeastern Tibet.

4. Result
4.1. Accuracy Evaluation of TVMPDI

The Pearson correlation coefficient and scatter plot of the TVMPDI and SPEI in the
growing season are shown in Figure 2. In general, the correlation coefficient between the
TVMPDI and SPEI was above 0.5 from April to October (p < 0.01). Among them, the
correlation coefficients of April, May, September and October were all between 0.5 and 0.6,
which indicates a moderate correlation. The correlation coefficients were between 0.6 and
0.7 in June, July and August, reaching a high correlation (p < 0.005).
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Figure 2. Scatter plot of the TVMPDI and SPEI at the meteorological station from April to October:
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According to the theory behind each dryness indicator, the lower the VHI, SDCI, SM,
TVPDI, and TVMPDI values are, the drier the area is. Therefore, the monitoring findings
of the TVMPDI are consistent with these indices when VHI, SDCI, SMCI, and TVPDI are
positively correlated with the TVMPDI; otherwise, the monitoring results are inconsistent.

The spatial distribution of the time-series correlation between the TVMPDI and remote
sensing drought indices (VHI, SDCI, SMCI and TVPDI) are shown in Figure 3. The
correlations of the TVMPDI with VHI and SDCI were above 0.8 (Figure 3a,b, respectively),
which reached the level of extreme correlation, while the correlations of the TVMPDI
with SMCI and TVPDI are different from those above. The correlation was slightly lower
between the TVMPDI and TVPDI, especially in the western and central regions of the
study area. In these areas the correlation remains around 0.6 (Figure 3d). Additionally,
the correlation between the TVMPDI and SMCI in this region was only 0.3–0.6 (Figure 3c).
These weakly correlated areas accounted for about 28%.
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4.2. Historical Relationships between Drought Index and SPI, SPEI and GPP

Figure 4 depicts the spatial distribution of the correlation between the three indices
and the meteorological drought indices (SPI and SPEI). The results show that the TVPDI
has the best correlation with meteorological drought, followed by the SDCI and TVMPDI.
The correlation of the TVMPDI with the SPI and SPEI was not as good as that with the
SDCI and TVPDI (Figure 4), and the regions with low correlation were in the central and
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western regions of the study area (Figure 4a,b). The correlation of the TVPDI with the SPI
and SPEI was the best in the whole region (Figure 4e,f).
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and SPEI.

Figure 5 shows the correlation between GPP and the drought index. The area with a
positive correlation between the TVMPDI and GPP accounts for 78.59%, and the significant
area is mainly concentrated in the central and eastern part of the study area, which accounts
for more than 20% (Figure 5e). In contrast, the area with a positive correlation between the
TVPDI and GPP was only 47.5%, and the significant area accounts 5.7% (Figure 5f). The
positive correlation area and significant area of the SDCI were not as high as that of the
TVMPDI (Figure 5d). We also compared the correlation between the SMCI and GPP for
cross-validation (Figure 5c).
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In addition, the relationship between GPP and drought indicators (SPI and SPEI) was
negative in the middle of the study area (Figure 5a,b). In particular, the SPEI showed
a strong negative correlation with GPP in areas where GPP and drought indices were
positively correlated.

4.3. Spatial and Temporal Distribution of TVMPDI

The Theil–Sen median trend analysis values of the TVMPDI change are shown in
Figure 6. In general, the slope of change in all five cities is positive. Except Lhasa, the other
four districts are shown in Figure 6a (p < 0.05). The slope of the TVMPDI in March and
December looks higher, which remains around 0.01 (Figure 6b,e, respectively), while the
increase in the TVMPDI was insignificant in June and September (Figure 6c,d, respectively).
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Figure 7a demonstrates that the annual mean value of the TVMPDI increased in the
southeast of Tibet from 2003 to 2018, which indicates that the drought in this region was
decreasing. The region behaved differently according to different seasons: Wet and slightly
wet areas in the study area accounted for 93.05% in March (Figure 7b), while the value was
just 48.21% in June (Figure 7c). The areas of gradual drying were concentrated on the east
and west sides. This situation improved in September (Figure 7d), with only some western
parts of the study area becoming slightly dry. In December, 55.86% was wet and 31.85%
was slightly wet (Figure 7e).

4.4. The Effect of TVMPDI for Drought Monitoring

Figure 8 shows that, in 2009, a significant amount of drought affected the five cities in
southeastern Tibet. Some mild drought occurred in Nyingchi, Lhoka and Qamdo in May
2009 (Figure 8a). In June and July 2009, large areas of extreme drought occurred in Lhasa,
Lhoka and Shigatse (Figure 8b,c), while in May 2010, the drought hit the eastern city of
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Shigatse (Figure 8e). In June, the drought intensified, with extreme drought and severe
drought accounting for about 48% (Figure 8f).
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5. Discussion
5.1. Drought Monitoring Capability of TVMPDI in Southeastern Tibet

In the southeast of TAR, the TVMPDI was moderately correlated with the SPEI,
which was similar to the correlation between the TVPDI and SPEI [28]. When these
drought indexes are positively correlated with the TVPDI, their monitoring results are
consistent. This strong positive correlation implies that the TVMPDI can describe the
dryness of the atmosphere in the study area. The authors of [18] showed that alternations
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between precipitation and evapotranspiration depend on the altitude blazon and the time
of frondescence, becoming increasingly divided in the altered regions. However, drought
conditions on the QTP, where the study area is located, are also affected by its altitude.
Global warming is melting glaciers, which will increase groundwater at lower altitudes in
the study area [33]. Glaciers are a different antecedent of drought-resistant water brought
about by special terrain. They are lowering dry season resistance, and investigations on
this phenomenon are still rare [53]. Therefore, the analysis of glaciers regarding drought
in lower reach of regions could be included in future research plans, as it can help us to
better understand the process of this drought pattern, and thus provide guidance for the
development of drought resistance strategies.

In addition, the TVMPDI has a general correlation with the TVPDI and SMCI, which
may be because the TVMPDI adds soil information on the basis of the TVPDI. Generally,
agricultural drought index based on soil moisture can represent the available water for
plants in the region. For example, SMCI believes that drought patterns are based on
the available water content in the soil [54], but the TVMPDI adds atmospheric informa-
tion, such as precipitation and temperature, which makes them less relevant than other
drought indices.

Due to the complex reaction between soil and atmospheric moisture, it seems impossi-
ble to directly express plant water stress and atmospheric drought at the same time [5,55].
However, the TVMPDI, a new remote sensing index combined with SM, has a good correla-
tion with other drought indexes. Due to the joint characteristics of soil and climate balance,
the TVMPDI can capture the changes in SM and atmospheric dryness at the same time.
This indicates that the TVMPDI is of great significance in delineating droughts.

In Figure 3c, the temporal correlation between drought and the SMCI shows an east–
west gradient change, which is due to the different drought patterns in the east and west.
The eastern part has more precipitation, which is generally attributed to the abnormal
precipitation, while the western part is more affected by temperature. Both of these change
soil moisture in the region and cause drought. Anderson et al. [56] compared the spatial
correlation of various drought indices at different time scales and found that drought in
arid and humid regions of the United States had similar east–west gradients.

As can be seen from Figure 5, the correlation between TVMPDI and meteorological
drought index (SPI and SPI) was not as good as that between TVPDI and them, while the
correlation between TVMPDI and GPP, which represents agricultural drought, was better
than that between TVPDI and GPP. In addition, it is worth mentioning that in the eastern
part of the study area, the monitoring effect of TVPDI, which has better correlation with
meteorological index, was worse than that of TVMPDI for the areas with excess vegetation
moisture. This is because precipitation inhibits vegetation growth and land-air coupling
effect makes atmospheric composition unable to reflect soil moisture changes (this will be
explained in more detail in Section 5.3). TVMPDI with adding soil moisture could better
represent the changes, which can be verified by Figure 6c,e.

5.2. Variation Trend and Effect of Drought

The findings in Section 4.3 demonstrate a considerably higher trend for five regional
TVMPDIs in the research area, suggesting that south-east Tibet from 2003 to 2018 gradu-
ally became moister. However, it is worth noting that the summer drought trend is not
consistent with the overall trend, and the summer drought is becoming worse, which is
consistent with other related studies [57]. They contend that there has been a notable yearly
and seasonal trend toward increased precipitation in the Qinghai–Tibet Plateau, which is
affected by the summertime intensification of the Indian Ocean monsoon. However, there
are different results in other reports. The precipitation records of the Indian Ocean monsoon
area in the past 60 years show that the Indian Ocean monsoon intensity is undergoing a
weakening process [58]. Therefore, we believe that the intensification of summer drought
in this study is influenced by the weakening of the Indian Ocean monsoon in summer, and
the reason for the different results obtained in the above related studies is that the Tibetan



Remote Sens. 2022, 14, 6125 14 of 18

Plateau is not only affected by the Indian Ocean monsoon, but also by the North Atlantic
Oscillation. The study area is located in the southeast of the Tibetan Plateau. The various
geographical settings influence the summer drought trend differently in various places.

According to China Weather Network, from April to the middle of June 2009 and 2010,
the precipitation in eastern Tibet was the lowest in the same period in the past 10 years.
Especially, the precipitation in the first and middle of June was the lowest in the history of
the same period since 1956, resulting in a severe early summer drought.

It can be observed that the drought shown in Figure 8 is consistent with the actual
drought situation. According to the record, in July 2009 and 2010 artificial rainfall was
carried out in Lhasa, which alleviated the drought. The drought situation in Tibet in 2010
was similar to that in 2009, starting from the beginning of summer in May and abating in
July as presented in Figure 8.

5.3. Regional Climate Characteristics

The correlation between the meteorological drought index and TVMPDI is about 0.4 in
the middle and west of the study area and some eastern regions, because the dryness and
humidity in Tibet are mainly affected by precipitation [35]. The Himalayan mountains to
the southwest of the study region often block atmospheric moisture carried to Tibet by the
dominant westerly winds [59]. Previous studies [60–63] also proposed that the decrease in
potential evapotranspiration and insufficient precipitation in Tibet were the main reasons
for the arid environment.

The relationship between GPP and drought indices varies from region to region,
reflecting the different patterns of driving drought in different regions [64]. In the western
part of southeastern Tibet, shown in Figure 6a,b, the meteorological drought index (SPI
and SPEI) has a weak positive correlation with GPP. According to the study by [65], these
locations are known as vegetation–water stress zones because the principal factor limiting
seed germination is water availability, and GPP increases with wetness and decreases
with dryness. However, there was a strong negative correlation in the east, which was
considered as the vegetation water surplus area. Because vegetation growth is largely
limited by other factors (e.g., solar radiation and anthropogenic influence), increasing levels
of rainfall may, in turn, expose plants to waterlogging. However, low temperatures allow
the atmosphere to hold less moisture from the air and the low evapotranspiration allows
the soil to hold more water in southeastern Tibet [35], which is also the reason why the
negative correlation in the east is stronger than the positive correlation in the west.

In Shigatse and other southern areas of the study area, the correlation decreased or
was negative. In the dry environment, there is a vicious cycle between plant nutrition and
SM supply due to land–air interaction [65]. In contrast, the relation coefficient was above
0.4 in the central areas. Instead of precipitation, SM in terms of the amount of accessible
water influences ecosystem production (GPP), and a lack of SM can cause droughts in the
agriculture sector [38,66,67].

The low and negative correlations of some areas may be caused by the complex to-
pographical features and atmospheric conditions. Some studies [68] have shown that
the precipitation difference in the Qinghai–Tibet Plateau is the main reason for the north
Atlantic oscillation, and the north Atlantic Oscillation and Pacific interannual oscillations
has a negative correlation, enhancing the La Niña phenomenon that influenced Indian
monsoons. These convective systems and active water vapor transport jets are not alone in
creating delays in precipitation and dryness over southern Tibet due to increased water
vapor from the Bay of Bengal. Similar delays or decoupling have been reported in some
studies in the Midwestern United States [69]. Due to the stronger mesoscale convective sys-
tem in this region, land–air decoupling is more likely to occur. It is also worth mentioning
that the gradual deterioration of the relationship between plant growth and water supply
caused by this decoupling phenomenon has become more and more serious [70,71].
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5.4. Limitations

Due to the limitations of the SM datasets and precipitation datasets, the study period
only covered 16 years from 2003 to 2018. In the future, longer time spans and higher
precision SM data will improve the application of soil moisture information in the remote
sensing integrated drought index. The SPI constructed with precipitation data of long time
series is also more reliable. This study did not assess the TVMPDI by land cover. We did
not use the lag time of meteorological drought index, GPP and agricultural drought for
analysis, which may be different in different land covers and needs further study.

In addition, the study did not take into account the influence of human activities on
drought changes in the eastern and western parts of the study area. In future studies, we
will assess the influence of human activities on the occurrence of drought and the response
of the TVMPDI and the Land Water Storage (LWS).

6. Conclusions

An agricultural drought monitoring model was constructed based on the Euclidean
distance method with the effects of multiple drought-causing factors in Tibet. The effects of
soil moisture on agricultural drought monitoring models were included when generating
the TVMPDI. Then, this model was constructed to monitor, analyze, evaluate and verify
drought levels in Tibet, and the following main conclusions were obtained:

(1) The relation coefficients between the TVMPDI and SPEI were all above 0.5, and the
correlation between the TVMPDI and other remote sensing drought indices performed
well. In addition, the TVMPDI monitored the drought conditions in summer and
autumn from May to July 2009 and 2010, which were basically consistent with the
actual drought conditions, and reflect better the drought distribution and drought
conditions in Tibet.

(2) The TVPDI based on atmospheric indices performs perfectly in delineating meteo-
rological drought, but failed to recognize water availability in soil systems, which
is critical for crop growth and agricultural drought delineation. The TVMPDI with
soil moisture information was more suitable for agricultural drought monitoring than
the TVPDI.

(3) In the 16-year span from 2003 to 2018, the southeastern region of Tibet experienced a
gradual wetting process. The gradual humidification in summer was not significant.

(4) Various drought indices divided the study into arid and semi-arid areas in the west
and humid areas in the east. In the western arid and semi-arid regions, soil wetting
caused by precipitation promoted vegetation growth, while in the eastern humid
regions, precipitation inhibited vegetation growth.
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