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Abstract: The change dynamics of land use/land cover (LULC) is a vital factor that significantly
modifies the natural environment. Therefore, mapping and predicting spatiotemporal LULC trans-
formation is crucial in effectively managing the built environment toward achieving Sustainable
Development Goal 11, which seeks to make cities all-inclusive, sustainable, and reliable. The study
aims to examine the change dynamics of LULC in Kano Metropolis, Nigeria from 1991 to 2020 and
predict the city’s future land uses over the next 15 and 30 years, i.e., 2035 and 2050. The maximum
likelihood algorithm (MLA) of the supervised classification method was utilized to classify the study
area’s land uses using Landsat satellite data and various geographic information system (GIS) tech-
niques. A hybrid simulation model comprising cellular automata and Markov chain (CA-Markov)
was then employed in validating and modeling the change dynamics of future LULC. The model
integrated the spatial continuity of the CA model with the Markov chain’s ability to address the
limitations of individual models in simulating long-term land use prediction. The study revealed
substantial changes in the historical LULC pattern of Kano metropolis from 1991 to 2020. It indicated
a considerable decline in the city’s barren land from approximately 413.47 km2 in 1991 to 240.89 km2

in 2020. Built-up areas showed the most extensive development over the past 29 years, from about
66.16 km2 in 1991 to 218.72 km2 in 2020. This trend of rapid urban growth is expected to continue
over the next three decades, with prediction results indicating the city’s built-up areas expanding to
approximately 307.90 km2 in 2035 and 364.88 km2 in 2050. The result also suggests that barren lands
are anticipated to decline further with the continuous sustenance of various agricultural activities,
while vegetation and water bodies will slightly increase between 2020 and 2050. The findings of this
study will help decision-makers and city administrators formulate sustainable land use policies for a
more inclusive, safe, and resilient city.

Keywords: land use/land cover; land use prediction; hybrid model; CA-Markov model; satellite
data; GIS

1. Introduction

“Land use” and “land cover” are two different concepts used interchangeably to desig-
nate the multifaceted interaction between humans and their physical environment [1]. Land
cover refers to the physical properties of the Earth’s surfaces, while land use describes the
anthropogenic change in land cover [2,3]. The massive alteration of global land use/land
cover (LULC) has recently become a topic of vital concern due to the rapid urbanization of
most urban centers and cities [4]. The complex interaction of various human activities has
exerted pressure over the past few years on limited land resources. The consequence of
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this development has contributed to the severe challenges faced in the local, regional, and
global environment of the 21st century because of the tremendous alteration of land uses [5].
Estimates indicate a fourfold, i.e., 32% global transformation of LULC over the past six
decades, specifically between 1960 and 2019 [6]. These changes have resulted in numer-
ous challenges, including loss of soil fertility and habitats, desertification, environmental
pollution, alteration of climatic and hydrological cycles [7–11], and many others [12,13].
Therefore, studies on LULC changes play a significant role in achieving sustainable urban
development and efficient management of land resources. Environmental studies of exist-
ing and future LULC are vital in addressing the challenges of rapid urban development in
urban centers and cities.

Therefore, accurate and up-to-date spatiotemporal LULC data are essential to under-
standing and analyzing the change dynamics of different land uses. Satellite remote sensing
and several geographic information systems (GIS) techniques are usually employed to
obtain an accurate and reliable spatial map that aids in monitoring the LULC condition of
rapidly developing urban centers and cities [14–16]. Images of advanced satellite platforms
such as QuickBird, GeoEye, and IKONOS have provided timely datasets and effectively
served as excellent data sources for assessing the current state and predicting future sce-
narios of land use [17,18]. Landsat satellites also have been widely utilized in monitoring
spatiotemporal land use/land cover information in various environmental studies of local
and regional scales due to their free cost and historical archive of providing uninterrupted
global data [19–22]. The analysis of LULC change dynamics is usually performed using
the Landsat multi-temporal and multi-spectral satellite data [23]. These data provide
the images needed for determining a study area’s distribution pattern of land uses [24].
Landsat sensors commonly utilized for change detection include the Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), and
Multi-spectral Scanner (MSS) [25]. Land use change detection quantitatively analyzes the
previous state of a LULC class based on the properties inherent in the satellite images [26].
A geographic information system (GIS) provides an appropriate and suitable environment
for collecting, storing, visualizing, and analyzing satellite images that are needed to detect
land use changes [27–29]. Therefore, satellite data and advanced GIS techniques have
recently emerged as cost-effective tools for analyzing spatiotemporal LULC information
on the state of the natural and man-made environment [30,31]. Hence, process-based
modeling plays a crucial role in attaining sustainable urban development through a spatial
and quantitative simulation of land use scenarios.

Several spatial models have been developed and utilized for LULC modeling and
prediction [32]. Such models include Markov chain models [33], cellular models [34,35],
evolutionary models [36], expert system models [37], statistical models [38], multi-agent
models [39,40], analytical equation-based models [41], and hybrid models [42–44]. The
Markov chain is a stochastic modeling approach that is randomly discrete in terms of
time and state. The model describes the transition of a state, i.e., LULC class from a
previous time to a new time, and can predict the future state of LULC classes based on
transition probabilities [45]. It utilizes the historical transition probabilities to predict
the future state of land uses. However, the Markov chain individual model does not
consider the state of neighboring cells for the prediction of land uses. Other individual
models have also shown their ability to serve as a quantitative tool that helps facilitate
decision-making in environmental and urban studies through assessing and managing
future LULC [46]. However, such models have several limitations. Hence, incorporating
the CA model that considers the initial state, neighborhood cells, and transition rules helps
overcome the Markov chain’s limitations. The hybrid model of CA-Markov integrates the
spatial continuity of the CA model with the Markov chain’s ability to simulate long-term
prediction using a complex system that is suitable for modeling and predicting various
LULC classes [47]. It integrates the advantages of two or more spatial modeling techniques
to address the limitations of individual models [48]. The combination of a cellular automata
(CA) model and Markov chain has emerged as one of the most effective and widely used
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hybrid models for LULC simulation prediction [49]. The hybrid modeling approach is an
effective, reliable, and robust technique that is dynamic and appropriate for predicting
spatiotemporal change dynamics of land uses in rapidly developing cities and urban areas.

Recent studies have established the historical trend of land use changes and employed
a hybrid approach to model the future LULC change dynamics in several cities around
the world. Omar et al. [50] determined the historical land use transformation in Kirkuk
city, Iraq. The study combined a multi-regression and multi-criteria evaluation technique
as its CA transition rules to predict the changes in the urban areas of Kirkuk city from
1984 to 2010. Liping et al. [51] examined the spatiotemporal LULC distribution of Jiangle
county, China, from 1992 to 2014 and simulated the future distribution of LULC in 2025
and 2036. The study utilized a CA-Markov model to provide the scientific LULC data
for the county’s planning and future urban development. Similarly, Wang et al. [52] used
a hybrid CA-Markov model to assess three scenarios of environmental protection, crop
protection, and spontaneous scenarios in Tianjin city, China, with the study’s outcome
revealing the major drivers of the city’s rapid urban expansion between 2025 and 2035.
Samat et al. [53] also simulated the urban land use alteration in Malaysia’s conurbation
with a hybrid model using various CA-Markov and GIS techniques. Other recent studies
that utilized a similar model to forecast future land uses were conducted in the Atlanta
Metropolitan area of Georgia, USA [54], Changping District in Beijing, China [55], and
Dehradun in Uttarakhand, India [56]. These studies have shown the effectiveness of the
CA-Markov model in predicting LULC transformation and indicated the hybrid model’s
ability to serve as an appropriate tool for simulating future developmental scenarios would
help in the planning and management of land uses and restoration of ecological systems.

Therefore, in the present study, we analyzed the spatiotemporal LULC change dy-
namics of Kano metropolis and predicted the city’s future LULC scenario using a hybrid
CA-Markov model. The study results indicated the historical land use transitions and
presented the tremendous alteration of land uses expected in the next 30 years. The findings
of this study provided valuable LULC information vital for sustainable urban development
and proper land use management. The study will also contribute to formulating and imple-
menting effective land use policies targeting the United Nations’ Sustainable Development
Goal 11.

2. Materials and Methods
2.1. The Study Area

Kano Metropolis lies between longitude 8◦25′0′′E to 8◦39′0′′E and latitude 11◦51′0′′N
to 12◦08′30′′N, as shown in Figure 1. It is located within the most populated state in
Northern Nigeria, with the study area being the second most populous city in Nigeria [57].
The city’s urban population was approximately 3.8 million in 2018 and is expected to reach
5.6 million by 2030 [58,59]. Kano metropolis is situated within the Sudan savannah region,
with a small portion of the city’s south on the Guinea Savannah belt. It covers an area of
approximately 575 km2. The city has been the largest and most prominent urban center
in the Sudan zone for many years. It dates to more than one thousand years ago and was
originally situated around Dala Hill, where the city’s inhabitants smelted and fabricated
iron [60]. The urban structure of Kano has transformed over the past centuries as a result
of 21st-century industrialization and economic development, with the city’s urban fabric
gradually occupied by a rapid urban expansion that is evident in the central and closed
settled zone of the city to the peripheral and surrounding areas of the urban center [61].

The climatic condition of Kano metropolis is a tropical wet and dry climate, coded
‘Aw’ by Koppen’s climatic classification system. The city experiences a rainy season starting
in May and ending in October, having a dry season from November to April [62]. The
annual rainfall of Kano ranges from 800 mm to 1100 mm between the city’s northern and
southern parts. The city’s temperature is averagely warm throughout the year, having a
mean annual temperature of approximately 26 ◦C [63]. These climatic conditions make
the study area conducive for agricultural activities. Kano is well-known in Nigeria for
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subsistence and commercial production of various food and cash crops while utilizing
wet and dry season farming. As indicated in Table 1, the study area’s urban population
has grown tremendously throughout the years, which could be attributed to these agricul-
tural activities, the city’s high demand for land, and the continuous growth in Nigeria’s
population. This development has significantly influenced the city’s LULC pattern.
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Table 1. Urban population growth of Kano metropolis.

Urban Agglomeration of Kano
Metropolis, Nigeria City Population (Thousands) Average Annual Rate of

Change (Percentage)

2000 2018 2030 2000–2018 2018–2030

2602 3820 5551 2.1 3.1

2.2. Data Sources and Acquisition

The study utilized Landsat satellite images that included Thematic Mapper, Enhanced
Thematic Mapper Plus (ETM+), and Operational Land Mapper/Thermal Infrared Sensor
(OLI/TIRS), as presented in Table 2. The images were retrieved from the Earth Explorer
Platform of the United States Geological Survey (USGS), i.e., (http://earthexplorer.usgs.
gov/ accessed on 12 July 2022) using path 188 and row 52 of the Worldwide Reference
System (WRS) for the period between 1990 and 2020 at a 10-year interval. However, the
non-availability of the study area’s Landsat satellite image in the year 1990 necessitated the
utilization of the satellite image of the subsequent year, i.e., 1991. The images are optimized
datasets, having a 30 m resolution suitable for geospatial operations that include image

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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selection and visual interpretation [64]. The images were acquired between January and
March and had a minimal cloud cover of less than 5% to avoid atmospheric errors and
minimize seasonal variation. In addition, ancillary/reference data were obtained using a
field survey and high-resolution images of Google Earth Pro 7.3.4 to determine the study
area’s ground truth condition.

Table 2. Sources and description of satellite data.

Satellite Image Resolution (m) Sensor Type
WRS

Acquisition Date Scene Identification Number
Path Row

Landsat 5 30 × 30 TM 188 52 7 January 1991 LT41880521991007XXX02
Landsat 7 30 × 30 ETM+ 188 52 4 March 2000 LE71880522000064SGS00
Landsat 7 30 × 30 ETM+ 188 52 28 February 2010 LE71880522010059ASN00
Landsat 8 30 × 30 OLI/TIRS 188 52 16 February 2020 LC81880522020047LGN00

2.3. Methods

The research employed the following procedures: assessment and analysis of land
use/land cover changes, evaluation of change potential, and prediction of future change
dynamics of LULC using remotely sensed data, GIS techniques, and a hybrid CA-Markov
modeling approach. The detailed illustration of methodological flow is presented in
Figure 2 and discussed in the subsequent subsections.

2.3.1. Image Preprocessing and LULC Classification

Before the classification of the satellite images acquired for this study, several image
preprocessing operations that included atmospheric and radiometric correction, band
combination, layer stacking, and image enhancements were performed to rectify satellite
platform distortions [65–67]. The area of interest, i.e., Kano metropolis, was then extracted
and classified using the supervised maximum likelihood classification (MLC) algorithm into
different LULC categories. The MLC algorithm determined the probability of the various
satellite image pixels being associated with a specific LULC class [64]. The comparison
between individual pixels and different spectral signatures of LULC classes determines the
probability of each pixel belonging to a specific LULC class [68]. For the image processing
operation, Alsharif [68] adopted Richard’s [69] computation and interpretation of each
satellite pixel using the discriminant functions presented in Equation (1).

gi[x] = ln ∗p[wi]−
1
2

ln
∣∣∑ i

∣∣− 1
2
[x−mi]

r ∑−1
i [x−mi], (1)

where i is the LULC class, x represents the number of bands in the satellite image, p[wi] is
the probability of class wi in the classified image, i.e., for all the individual LULC classes,
|∑ i| is the covariance matrix factor that is related to wi data, ∑−1

i is the inverse matrix, and
mi denotes the mean vector.

In this study, the classification was performed in ENVI 5.3 software and involved the
categorization of all the satellite image pixels into four (4) broad LULC categories. These
categories included barren/bare lands (i.e., exposed soils devoid of vegetation and urban
development), built-up areas (i.e., areas used for residential, commercial, and industrial
developments), vegetation (i.e., areas with agricultural and natural vegetation) and water
bodies (i.e., areas having streams, rivers, lakes, and reservoirs).
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2.3.2. Accuracy Assessment

Reference data collected during the field survey were combined with other ancillary
data, i.e., high-resolution satellite images obtained using Google Earth Pro 7.3.4 to evaluate
the classified LULC of the four time nodes. A stratified random sampling technique was
adopted to examine the accuracy of the classified maps [70]. A confusion/error matrix
was then utilized in analyzing the accuracy of the overall pixel-based LULC classification
process. The error matrix highlights the extent to which the classified land uses correspond
with the actual ground truth conditions [8]. It comprises the overall accuracy and the kappa
coefficient [71]. The overall accuracy signifies the proportion of the correctly classified
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image pixels to the total image pixels [72]. It is computed as the sum of correctly classified
pixels divided by the sum of pixels in the error matrix [4]. The Kappa coefficient defines
the extent of agreement between two thematic maps taking into consideration all the com-
ponents of a confusion matrix. It is widely used to assess LULC classification accuracy [73].
The kappa coefficient of agreement is usually computed using Equations (2)–(4) below [74]:

K =
(po − pe)

(1− pe)
, (2)

where K is the kappa index value, po is the ratio of the correctly classified pixels, and pe is
the expected proportion of the correctly classified pixels by chance.

po = ∑c
i=1 Pij, (3)

pe =
c

∑
i=1

piTpTj, (4)

Wang [46] and Pal [75] indicate that a kappa index (K) value above 0.8 specifies an almost
perfect agreement, while less than 0.20 signifies a slight agreement between two maps, as
shown in Table 3. The accuracy of each classified LULC map during the four time periods
of this study was analyzed using a minimum of 50 randomly selected validation points for
each of the four (4) LULC categories.

Table 3. Interpretation of kappa statistics.

S/No. Kappa Index (K) Values
Kappa Index Interpretation

Level of Agreement

1. < 0 Less than chance agreement
2. 0.01–0.20 Slight agreement
3. 0.21–0.40 Fair agreement
4. 0.41–0.60 Moderate agreement
5. 0.61–0.80 Substantial agreement
6. 0.81–0.99 Almost perfect agreement

2.3.3. Detection of LULC Change Dynamics
Post-Classification Comparison

The post-classification comparison (PCC) method was utilized to detect the LULC
change dynamics of Kano metropolis, Nigeria, between 1991 and 2020. Several studies have
adopted and effectively utilized the PCC technique in comparing data of spatiotemporal
LULC studies [30,76,77]. The PCC produces a land use change matrix using independently
classified imageries of two different time nodes [78]. The study performed the post-
classification comparison in ArcGIS 10.7.1 using a thematic classified map overlay and
various geospatial operations. The statistical data of land use transition were then produced
using a cross-tabulation matrix. The outcome of the cross-tabulation indicates the numerous
land use transformations that occurred during the period between 1991 and 2020.

Net Change Analysis

The net changes in land uses were computed by comparing the losses and gains of
the four (4) LULC categories in the study area during the different study periods. A loss
represents the area decline in LULC between two time nodes, while a gain represents the
area increase in LULC between the two time nodes [25]. The losses and gains of the different
LULC classes of this study were determined and analyzed using graphical illustrations and
a cross-tabulated matrix of the four time period under study.
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Change Trend (CT), Change Percentage (CP), and Change Rate Analysis

The study examined the land use change trend, i.e., the magnitude of change, change
percentage, and the rate of change of the four LULC classes during the different time nodes.
The areas of the individual LULC classes were retrieved based on pixel-based classification.
The change magnitude of land uses the increase or decrease in each LULC class over
time [79]. A decline in LULC class is denoted using a negative (–) sign, while a positive
sign (+) signifies an increase in land use size. The change rate is estimated to determine
the magnitude of change in each LULC class during the different time nodes [80]. Based
on previous studies [81–83], the change magnitude, change percentages of the individual
LULC categories, and the annual change rate of the four (4) LULC classes were computed
using Equations (5)–(7), respectively,

CT = A2 − A1, (5)

CP =
A1 − A2

A2
× 100, (6)

ACR =
A2 − A1

n
, (7)

where CT denotes the change trend; CP represents the change percentage; ACR signifies
the annual change rate; A1 and A2 represents the area of LULC in the initial and final time,
and n is the number of years between the two periods, i.e., A1 and A2.

2.3.4. Hybrid Modeling and Prediction of LULC
Markov Chain Model

The Markov chain is a stochastic model capable of simulating future LULC change dy-
namics. Andrei Andreyevich Markov developed the Markov model in 1906 [45]. It utilizes
a mathematical equation to simulate randomly changing and continuous surfaces. The
model is based on the assumption that the future state of any object depends predominantly
upon the current state, not on the previous conditions. In environmental studies of LULC,
the Markov model highlights the magnitudes of conversion states between land uses and
determines the transfer rates between LULC classes [51,84]. The transformation of LULC
change dynamics is obtained through the computation of the transition probability matrix.
The Markov chain model is mainly utilized in environmental studies for simulating a sys-
tem having continuous occurrences, particularly changes in LULC and urban growth. The
formula for predicting LULC change dynamics as adopted by Mohamed and El-Raey [78],
Zadbagher et al. [85], and Abd El-Hamid et al. [86] is presented in Equation (8) below,

S(t+1) = P(ij) × S(t), (8)

where S(t+1) is the LULC state at the final time, S(t) is the state of LULC at the initial time t,
and P(ij) denotes the probability of a LULC class i changing to class j, i.e., the transition
probability matrix, and is computed using Equation (9),

P = Pij =

P11 P12... P1n
P21 P22.... P2n
Pn1 Pn2.... Pnn

, (9)

0 ≤ Pij ≤ 1 and ∑N
j=1 Pij = 1, (i, j = 1, 2, . . . . . . , n), (10)

where P denotes the transition probability matrix of the Markov chain model, i, j represents
the LULC class in the initial and final time, Pij signifies the probability of a LULC class i
changing to class j, and N is the number of LULC categories in the region.

The MC model produces three main outputs that comprise the transition area matrix
(TAM), transition probability matrix (TPM), and transition probability images (TPI). The
TAM signifies the number of image pixels anticipated to change from one LULC category to
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another over a specified period. The TPM indicates the probability of each LULC category
changing to another over a new period, which is compared with the previous period using
a cross-tabulated matrix of the two different periods [48,87]. The LULC maps of the years
1991, 2000, 2010, and 2020 were utilized in obtaining the study’s transition probability and
transition area matrix.

However, the MC model does not consider the spatial distribution of the individual
LULC categories and the spatial direction of urban growth [88]. Therefore, the Markov
chain model’s utilization is insufficient to simulate and predict various change dynamics
of land use effectively. Hence, a hybrid or an integrated modeling method is essential to
achieving an accurate LULC prediction.

Cellular Automata Markov (CA-Markov) Model

An improved method of LULC prediction is obtained by combining the techniques
of cellular automata and Markov chains using a hybrid model known as CA-Markov [13].
The model utilizes the knowledge of land use distributions and the structure of spatial
contiguity to predict changes in various classes of LULC while taking spatial proximity
as a vital driver of land use changes [34,51]. The integrated CA-Markov is a model that
considers the geographical directions of LULC changes and land use structure.

The CA model is a dynamic model having space and time as its discrete variables.
An important feature of CA models is the consideration of local spatial interactions using
the influence of neighborhood cells. The state transition of a cell from time (t) to another
time (t+1) is a function that depends on its state and the states of neighboring cells. The
closer the distance between the central cell and its neighbor, the larger the weight factor.
The weight factor is combined with transition probabilities to forecast the state of adjacent
grid cells, so that land use change is not a completely random decision. This study utilized
a Moore neighborhood filter to capture the local interaction among cells and a standard
contiguity filter of 5 × 5 was used to define the neighborhoods of each cell. During the
simulation process, pixels were assigned to specific LULC classes based on their suitability
and proximity to other pixels of the same class.

The mathematical expression for the CA model, as reported in Zadbagher and Be-
cek [85], Mondal et al. [30], and Liping et al. [51], is presented in Equation (10),

S [t, t + 1] = f [(St), N], (11)

where S represents the set of discrete cellular states, i.e., finite groups of cells at the time
(t, t + 1), t is the time node, f is the transformational rule of cellular states in the local space
and N represents the cellular field, i.e., the neighborhood of given cells.

In this study, the Markov chain model was employed to simulate the study area’s
spatiotemporal LULC transformation using the transition probabilities, while the local
rules of cellular automata were used to control spatial dynamics of LULC classes using
neighborhood configuration. It maps the spatial distribution of LULC and produces
the quantitative data of the Markov chain using a spatially explicit CA function [89]. The
combination of transition matrixes and cellular automata help in analyzing the various land
use alterations over time [90,91]. Hence, the hybrid modeling technique was performed
in IDRISI TerrSet software to simulate LULC in 2020 and validate the study’s prediction
model. Finally, the validated model was used to forecast LULC in 2035 and 2050.

2.3.5. Validation of Land Use Prediction Model

To evaluate the reliability of the simulation model in predicting land uses for the
projected years 2035 and 2050, validation was performed based on the comparison of
classified LULC maps and simulated LULC maps. The study area’s classified LULC
map for 2020 was compared with the city’s predicted LULC map in 2020 in order to
evaluate LULC predictions using the widely adopted Kappa Statistical Index [32,46,92].
Mansour et al. [84] indicate that the kappa index signifies agreement level and comprises
four (4) key parameters that include the kappa for stratum-level location (KlocationStrata), the
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kappa for grid cell level location (Klocation), the kappa for no information (Kno), and the
kappa standard (Kstandard). These indices reveal the modeling procedure’s accuracy level
and are utilized in validating the LULC simulation model. The kappa index has a lower
(−1) limit that denotes a less than chance agreement and an upper (+1) limit that signifies a
total agreement [74]. The equal chance agreement between the simulated and the actual
LULC map is signified using a kappa value of 0. A kappa statistical value of 0.80 was used
to validate the suitability of the modeling process. The study then mapped and quantified
LULC change dynamics for the years 2035 and 2050 using the validated CA-Markov model.

3. Results
3.1. Classified LULC Pattern

The study area’s classified LULC maps were generated using Landsat TM, ETM+,
and OLI satellite images of 1991, 2000, 2010, and 2020 based on the maximum likelihood
algorithm of the supervised classification method. In 1991, the study area’s barren land
covered 413.47 km2 (71.88%), followed by built-up areas (11.50%), vegetation (11.07%), and
water bodies (5.55%). In 2000, barren land covered 410.26 km2 (71.32%), with the city’s
built-up land accounting for an increased area of 96.50 km2 (16.78%), while the area of
vegetation and water bodies declined to 9.78% and 2.13% of the city’s total landmass. In
2010, the area of barren land declined to 61.85%, while built-up areas increased to 24.21%.
This LULC change trend continued in 2020 with a further reduction of the study area’s
barren land to 41.88% and an increase in built-up areas to 38.02%. Therefore, the barren
lands and built-up areas of the Kano metropolis witnessed the most significant decrease
and increase over the period between 1991 and 2020. Barren land declined from 413.47 km2

in 1991 to 240.89 km2 in 2020, while built-up areas increased from 66.16 km2 in 1991 to
218.72 km2 in 2020. The spatial mapping and quantitative data of the four LULC classes
during the different time nodes are presented in Figures 3 and 4.

3.2. Accuracy Assessment

The accuracy assessment utilized a minimum of 50 stratified random sampling points
for each LULC class. The points were selected based on the study area’s ground truth
information and the visual interpretation of high-resolution Google Earth images in ENVI
5.3 image processing software. An error matrix for all the four time nodes under consid-
eration was produced, indicating the various overall accuracies and kappa coefficients
as presented in Table 4. The result showed an overall image classification accuracy of
approximately 89%, 92%, 94%, and 95% in 1991, 2000, 2010, and 2020 respectively, with
a kappa coefficient of approximately 0.81, 0.87, 0.89, and 0.92. Based on the results, the
overall accuracies and kappa coefficients are all above 85% and 0.8 for each time node
under study, hence suggesting a reliable classification of satellite images. The result also
conformed to earlier studies that adopted a kappa index of 0.7 and an accuracy level of 80%
as a reliable image classification [25,93]. Therefore, the classified images are suitable for
analyzing and predicting the change dynamics of LULC.

3.3. LULC Change Dynamics

The study revealed substantial changes in the study area’s LULC, with the city expe-
riencing a rapid development of built-up areas over the past three decades between 1991
and 2020. In 1991, it was observed that the built-up areas of Kano covered a landmass of
66.16 km2, i.e., 11.50% of the city’s total area. The area increased significantly to 139.262 km2

in 2010 and rose to 218.72 km2 in 2020. This indicates a built-up area expansion of about
5.3% from 1990 to 2000, i.e., period 1; 7.4% from 2000 to 2010, i.e., period 2; and 13.81%
from 2010 to 2020, i.e., period three. The study area’s built-up land witnessed a significant
growth of 26.52% during the whole study period between 1991 and 2020. The consequence
of urban growth is the significant decline in the study area’s barren land. Barren land
decreased in the study area from approximately 413.47 km2 in 1991 to 355.78 km2 in 2010,
signifying a decline of about 10.03% between 1991 and 2010. The area of barren land was in
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continuous decline throughout the study period, having a landmass of 240.89 km2 in 2020.
This indicates a 30.02% decline in the study area’s barren land between 1991 and 2020. The
study area’s vegetation increased and decreased between 1991 and 2020, covering an area
of approximately 63.66 km2, i.e., 11.07%, which declined to 56.23 km2, i.e., 9.78% in 2000.
However, the landmass of vegetation increased to 74.78 km2 in 2010 and further expanded
to 110.25 km2 in 2020. This indicates a 9.39% increase in the city’s vegetation cover that
could be attributed to the various agricultural activities engaged by the inhabitants of the
study area. The study area’s water bodies declined dramatically from 31.93 km2 in 1991
to 12.24 km2 in 2000. By 2020, the city’s water bodies covered an area of about 5.38 km2,
i.e., 0.94% of the total landmass of the study area. The change dynamics of the four LULC
categories in the different periods are shown in Figure 5.

(a) 1991 (b) 2000

(c) 2010 (d) 2020

Figure 3. Classified LULC of the study area, i.e., Kano metropolis in (a) 1991, (b) 2000, (c) 2010, and
(d) 2020.
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Figure 5. Detection of LULC change dynamics between, (a) 1991 and 2000, (b) 2000 and 2010, (c) 2010
and 2020, and (d) 1991 and 2020.
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Table 4. Error/confusion matrix of the four time nodes, i.e., 1991, 2000, 2010, and 2020.

i. Error Matrix for the Year 1991

S/ No. LULC Classes Barren Land Built-Up Areas Vegetation Water Bodies Total

1. Barren Land 2015 134 6 32 2187
2. Built-up Areas 183 1528 103 6 1820
3. Vegetation 18 30 421 0 469
4. Water Bodies 0 18 1 134 153

5. Total 2216 1710 531 172 4629
Overall Accuracy = 88.53%, Kappa Coefficient = 0.8137

ii. Error Matrix for the Year 2000

S/ No. LULC Classes Barren Land Built-Up Areas Vegetation Water Bodies Total

1. Barren Land 2157 59 14 6 2236
2. Built-up Areas 6 1654 7 3 1670
3. Vegetation 18 234 368 0 620
4. Water Bodies 8 27 5 105 145

5. Total 2189 1974 394 114 4671
Overall Accuracy = 91.71%, Kappa Coefficient = 0.8652

iii. Error Matrix for Year 2010

S/ No. LULC Classes Barren Land Built-Up Areas Vegetation Water Bodies Total

1. Barren Land 2630 30 2 0 2662
2. Built-up Areas 0 3257 0 1 3258
3. Vegetation 0 246 367 1 614
4. Water Bodies 5 148 6 100 259

5. Total 2635 3681 375 102 6793
Overall Accuracy = 93.54%, Kappa Coefficient = 0.8891

iv. Error Matrix for Year 2020

S/ No. LULC Classes Barren Land Built-Up Areas Vegetation Water Bodies Total

1. Barren Land 2222 70 14 5 2311
2. Built-up Areas 0 4435 44 2 4481
3. Vegetation 3 247 1067 3 1320
4. Water Bodies 1 3 0 119 123

5. Total 2226 4755 1125 129 8235
Overall Accuracy = 95.24%, Kappa Coefficient = 0.9190

The spatiotemporal analysis of the LULC change dynamics revealed the study area’s
built-up land to have undergone positive changes throughout the three study periods.
It indicates the increase in the city’s built-up area by 30.34 km2 between 1991 and 2000,
42.76 km2 between 2000 and 2010, and 79.45 km2 between 2010 and 2020, signifying an
urban expansion of 152.33 km2 between 1991 and 2020. The rapid urban development
of Kano over the past three decades could be attributed to the continuous in-migration
of a large populace to the city due to various pull factors that include but are not limited
to suitable farmlands, better business and job opportunities, better urban infrastructure
and healthcare facilities, and many others. However, the study area’s barren land showed
negative changes during the study period. The result revealed a negative change of
−3.20 km2 from 1991 to 2000, −54.49 km2 from 2000 to 2010, and −114.89 km2 from 2010
to 2020, signifying a barren land loss of approximately −152.55 km2 between 1991 and
2020. This negative change/decline could be attributed to the significant transformation of
the city’s barren land/bare soils into built-up areas. The city’s vegetation showed negative
and positive changes between 1991 and 2020. The result indicated a negative change
of −7.45 km2 from 1991 to 2000, a positive change of 18.55 km2 from 2000 to 2010, and
35.47 km2 from 2010 to 2020. The negative change could be attributed to the development
of built-up areas and land encroachment engulfing the study area, while the positive
changes in vegetation may be linked to the city’s mechanized agriculture and various
afforestation and Fadama programs. The study area’s water bodies showed a negative
change of−19.69 km2 from 1991 to 2000,−6.82 km2 from 2000 to 2010, and−0.04 km2 from
2010 to 2020, signifying a loss of about 493.67% and a depreciation in the city’s water bodies
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of approximately −26.55 km2 over the period between 1991 and 2020. The continuous
decline in the extent of waterbodies could be attributed to the effect of global warming, the
city’s population growth, increased agricultural activities, and large-scale industrialization.
The rapid urban expansion of the city has also contributed to the significant water bodies’
decline due to conversion to other LULC categories during various urbanization processes.
Between 1991 and 2020, the built-up areas in Kano showed an annual increase of 5.09 km2

per year, followed by vegetation that increased annually by 1.55 km2. The study area
showed an annual decline in barren land by −5.76 km2 while water bodies decreased
annually by −0.89 km2, respectively.

3.4. Modeling and Prediction of Future Land Uses

A CA-Markov model integrated into the land change module of TerrSet geospatial
monitoring and modeling software, developed by Clark Labs, was utilized to simulate the
future LULC pattern of the study area in 2035 and 2050. The land use predictions were
based on the city’s historical LULC data and transition matrixes. In order to validate the
simulation model, the study area’s classified LULC maps of the period between 2010 and
2020 were utilized to produce the transition probability matrix, transition areas matrix, and
a set of conditional probability images. These data aided the prediction of future land uses
in Kano metropolis, Nigeria.

Transition Probability Matrix

The transition probability matrix was produced in this study by multiplying the
columns and the number of cells within the matrix. It indicated the likelihood that a
particular LULC class would transform into another class of land use. Table 5 presents a
4 × 4 matrix comprising the newer LULC categories in the columns and the older LULC
categories in the rows. The transition probability matrix highlighted the expected LULC
changes for the predicted years 2035 and 2050. For each projected year, i.e., 2035 and
2050, the error matrix row indicates the classes of land uses while the column presents
the transformation of various LULCs during the period under consideration. The result
revealed the built-up areas of Kano metropolis as the most consistent land cover class,
having transition probabilities of approximately 0.90 and 0.85 in 2035 and 2050, respectively.
This result suggests a low possibility of the city’s built-up areas transforming into other
LULC categories. For the predicted years 2035 and 2050, barren land had a transition
probability of approximately 0.53 in 2035, which later declined to roughly 0.31 in 2050. The
study area’s vegetation transition probabilities decreased from 0.49 to 0.31 between 2035
and 2050. Similarly, the city’s water bodies indicated a declining transition probability
of 0.09 in 2035 and 0.02 in 2050. The result revealed barren land and vegetation as the
most significant LULC class that contributed to the expansion of built-up areas due to
the rapid increase in their transition probabilities between 2035 and 2050. The outcome
suggests that urban growth and expanded built-up areas have contributed to the numerous
alterations of other LULC classes in the study area. Hence, this aligns with previous studies
that highlighted the importance of future LULC prediction in addressing the consequence
of rapid urban development that has constantly affected the ecosystem and influenced
human health [94,95]. Figures 6 and 7 present the mapping of the Markovian conditional
probabilities of the different LULC classes in 2035 and 2050, respectively. They indicate the
likelihood of a particular land cover having a similar image pixel. The red colors on the
map signify the highest probability, while dark blue represents the lowest probability.
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Table 5. Transition probability matrix (2010–2020).

i. 2035: Probability of Changing to

S/No. LULC Classes Barren Land Built-Up Area Vegetation Water Bodies

1. Barren Land 0.5329 0.2664 0.1933 0.0074
2. Built-up Area 0.0056 0.9007 0.0900 0.0037
3. Vegetation 0.0850 0.3959 0.4900 0.0291
4. Water Bodies 0.1341 0.5681 0.2056 0.0922

ii. 2050: Probability of Changing to

S/No. LULC Classes Barren Land Built-Up Area Vegetation Water Bodies

1. Barren Land 0.3107 0.4592 0.2192 0.0108
2. Built-up Area 0.0161 0.8522 0.1255 0.0062
3. Vegetation 0.0909 0.5826 0.3072 0.0194
4. Water Bodies 0.1046 0.6769 0.1963 0.0222

（a） （b）

（c） （d）

Figure 6. Markovian conditional probabilities for the predicted, (a) Barren Land, (b) Built-up Areas,
(c) Vegetation, and (d) Waterbodies in 2035.
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（a） （b）

（c） （d）

Figure 7. Markovian conditional probabilities for the predicted, (a) Barren Land, (b) Built-up Areas,
(c) Vegetation, and (d) Waterbodies in 2050.

3.5. Predicted LULC Patterns in 2035 and 2050

An accurate prediction of future LULC patterns requires validating the simulation
model. The kappa statistical index is one of the most widely used and acceptable tools for
evaluating the reliability and performance of simulation models [17]. Simulated land uses
are associated with the actual land uses to validate a LULC forecast made through a CA-
Markov model. Based on the classified LULC maps of Kano metropolis in 2000 and 2010, the
city’s land use was forecasted for 2020. The forecasted LULC map was compared with the
actual LULC map of 2020, and the kappa coefficient was then used to validate the efficacy
of the simulation model. The study examined the similarity between Kano’s forecasted
and actual LULC maps of 2020 using the kappa index. A positive (+) 1 kappa indicates
an absolute agreement, while a negative (−) 1 kappa signifies a less likely agreement [96].
IDRISI Terrsat software’s validation module was used to assess the simulation model’s
performance. The result revealed a 0.7816 K-no value, 0.8147 K-location value, 0.8063 K-
locationStrata value, and 0.7984 K-standard value, signifying good agreement between the
simulated and actual land uses of Kano metropolis. Therefore, the validated CA-model is
suitable for simulating the future LULC change dynamics of the study area. Figures 8 and 9
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show the spatial pattern of the four LULC categories in the projected years of 2035 and
2050, representing a 15- and 30-year planning period. The statistical data of the predicted
LULC based on the validated CA-Markov model are presented in Table 6. Based on the
results, Kano’s built-up areas are projected to cover approximately 307.90 km2, representing
53.53% of the city’s total landmass, in 2035. Barren land, vegetation, and water bodies are
anticipated to occupy an area of 139.67 km2, 121.40 km2, and 6.27 km2, respectively, over
the next 15 years. In addition, the study revealed the anticipated LULC distribution in
Kano metropolis over the next 30 years. By 2050, the built-up areas of Kano are projected
to cover approximately 364.88 km2, while barren land, vegetation, and water bodies are
estimated to cover 88.96 km2, 115.17 km2, and 6.23 km2, respectively.

Table 6. Statistical data of the predicted LULC in 2035 and 2050.

S/ No.

Simulated/
Projected Period

2035 Prediction 2050 Prediction

(15-Year Planning Period) (30-Year Planning Period)

LULC Classes Area (km2)
Area

(Percentage) Area (km2)
Area

(Percentage)

1. Barren Land 139.6665 24.2799 88.9605 15.4650
2. Built-up Area 307.8963 53.52522 364.8753 63.4306
3. Vegetation 121.4037 21.1050 115.1667 20.02078
4. Water Bodies 6.2694 1.08988 6.2334 1.08362

5. Total 575.2359 100 575.2359 100
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The study further employed the LCM of TerrSet software to analyze the anticipated
gains and losses in the different LULC classes for the years 2035 and 2050. The largest
gain during the 15-year (i.e., 2020 to 2035) and 30-year planning periods (i.e., 2020 to
2050) was observed in the study area’s built-up land, while barren lands showed the most
significant decline. Numerous alterations of LULC are expected to occur over the next
15 to 30 years, as presented in Figure 10. Between 2020 and 2035, the built-up areas of
Kano are forecast to show a positive net change of 89.18 km2, comprising a substantial
gain of 89.48 km2 and a negligible loss of 0.30 km2. Vegetation and waterbodies are also
anticipated to have a positive net change of 11.15 km2 and 0.89 km2, respectively. The city’s
barren land is projected to have a negative net change of −101.22 km2 in the next 15 years.
The change dynamics of the predicted LULC in 2050 reveal that between 2020 and 2050,
Kano is forecast to gain a built-up area of 146.60 km2, then lose 0.44 km2, resulting in a
146.16 km2 net change. The prediction result further indicated that the city’s vegetation and
water bodies would slightly increase by 4.91 km2 and 0.85 km2, respectively, while barren
lands will experience a net change of −151.93 km2 over the next 30 years. This decline
in the study area’s barren land will contribute 63.14 km2 to the development of the city’s
built-up areas in 2035 and increase it further to 110.89 km2 in 2050. Anthropogenic pressure
is a major factor contributing to the land use transformation in Kano. Other factors that
will contribute to the continuous alteration of the study area’s future land uses include but
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are not limited to internal migration, rapid population growth, and other socioeconomic
factors. The statistical data of the change dynamics of the predicted land uses are presented
in Table 7.

（a） （b）

Figure 10. Change dynamics of predicted LULC from, (a) 2020−2035, and (b) 2020−2050.

Table 7. Predicted change dynamics of LULC in 2035 and 2050.

LULC
Classes

LULC Change Dynamics 2020–2035 LULC Change Dynamics 2020–2050 Contributions to
Built-Up Area in

2035 (km2)

Contributions to
Built-Up Area in

2050 (km2)
Losses
(km2)

Gains
(km2) Net Change Losses

(km2)
Gains
(km2) Net Change

Barren Land −101.35 0.13 −101.22 −152.01 0.08 −151.93 63.14 110.89
Built-up Area −0.30 89.48 89.18 −0.44 146.60 146.16 - -

Vegetation −26.32 37.48 11.15 −34.67 39.58 4.91 23.85 33.18
Water Bodies −2.21 3.10 0.89 −2.13 2.99 0.85 2.19 2.09

4. Discussion

This study analyzed the LULC change dynamics in Kano metropolis using Landsat
satellite data and GIS techniques. Using the maximum likelihood algorithm of the su-
pervised classification method, the LULC pattern of the study was analyzed. Different
methods have been employed in previous environmental studies of LULC mapping [97].
However, the supervised maximum likelihood classification is identified as the most widely
adopted due to its simplicity and speed [8]. In addition, the method does not necessarily
require advanced knowledge of remote sensing and data science to achieve the desired
goal. The present study further employed a hybrid model of integrated cellular automata
and Markov chain, i.e., CA-Markov, to map and predict the future LULC change dynamics
of Kano metropolis. The CA-Markov model addressed the limitations of the individual
models by combining the spatial continuity of the CA model with the Markov chain’s ability
to predict future land uses as observed in a previous study of Majang Forest Biosphere
Reserves, Southwestern Ethiopia [11]. The classified LULC maps of the different time nodes
in the present study revealed overall accuracies above 85% and Kappa coefficients above
0.8, aligning with the earlier studies of Zadbagher et al. suggesting 70% as the minimum
threshold for a reliable LULC classification [85].



Remote Sens. 2022, 14, 6083 20 of 25

The analysis of the historical LULC change dynamics showed extensive growth and de-
velopment in the built-up areas of Kano metropolis, indicating an urban expansion around
the city’s metropolitan areas. Similar studies in other regions attributed the development
of open spaces in the peri-urban areas of six European regions to the rapid increase in
population. Such population growth has contributed significantly to urban congestion and
transformed other land uses into built-up areas [5]. The population of Kano metropolis has
rapidly increased from approximately 2.6 million in 2000 to 3.8 million in 2018. World Bank
estimates further suggest an increase to nearly 5.6 million by 2030 [59]. The consequences of
this population growth are the numerous alterations of LULC identified over the past three
decades and further changes expected in future years. The alteration in the LULC of the
Kano metropolis aligns with recent studies in Delhi that indicated the major transformation
of barren lands into urban development areas [98]. Over the past 29 years, the built-up
areas of Kano metropolis have expanded significantly, by approximately 69.75%, while
other land uses showed positive and negative changes between 1991 and 2020. Built-up
areas grew at the expense of barren lands, vegetation, and water bodies, contributing
126.99 km2, 12.83 km2, and 12.73 km2 to the expansion of urban areas, respectively. Similar
scenarios were observed in the urban development of Bangladesh [99], Vietnam, and the
six European countries of Belgium, Hungary, Spain, Poland, Slovenia, and Germany [100].
However, the vegetation cover of this study area initially showed a decline from 1991 to
2000 but expanded again from 2000 to 2020. This increase in vegetation could be linked to
the various Fadama programs and government efforts in achieving all-season farming, es-
pecially between 2010 and 2020. A similar increase in vegetation was observed in Nigeria’s
city of Zaria due to the city’s intensive afforestation scheme [8].

The forecasted land uses for the validation model indicated a very good agreement
between the simulated LULC of the study area in 2020 and the city’s actual LULC classes
in 2020. Hence, the predicted land uses of 2035 and 2050 simulated using the validated
CA-Markov model indicated the continuous trend of Kano’s built-up area increasing over
the next 15 and 30 years while barren land, vegetation, and water bodies are anticipated
to decline during the same period. Khanal [101] opines that urbanization contributes to
a decline in forest and agricultural lands. The anticipated trends of rapidly expanding
built-up areas transforming other important land cover types align with the recent study
that reported a similar scenario in the urbanization of other major cities in developing
countries [102]. Therefore, in order to avoid the environmental and climatic challenges
facing many global cities, achieving a balance between the development of built-up areas
and the conversation of natural land resources is crucial to achieving sustainable urban
development. Adopting open green spaces, green infrastructure, sustainable urban agricul-
ture, water conservation techniques, and various afforestation schemes will help promote
healthy living by reducing soil erosion, land degradation, environmental pollution, and sur-
face temperature [103,104]. The outcome of this study provide vital LULC data that would
significantly help the government and relevant authorities in the sustainable planning of
future urban development. In addition, the study provides valuable land use insights to
urban planners and decision-makers for appropriate infrastructural development.

5. Conclusions

The study examined the historical LULC change dynamics of Kano metropolis, Nigeria
in order to predict the city’s future land uses using Landsat multi-temporal satellite data
and GIS techniques. A hybrid model that combined cellular automata and the Markov
chain model was used to simulate the study area’s future LULC patterns in 2035 and
2050. The historical data show that between 1991 and 2020, the built-up area in the Kano
metropolis showed a significant expansion of about 152.56 km2, suggesting a 69.75% urban
development. Similarly, the city’s vegetation showed an increase of 46.58 km2 from 1991 to
2020, which could be linked to the city’s continuous population growth and improvement
in agricultural activities. The consequences of this growth in built-up areas and farmlands
are a substantial decline in the study area’s barren lands and water bodies of 172.58 km2
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and 26.55 km2, respectively. The predicted future LULC pattern indicates that the city’s
built-up areas will increase to approximately 307.90 km2 in 2035 and further expand to
364.88 km2 in 2050. The rapid urban expansion of Kano metropolis would continue to occur
around the central core and spread to the neighboring parts of the city, especially towards
the western and eastern corridors. The findings of this study indicate a rapid pace of urban
development in Kano over the past three decades, which will extend to the next 30 years, i.e.,
2050. Therefore, the utilization of satellite data and GIS technology could help significantly
in providing future spatial information and LULC data vital to effectively planning and
managing land resources. Although the present study demonstrated the efficiency of remote
sensing data and GIS techniques for LULC change analysis and prediction of future LULC
scenarios, further research that incorporates various environmental and socioeconomic
variables into the simulation model is needed. Such variables will help greatly in providing
a more accurate and reliable prediction of land uses in such a rapidly growing urban center.
The role of government policies and programs in the change dynamics of land uses could
also be highlighted. In addition, future studies might consider the utilization of advanced
satellite platforms such as QuickBird, GeoEye, and WorldView that provide images of
better spatial information regarding the complex and heterogonous land use features in
urban areas.
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