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Abstract: This paper deals with a UAV LiDAR methodological approach for the identification and
extraction of archaeological features under canopy in hilly Mediterranean environments, character-
ized by complex topography and strong erosion. The presence of trees and undergrowth makes the
reconnaissance of archaeological features and remains very difficult, while the erosion, increased by
slope, tends to adversely affect the microtopographical features of potential archaeological interest,
thus making them hardly identifiable. For the purpose of our investigations, a UAV LiDAR survey
has been carried out at Perticara (located in Basilicata southern Italy), an abandoned medieval village
located in a geologically fragile area, characterized by complex topography, strong erosion, and
a dense forest cover. All of these characteristics pose serious challenge issues and make this site
particularly significant and attractive for the setting and testing of an optimal LiDAR-based approach
to analyze hilly forested regions searching for subtle archaeological features. The LiDAR based
investigations were based on three steps: (i) field data acquisition and data pre-processing, (ii) data
post-processing, and (iii) semi-automatic feature extraction method based on machine learning and
local statistics. The results obtained from the LiDAR based analyses (successfully confirmed by the
field survey) made it possible to identify the lost medieval village that represents an emblematic
case of settlement abandoned during the crisis of the late Middle Ages that affected most regions in
southern Italy.

Keywords: LiDAR; UAV; landslides; deserted villages in the Middle Ages; machine learning

1. Introduction

Archaeological heritage in woodland is undoubtedly protected from the destructive
effect of modern anthropogenic activities by the presence of tree cover, which, at the same
time, prevents knowledge of them and makes investigations difficult and time consuming.

The tree cover makes geophysical prospection and excavations almost impossible and
the use of remote sensing based on optical imagery quite ineffective. In these conditions,
LiDAR is the only tool that enables us to “filter out” the canopy to reveal archaeological
remains and microtopographical changes of cultural interest. A LiDAR scanner, mounted
on aerial platforms, including unmanned aerial vehicles (UAVs), sends hundreds of thou-
sands of pulses of light toward the area to be investigated. Most of them are reflected off
the forest canopy and a few reach the ground and are reflected back through the canopy.
Recording how long it takes the light to return to the scanner produces a point cloud.
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Over the past two decades, LiDAR has found increasing popularity in archaeology
and has opened new perspectives in the study of the human past, revolutionizing the
domain of surveying to capture and depict archaeological features under canopy [1–11].
The popularity of this approach in the archaeological field is such that it has led experts to
create workflows and tools for archaeology that are different from approaches used in other
disciplines, as described in [12,13]. Moreover, numerous studies also adopted a standard
approach, consisting of: (i) raw data acquisition and processing [7,14,15], (ii) point cloud
processing and post-processing [14,16], (iii) archaeological interpretation phase [12,16,17],
and (iv) dissemination [4,12,15,17].

The study of abandoned medieval settlements in highland areas is one of the fields of
archaeological research that can greatly benefit from the use of LiDAR technology [5]. They
are the result of “social desertification” of vast territories in Europe since the first decade
of the 14th century, characterized by a demographic decline [18–22] occurring after four
centuries of prosperity (from the 10th to 13th century) and population growth [19].

As a whole, there are two main reasons why LiDAR lends itself well to the survey and
study of abandoned or lost medieval settlements:

1) Their location in hilly heights (in most cases for defensive reasons), especially in
southern Europe, hence the need to discriminate anthropic topographic and microto-
pographic features from those of geomorphological nature [23,24];

2) The forest/vegetation cover that generally tends to hide a large part of these settle-
ments, hence the need to filter out the point clouds of the vegetation to reveal the
archaeological features.

These challenging conditions can be faced using:

i. A LiDAR survey with a very high density of points that typically can be obtained
by UAV;

ii. Point cloud processing approaches devised for archaeological micro-relief features
that are generally very subtle and, therefore, could be completely filtered out
(mistaken for low vegetation) [13];

iii. Effective enhancement using digital terrain models and feature extraction methods
to facilitate and improve the archaeological interpretation.

Significant advances in and from LiDAR applications have been obtained in the last
decade including: (i) DTM (Digital Terrain Model), DFM (Digital Feature Model), or
NVS (Non-Vegetated Surface) [12,13,25] visualization enhancement techniques, such as
Sky View Factor [26], Local Relief Model [27], Openness [28], whose performances are
strongly dependent on local conditions and generally evaluated subjectively through visual
inspections; (ii) supervised and unsupervised classification, such as Object-Based Image
Analysis (OBIA), Machine-Learning classification (ML), and Deep-Learning classification
(DL) [4,29–32].

This paper presents a three-step methodological approach, based on (i) field data ac-
quisition, (ii) data pre-processing and data post-processing aimed at data enhancement, and
(iii) automatic feature extraction, devised to identify subtle archaeological microtopography
under canopy in Mediterranean environments.

For this purpose, a UAV LiDAR survey has been carried out at Perticara (located
in Basilicata, Southern Italy), an abandoned medieval village located in a geologically
fragile area characterized by complex topography and strong erosion and covered by a
dense vegetation canopy. All of these characteristics pose seriously challenging issues for
the identification and extraction of the subtle microtopography of archaeological interest
and make this site particularly significant and attractive for the setting and testing of
LiDAR-based automatic chain processing.

From an archaeological point of view, the investigations were performed both to detect
and to spatially characterize the urban shape of the site and to provide information to
understand the potential causes that determined its abandonment.
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From a technological and methodological point of view, the aim is to evaluate the poten-
tial of UAV LIDAR coupled with machine learning in identifying and extracting archaeological
features, including not only wall remains (easy to identify) but also, and above all, subtle
proxy indicators related to microtopographical variations under dense canopy.

2. Material and Method
2.1. Study Area: Historical and Archaeological Setting

The study area is the abandoned village of Perticara settled on a hill overlooking
the Sauro Valley south of Basilicata, a region situated between Apulia and Campania (in
Southern Italy).

Basilicata, as many other regions of southern Europe, went through a period of pro-
found social, territorial, and economic reorganization, accompanied by a demographic
decrease [33]. Many villages and rural settlements disappeared and the surviving popu-
lation moved to nearby towns or villages. In particular, from 1277 to 1447 approximately
30% of the villages in Basilicata were abandoned for reasons that are still not entirely clear
today. This phenomenon was accompanied by a population decline of 15% from 1277 to
1320 and of 4% from 1320 to 1447 [5].

The Sauro valley is characterized by an intense human presence from the proto-history
to the Middle Ages; it is archeologically documented. In particular, there are several sites
that have been permanently inhabited from Late Antiquity to the Middle Ages, such as
Torri, Cornito (currently called Corleto), and the recently investigated “Eremita” site [34].
They represent different kinds of settlement, from the vicus (houses and lands in the same
settlement, developed during Late Antiquity) to the castrum (medieval fortified village)
(Figure 1).

Figure 1. Geographical location of the site of the abandoned village of Perticara (Coordinate Reference
System WGS 84 EPSG::4326).

The archaeological research in this area has brought to light numerous findings—dated
from the classical age to the modern age—related to works of regimentation of meteoric
and spring waters, designed and used both to (i) rationalize the use of water resources
and (ii) to protect the settlements—with the related agricultural and pastoral activities—
from the frequent landslides affecting the site. The attention paid to the management of
hydrogeological risk allowed the foundation and development of some settlements in these
geologically unstable areas. The most important are: (i) Torri, a seat of the diocese in the
12th century, located on a plateau to control the confluence of the Piscone torrent with the
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river Sauro (damaged by a landslide in 2003); (ii) Perticara, named Castrum Perticarii in the
documents of the 12th century.

Perticara was founded between the 11th and 12th centuries. It had a period of great
demographic development between the mid-12th century and the 13th century. In particu-
lar, according to the Angevin tax register dating back to 1277, Perticara paid 240 “fuochi”
or hearthstone (about 1200 inhabitants), more than twice as much as the neighboring cen-
ters of Corleto and Guardia (101 and 100). In 1320, the number of hearthstones halved.
The decline of the village continued without interruption until it disappeared in the 15th
century, as evidenced by the taxation of 1447 that no longer included Perticara among
taxed inhabited settlements. The causes of this abandonment—that probably occurred
between the end of the 14th century and the beginning of the 15th century—are various;
they are linked to global and local factors, as in other areas of the region. In Basilicata,
many rural settlements came into crisis due to the tax burden, epidemics, pestilences, and
widespread conflicts in the first decades of the Angevin age [35]. Demographic decline and
settlement abandonment are frequent, especially in the case of destructive events such as
an earthquake or a landslide [36] that probably caused the decline of Perticara.

The historical reconstruction of the agricultural landscape and land use, the approx-
imate data of the population (taken from the tax registers), and the archaeological and
architectural evidence allow us to add information to the general and local framework and
to interpret them.

2.2. Geological and Geomorphological Setting

The site is located between the axial and the frontal area of the southern Apennine
Mountains, 5 km northeast of Corleto Perticara village (Figure 2a).

The southern Apennines consist of a fold-and-thrust belt developed from the Upper
Oligocene–Lower Miocene boundary onwards as a result of the tectonic accretion wedge
towards NE of different Meso–Cenozoic paleodomains [37] (Figure 2b).

Perticara is located along the Caperrino Ridge. This morphostructure is 12 km long
and NNW-SSE oriented. It separates the Fiumara di Gorgoglione drainage basin in the
north-east from the Fiumarella di Corleto drainage basin in the south-western area. The
geomorphological features of the area are closely related to the outcropping units. In
particular, lithology and bedding attitude strictly control the acclivity of the slope. Slopes
with high acclivity widely occur in the eastern sectors. Locally, the slope gradient is
reduced considerably only in areas where clay deposits such as varicolored clays and shales
crop out. Along the basin slopes, different geomorphological features such as trenches
and morphological steps are very common. The landslides recognized in the study area
have been classified as complex landslides [38]. In particular, the landslides occurring in
the study area are controlled by a large number of factors, some of them often acting in
concert. Among these, bedding attitude, tectonic structures, the thickness of the various
lithological units, and the lithology play a fundamental rule. Differences in permeability
and competence of the various rock types, which are strictly linked with compositional
variations and/or grain size, are other important factors to take into account. In addition,
the landslides detected were triggered in the past by abundant precipitation. Land sliding
is also conditioned by topographic parameters, such as the slope gradient and the exposure.
In particular, this latter parameter controls soil moisture and consequently the amount of
vegetation cover. Based on a detailed field survey, supported by the analysis of stereoscopic
aerial photographs, different landslide types, including earthflows, complex landslides,
and falls, have been recognized and mapped (Figure 3). In addition to landslides, areas
affected by slow soil movements such as solifluction have been detected. In particular, the
landslide that led to the abandonment of the Perticara site started in the south-eastern part
of the crest of Caperrino Mount and diverted the Fiumarella di Corleto path downstream.
The landslide was classified as a large earthflow and is currently considered dormant [39].
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Figure 2. (A) Geological sketch map of the southern Apennines, (B) relationship between different
stratigraphic–structural units ([40], modified).

Figure 3. Geomorphological setting of the Perticara site.

2.3. Methods

The methodology used for the analysis at the Perticara site can be summarized in
three different and separate phases: (i) field data acquisition and pre-processing, (ii) data
post-processing, and (iii) automatic feature extraction (Figure 4).
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Figure 4. LiDAR processing flowchart.

2.3.1. Field Data Acquisition and Data Processing

The LiDAR survey at the Perticara site was carried out using a 5-echo Riegl MiniVux-3
LiDAR (RIEGL Laser Measurement Systems GmbH, Austria), equipped with a GNSS PPK
positioning system, used as a payload on a DJI Matrice 600 drone.

The LiDAR acquisition covered a useful area, i.e., free of noise due to beam scattering,
of 10,645 ha. The flight was conducted at an altitude of 70 m a.g.l. (above ground level), with
a lateral spacing between strips of 20 m, at a constant speed of 3 m/s, and a 120 degree FOV
(Field of View), in a double acquisition grid mode, using the UgCS pro v.4.6520 software
(SPH Engineering, Latvia), using the DEM (Digital Elevation Model) provided by Tinitaly
(http://tinitaly.pi.ingv.it/) for the Italian peninsula [41–44] (Figure 5a,b). The acquisition
was conducted in a double grid as it was considered by the authors advantageous compared
with a single acquisition (Figure 5c–f). In fact, by having a LiDAR operating on a drone
and not an airplane/helicopter, it was very easy to set up the second flight plan, with an
expenditure of time and resources of a few tens of minutes.

The flight was conducted on 12 December 2021, during a period in which there is less
undergrowth and less foliage in the trees with respect to other months, to the advantage
of a greater amount of ground points. The local vegetation consists of oak, downy oaks,
broom, and grass.

The data acquisition was then followed by the data pre-processing phase, as described
by Riegl for this instrument. The pre-processing phases to pass from the data acquired
from the LiDAR to the raw georeferenced point cloud were: (i) acquisition of the RINEX
GNSS data coming from the fixed stations located on the Italian peninsula; (ii) correction
of the route acquired by the PPK antenna on the basis of the data from the fixed stations
in the Applanix POSPac UAV software v.8.7 (Applanix, Richmond Hill, Ontario); (iii) use
of Riegl’s RiPROCESS v.1.9 suite for the creation of the point cloud in the WGS 84 UTM
33 N system. Riegl’s Riprocess software allows point clouds to be generated from LiDAR

http://tinitaly.pi.ingv.it/
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data acquired at multiple times (several acquisitions) by reprocessing the data as if they
were from a single flight to obtain a single point cloud. The software uses the Project
Merge Wizard and RiPRECISION commands to merge the two flights by (i) setting the
roto-translation matrices to a raw matrix and then re-processing a valid one for both,
(ii) generating the point cloud using the data from the two scans, and (iii) refining the
global alignment of the data.

Figure 5. Representation of the flight route performed for the LiDAR survey: (a) first route and
elevation profile, (b) second route and elevation profile, (c,d) schematization of the advantage of the
methodology for structures/topographical microreliefs; (e,f) schematization of the advantage of the
methodology on sloped landscapes.
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According to the LiDAR specifications, under ideal conditions, each individual ac-
quisition strip generated a point cloud with a density of 142 points/m2. However, the
acquisition took place in dual grid mode, which affected the density of points per m2. The
density was inhomogeneous due to a number of determining factors such as (i) sum of
the points/m2 of the two individual point clouds generated by the individual acquisitions,
(ii) drone speed subject to microdelays/accelerations due to wind, and (iii) morphological
discontinuity of the recorded subject.

2.3.2. Cloud Point Processing and Automatic Feature Extraction

Once the georeferenced point cloud was obtained by LiDAR processing (see
Section 2.3.1), procedures for point classification were prepared. Several methods for clas-
sifying ground points from off-ground points can be found in the literature [29,30,45–52].
The extraction of the ground profile from the point cloud was achieved using Global
Mapper® v.22.1 software. Global Mapper® (Blue Marble Geographics, Maine, U.S.A.) uses
a hybrid filter type (BMHF) [45].

The classification operation of the point cloud to obtain the DFM (terminology chosen
in accordance with [13] as it indicates both the digital terrain model and the features of
archaeological interest embedded in it or completely above ground) were: (i) classification
of ground points from off-ground points using the automatic classification algorithm in
the software; (ii) removal of noise points (i.e., points too far from the points classified as
ground). Finally, the classified point cloud was exported. The classified point cloud, for
study interest classes only, had a varying density of points per m2 from a minimum in
areas with high vegetation (0 to 30 points/m2 approx.), to areas with less dense vegetation
(80–150 points/m2 approx.), to a maximum in bare areas (600–800 points/m2 approx.).

The point cloud was then subjected to a Spatially Resampling Interpolation using
the open-source software Cloud Compare v.2.12.4 to obtain a cloud with a constant point
density, set with a spacing GSD (Ground Sample Distance) of 0.02 m, using the rasterize tool.
The aim of this tool is to convert the point cloud into a 2.5D grid that can be re-exported as
a new point cloud, mesh, or raster (georeferenced) [53]. This task can also be conducted
using the function LasThin in the LASTools software (Rapidlasso GmbH, Germany), often
used for classifying LiDAR data in archaeology [12,13]. The DFM was then created and
exported using the same command, with a cell of 0.02 × 0.02 m (Figure 6).

Figure 6. Comparison of (a) point cloud created by merging data from the two LiDAR acquisitions,
and (b) point cloud generated by Cloud Compare.

The DFM obtained was then subjected to several operations to improve the ren-
dering and visibility of the archaeological features. The operations were of two types:
(i) noise reduction of the DFM, according to the methodology already proposed in [4,29,54];
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(ii) creation of DFM derived from different visualization techniques, as proposed for ar-
chaeological studies in [1,5,26,55–57].

Noise and speckle reduction was done using the GRASS GIS operator, in the QGIS
software. The algorithm used was an enhanced Lee filter [58]. Lee filter reduces noise
by applying a spatial filter to each pixel and is based on the analysis of local statistics
calculated in a square window. The value of the pixel in the center of the window (set to
9× 9 in the present study) is calculated as the mean or weighted average of the neighboring
pixels. The enhanced Lee filter is an improved version of the Lee filter that not only reduces
noise but also preserves the detail and sharpness of the original image [59]. The value of
the beveled pixel is then calculated as (1):

LM for CI ≤ CU
LM * K + PC * (1 − K) for CU < CI < Cmax

PC for CI ≥ Cmax

(1)

where

I. LM is the Local Mean of filter window;
II. CU = 1√Nlooks is the noise variation coefficient;

III. Cmax =
√

1+2
NLooks is the maximum noise variation coefficient;

IV. CI = SD
LM

is the image variation coefficient;

V. K = e(−D(CI−CU)/(Cmax−CI);
VI. PC is the Center Pixel value of window;
VII. SD is the Standard Deviation in filter window;
VIII. NLooks is the Number of Looks;
IX. D is the Damping factor.

After filtering with the enhanced Lee filter, the second operation performed was the
enhancement of DFM, creating derivatives based on a number of visualization techniques.
These techniques are generally based on how the illumination interacts with the points
in the DFM as discussed in [5,26,57,60]. For this study, the open source tool RVT (Relief
Visualization Toolbox) developed by Kokalj et al. [57] was used in order to create useful
derivatives for site analysis (Table 1).

Table 1. Derivatives based on visualization techniques.

Visualization Method Parameters

Analytical Hillshading Sun azimuth (deg): 315; Sun elevation angle (deg): 35

Hillshading from Multiple Directions Number of directions: 16; Sun elevation angle (deg): 35

PCA of Hillshading Number of components to save: 3

Slope Gradient No parameters required

Simple Local Relief Model Radius for trend assessment (pixel): 20

Sky-View Factor Number of search directions: 16; search radius (pixel): 20

Openness Positive Number of search directions: 16; search radius (pixel): 20

Openness Negative Number of search directions: 16; search radius (pixel): 20

Archaeological (VAT) Used preset: general

The data thus produced were then used for the classification of features of interest in
the reconstruction of the archaeological context.

2.3.3. A Machine Learning-Based Approach for a Semi-Automatic Feature Extraction

The process of classification to extract features of archaeological interest is based on the
following steps: (i) selection of data to be classified; (ii) choice of the classifier; (iii) prepa-
ration of data for the classification; (iv) classification run; (v) extraction of local statistics;
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(vi) feature identification and cleaning. The classification operations were automatic (unsu-
pervised classification); however, the second stages of operations, namely segmentation,
cleaning and identification, were supervised.

The data used for the classification were those produced by the DFM visualization
enhancement processing as described in Section 2.3.2 specifically: (i) Hillshading from
Multiple Directions (HS); (ii) Slope Gradient (Slope); (iii) Simple Local Relief Model (SLRM);
(iv) Sky-View Factor (SVF); (v) Anisotropic Sky-View Factor; (vi) Openness Positive (OP);
(vii) Openness Negative (ON); (viii) Archaeological (VAT) derived from a blend of SVF, OP,
Slope, and Analytical Hillshading.

The choice of the data to be used was then succeeded by the choice of the classifier
to be used before the feature segmentation procedures. The preparatory operations for
classification and ISODATA classification were done using SAGA GIS 7.8.2 operating
within the QGIS environment [61].

A data normalization operation was applied before classifying the data. The goal of
normalization operations is to transform all data to a similar scale in order to improve the
performance of classification algorithms. There are several types of normalization, such
as: (i) scaling to a range; (ii) clipping; (iii) log scaling; (iv) z-score [62–65]. The type of
normalization used is scaling, which means converting feature values into a standard range
(e.g., 0 to 1, −1 to 1), according to the Formula (2):

XI = (X − Xmin)/(Xmax − Xmin) (2)

The data thus processed were subsequently used for classification.
The operations were carried out using an unsupervised ISODATA classifier. There

are several types of unsupervised classifiers used in the context of Remote Sensing studies
applied to archaeology, such as (i) the Kmeans clustering algorithm and (ii) the ISO-
DATA (Iterative Self-Organizing Data Analysis) algorithm [66–68]. Unsupervised classifi-
cation algorithms classify pixels on the basis of their characteristics (e.g., spectral feature)
without the need for prior training. This is optimal in the context of an archaeological
study based on LiDAR data derivatives, as features of archaeological interest are not prior
known [69–72]. Seven classes were used for clustering. The present study was conducted
using an ISODATA-type classification.

A LISA (Local Indicator of Spatial Autocorrelation) process was then applied to the
classified data via ISODATA to improve the visualization of the spatial aggregation and
autocorrelation of pixels [73,74].

The function was applied to calculate the spatial autocorrelation using the indices:
(i) Moran’s I, (ii) Geary’s C, and (iii) Getis–Ord G index [75–77]. Moran’s I, Geary’s C, and
Getis–Ord G indices were calculated in accordance with Anselin (3, 4) [75] and Getis–Ord
Formula (5) [76]:

Ii = Zi ∑
j

WijZj (3)

C =
(N − 1)∑i ∑j Wij

(
xi − xj

)2

2(∑i ∑j Wij)∑i Z2
i

(4)

G∗i =
∑j Wij(d)xj

∑j xj
(5)

where (i) Zi is the deviation of the variable of interest; (ii) Wij is a spatial contiguity matrix
with a zero diagonal and the off-diagonal non-zero elements indicating the contiguity of
positions i and j; (iii) N is the number of the pixels; (iv) xi and xj are intensity in points i and
j (with i 6= j) [77]. The spatial autocorrelation analysis outputs a new image where pixels
are aggregated for their correlation in a window around a pixel, highlighting features not
always immediately visible and reducing background noise (e.g., salt and pepper).

Among the created indices of local spatial autocorrelation, the Getis–Ord G index
was used for the subsequent segmentation phase in order to extract features of interest
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in the reconstruction of the archaeological landscape. Segmentation is a process of the
Object-Based Image Analysis (OBIA) that involves the classification of features on the
basis of several variables such as (i) pixel value, (ii) object shape, (iii) textural information,
(iv) neighborhood analysis, as opposed to pixel-oriented classification, usually used in
the analysis of LiDAR data for archaeological purposes [32,60,78–81]. For this study, seg-
mentation was applied directly to the Getis–Ord G index, with the following parameters:
(i) spatial radius of the neighborhood equal to 5; (ii) minimum region size equal to 40. Fi-
nally, the resulting vector file was further cleaned using a spatial criterion, with a threshold
based on the surface area (area in m2) of the individual features. The filtering scheme was
carried out using a progressive threshold as follows: (i) all vectors with area < 1 m2 and
area > 12,000 m2 were removed (considered to be scattered pixels and background noise
of the source data, respectively); (ii) relying on the automatic categorization of the QGIS
software for vector display, vectors with area < 3 m2 were removed because they are not
considered useful for archaeological purposes.

All the data thus produced were then analyzed and interpreted in a GIS system.
The data derived from the LiDAR acquisition were also observed by archaeologists to

manually trace structures and microreliefs of possible archaeological interest identifiable
on them.

Finally, in order to evaluate the accuracy of the result obtained from the automatic
extraction, functions were applied to understand the overlap of the automatically ex-
tracted features and those optically identified by the archaeologists, following the example
proposed by Masini et al. [4].

The method used to estimate the linear length overlap between automatically identi-
fied features and manually identified features in the different LiDAR-derived products is
described by the Formula (6):

µxi =
LxiFDM − LxiAEF
LxiFDM + LxiAEF

(6)

where µxi is a modified version of the normalized visibility index proposed by Masini et al. [4],
referring to the linear length overlap between the length of segments identified automatically
by the automatic extraction process (LxiAEF) and those identified optically on the different
derived LiDAR product (LxiFDM). The result is a number between−1 and 1, where values close
to 0 indicate a good match while values tending toward −1 and 1 indicate underestimation or
overestimation of the segment length by the segmentation algorithm, respectively.

The segments considered for this analysis were then divided into classes (e.g., walls,
buildings, and tower) and Formula (7) was applied to calculate the weighted average
normalized visibility index as proposed in Masini et al. [4].

µLDM =
∑ LxiFDM ∗ µxi

∑ LxiAEF
(7)

3. Results and Discussion
3.1. Results and Discussion: LiDAR Data, Derived LiDAR DFM, and Automatic Feature
Extraction Methods

The elaborations conducted on the data acquired at the Perticara site have improved
the understanding of the medieval site, as well as the morphology of the landscape in the
immediate surroundings. The key elaboration in the extraction of the information was
the point cloud classification. The result was a quite clean DFM, subsequently further
smoothed thanks to the enhanced Lee filter (Figure 7).
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Figure 7. (a) Classified ground/non-ground point cloud; (b) filtered point cloud (top view);
(c) filtered point cloud (perspective view); (d) Digital Surface Model (DSM), hillshading; (e) en-
hanced Lee filtered Digital Terrain Model (DFM), hillshading.

Although the DFM showed microreliefs and traces of archaeological interest, the
products derived from it (see Section 2.3.2) significantly improved this visibility (Figure 8).

Figure 8. DFM derived products: (a) HS; (b) MHS; (c) PCA of HS; (d) Slope; (e) SLRM; (f) SVF;
(g) OP; (h) ON; (i) Archaeological VAT.
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Among the DFM-derived products: (i) Hillshading, Multiple Hillshading (MSH), and
PCA (Principal Component Analysis) of Hillshading are among the most automatically
understandable and provide the immediate overview of the ground and of the microreliefs;
(ii) on the contrary, Slope, SLRM, SVF, OP, ON, and Archaeological VAT require a minimum
of interpretation, although they greatly improve the visibility of microreliefs, archaeological
structures, and landscape elements (e.g., landslides, quarries).

In addition, derivative products were crucial for automatic classification by unsuper-
vised classifiers. The result of the ISODATA classification was a single output, against
multiple derived products, from which only features of interest to the presented study were
subsequently extracted. However, the automatic feature extraction was achieved by apply-
ing a segmentation step obtained through LISA (Local Indicators of Spatial Association)
indices, of which the most useful in this particular case was the Getis–Ord G index.

An important contribution was made by the interpretation of features by archaeologists
and geomorphologists using GIS, which allowed: (i) the classification of features useful for
the reconstruction of the ancient context, (ii) the exclusion of false positives, and (iii) the
recording of features missed by the unsupervised classification (Figure 9).

Figure 9. (a) ISODATA result; (b) Getis–Ord G index; (c) extracted features after the first cleaning
operation; (d) archaeological and geomorphological characterization after second cleaning operation
(see Section 2.3.3).

The method is inspired by Masini et al. [4] for the medieval site of Cisterna, which is
developed according to the scheme: (i) LiDAR derived (i.e., SVF), (ii) LISA (Geary’s C),
(iii) ISODATA, and (iv) segmentation [4].

In difference to this process, the method used by this study is structured in such a
way as to (i) minimize manual operations by merging the data through normalization and
classification operations and (ii) reduce the salt-and-pepper effect produced by the high
resolution, through LISA (Getis–Ord G index), before performing segmentation. In fact, the
substantial difference between the two studies lies in the different resolution of the data,
which in the case of Cisterna reaches 0.5 m/pixel while in the case of this work it is about
0.02 m/pixel. The very high resolution available in the case of the Perticara datum on the
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one hand allows for a sharp image of the features and microreliefs of archaeological interest,
while on the other hand it presents a large amount of microfeature and spackle, especially
when subjected to Geary’s C index. For this reason, the process has been modified so that
pixels are clustered in the best way possible (e.g., enhanced Lee filter, classification, LISA)
and the noisy effects that such high resolution can give in the case of automatic feature
identification are reduced.

3.2. Results and Consideration about Accuracy Assessment of the Automatic Extraction Method

The results of the comparison between automatically and manually identified features,
obtained as described in the methodologies, are shown in Table 2 and Figures 10 and 11.

Table 2. Testing for the accuracy of the automatic versus the manual extraction method. The best
results are achieved for the normalized visibility index of archaeological features that are related to
OP and SLRM for building feature and to SVF for walls and perimeter features.

xi L (m) OP
(m)

SLRM
(m)

PCA
(m)

SVF
(m)

Slope
(m)

VAT
(m) µOP µSLRM µPCA µSVF µSlope µVAT

Wall
and

perime-
ter
fea-

tures

W1 28.3 28.4 28 26.7 27.8 28.8 28.8 0.0018 −0.0053 −0.0291 −0.0089 0.0088 0.0088

W2 21.1 21.1 22 21.6 21.9 21.3 21 0.0000 0.0209 0.0117 0.0186 0.0047 −0.0024

W3 52.6 52.8 49.2 50.1 52.4 48.1 52 0.0019 −0.0334 −0.0243 −0.0019 −0.0447 −0.0057

W4 19.2 10 17.4 16.5 17.6 16.8 15.8 −0.3151 −0.0492 −0.0756 −0.0435 −0.0667 −0.0971

W5 32 33 36 30.6 33.1 23.4 32.1 0.0154 0.0588 −0.0224 0.0169 −0.1552 0.0016

W6 48.6 39.7 31.1 44.4 48 49 46.4 −0.1008 −0.2196 −0.0452 −0.0062 0.0041 −0.0232

∑Lw µLDM −0.032 −0.034 −0.028 −0.002 −0.031 −0.013

−3.20% −3.4% −2.8% −0.20% −3.10% −1.3%

Buildings

B1 83 78.3 83.8 49 75 83.2 82 −0.0291 0.0048 −0.2576 −0.0506 0.0012 −0.0061

B2 14.7 13.5 13.8 10.7 11.8 12.4 13.9 −0.0426 −0.0316 −0.1575 −0.1094 −0.0849 −0.0280

B3 16 14.7 14.6 11.6 12.3 11 12.4 −0.0423 −0.0458 −0.1594 −0.1307 −0.1852 −0.1268

B4 17.9 19.2 20 17.7 16.3 15.3 15.8 0.0350 0.0554 −0.0056 −0.0468 −0.0783 −0.0623

B5 22 21.3 21.3 19.9 20 19.5 20.5 −0.0162 −0.0162 −0.0501 −0.0476 −0.0602 −0.0353

B6 14 13.5 13.1 13.4 13.6 12.9 12.9 −0.0182 −0.0332 −0.0219 −0.0145 −0.0409 −0.0409

B7 7.9 7.5 7.5 7.6 7.5 7.1 7.6 −0.0260 −0.0260 −0.0194 −0.0260 −0.0533 −0.0194

B8 19 21 21.8 18.4 18.1 17.1 18.8 0.0500 0.0686 −0.0160 −0.0243 −0.0526 −0.0053

B9 48 49.5 49.1 46.9 46.1 46.1 48.5 0.0154 0.0113 −0.0116 −0.0202 −0.0202 0.0052

B10 9.6 6.9 9.1 8.4 8.6 7.9 8.8 −0.1636 −0.0267 −0.0667 −0.0549 −0.0971 −0.0435

B11 15.6 22.9 15.1 22 23.6 20.9 21.8 0.1896 −0.0163 0.1702 0.2041 0.1452 0.1658

B12 32.9 31.1 31.1 31.8 26.6 26.1 30.3 −0.0281 −0.0281 −0.0170 −0.1059 −0.1153 −0.0411

B13 64.8 66 58.7 64.1 59.3 0 61.6 0.0092 −0.0494 −0.0054 −0.0443 −1.0000 −0.0253

B14 31.2 30.9 31.7 30.8 29.3 30.6 26.5 −0.0048 0.0079 −0.0065 −0.0314 −0.0097 −0.0815

B15 14.1 14.7 14.9 13.7 13.4 13.4 13.4 0.0208 0.0276 −0.0144 −0.0255 −0.0255 −0.0255

B16 26.1 25.9 25.3 24.4 24.6 24.1 25.2 −0.0038 −0.0156 −0.0337 −0.0296 −0.0398 −0.0175

B17 11.7 15.9 15.8 14.4 15.1 11.5 14.7 0.1522 0.1491 0.1034 0.1269 −0.0086 0.1136

B18 12 13 12.4 11.9 12 12 12.6 0.0400 0.0164 −0.0042 0.0000 0.0000 0.0244

B19 10.6 12 10.8 11 10.4 9.4 10.4 0.0619 0.0093 0.0185 −0.0095 −0.0600 −0.0095

B20 17.9 16.7 17.4 17 15.3 14.6 15.1 −0.0347 −0.0142 −0.0258 −0.0783 −0.1015 −0.0848

∑Lw µLDM 0.0088 −0.0002 −0.0332 −0.0259 −0.0257 −0.0135

0.88% −0.02% −3.32% −2.59% −2.57% −1.35%

Tower T1 32.2 28.7 28.5 36.1 35.8 36 35.4 −0.0575 −0.0610 0.0571 0.0529 0.0557 0.0473

∑Lw µLDM −0.0512 −0.0540 0.0640 0.0589 0.0623 0.0520

−5.12% −5.4% 6.4% 5.89% 6.23% 5.2%

Automatically extracted data were compared with those identified by archaeologists
on LiDAR derivatives (Figure 10a,b).

The testing for the accuracy of the automatic versus the manual extraction method
provided two interesting results. The first is based on the length of segments identified.
As shown in Table 2 and Figures 10 and 11, if a segment was identified simultaneously by
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the automatic extraction method and the autopsy identification, the discrepancy between
the two is in most cases very small. As shown in Table 2, in many cases an average overall
overlap between different LiDAR derivatives greater than 90% is achieved (e.g., w1: 98%,
w2: 98%, w3: 96%, b2: 95%, b6: 96%). In addition, Table 2 shows values very close to 0
(high percentage of accuracy) ranging from +1 to −1, in agreement with Formula (6). These
values are negative on average and indicate that the adopted automatic extraction system
tends to slightly overestimate the length of segments.

Figure 10. (a) Archaeological and geomorphological characterization after second cleaning operation;
(b) manually identified features.

Figure 11. Comparison of the length of segments identified automatically and manually, according
to Formula (6).
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Figure 12 shows aggregated data by archaeological features (walls, buildings, and
towers) and the enhancement techniques (OP, SLRM, PCA, SVF, Slope, VAT).

Figure 12. Normalized visibility index of archaeological features from LiDAR derived models (see
Table 2).

Analyzing the results for the diverse archaeological features, the lowest values of the
normalized visibility index (µxi,) corresponding to an optimal matching between segments
identified automatically by the automatic extraction process (LxiAEF) and those identified
optically on the different derived LiDAR product LxiFDM) are recorded for the microrelief
relating to the buildings.

Analyzing the data for the different enhancement techniques and observing the build-
ing features, the best results are recorded for OP and SLRM (0.88%, 0.02%, respectively).

The highest values of the normalized visibility index (related to worse results in terms
of matching between extracted features and optically identified features) are recorded for
the tower (average values ranging 5.1% to 6.4%), the only feature clearly visible on the
ground as walled remains of it are preserved. The reason is given by the fact that on the
sides of the wall structures there is abundant collapse material, increasing the size of the
automatically extracted segments.

However, although the overlap of features identified by the two methods described
is very similar, the automatic extraction seems to produce less-sharp contours, with small
areas of "false positive". In general, the automatic method, as observed for segment lengths,
tends to overestimate portions of areas of archaeological interest, especially in the case of
remains of wall structures that are typically surrounded by large amounts of collapsing
material.

In this regard, fieldwork has been very useful both to characterize the different types
of archaeological features and to validate the UAV LiDAR-based approach for identifying
archaeological features (see Figure 13).

3.3. Archaeological Analysis of the Identified Features

The machine learning-based approach, along with data enhancement, enabled to
overcome several obstacles in the identification of archaeological features under canopy,
including the removal of vegetation (from low to high vegetation), the improvement of
visibility of microtopographical variations (Figure 8) related to fossilized urban design of
the medieval settlement, and their extraction (Figures 9 and 10).

From a purely archaeological point of view, the analysis of the data acquired yielded
much information that could not be acquired by other sensors or methods (Figure 10).
The studies on the Perticara site are similar to the result obtained by Masini et al. [4] on
Cisterna, a medieval site found in the same geographical context. For the study of the
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topographic distribution of the Perticara settlement, the considerable amount of collapse
levels obliterating the structures should be taken into account. The degree of visibility of
architectural artifacts is dictated by elevation structures and microreliefs, characterized
by a convex perimeter and a concave interior. However, the presence of a building can be
assumed based on the consistency of the collapsed material in several points.

Figure 13. Ground data validation: (1–3) remnants of partially preserved collapsed structures and
microrelief related to buildings; (4) perimeter walls; (5) partially collapsed structure of which an arch
of the first or basement floor can be seen; (6) tower masonry.

Analysis of the derived LiDAR data, as well as of the identified features, shows a
highly articulated settlement—confirmed by in situ analyses (see Figure 13)—that is spread
over an upland site. The settlement is divided into several sectors, as is often the case
with sites from the medieval period. Architectural blocks have been identified within the
settlement, which, starting from the top and reaching the lowest parts of the hill, delimit
clearly defined built-up areas by their distinct structural and functional characteristics
(Figures 14 and 15).
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Figure 14. Interpretation of the functional blocks of the settlement: (1) tower, (2) parade ground,
(3) moat, (4) habitation, (5) defensive perimeter, (6) open square with fountains or cisterns, (7) land-
slide cutting through the medieval settlement, and (8) quarry; (a–c) represent the section line of the
profile shown below.

Figure 15. DFM hillshading 3D view interpreted feature overlay as in Figure 9: (a) northeast view;
(b) west view.
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The site is divided (northeast to southwest) into: tower (9 × 9 m approx.), parade
ground (40 m approx.), ditch, built-up area, and defensive perimeter. Also identifiable from
the LiDAR data are what appear to be a quarry (Figures 14 and 15, n.8) and the landslide
that cut off part of the medieval settlement (Figures 14 and 15, n.7). The habitation consists
of quadrangular and rectangular rooms averaging 5 × 5 meters in size, often associated a
group of two or more, lacking a probable upper floor. The rooms overlook squares with
cisterns or fountains (Figures 14 and 15, n.6) and roads, and there are at least two main
road axes, one towards the southern slope and one on the northern slope. One point to note
is that the identified habitable areas occupy an area of about 7700 m2, which could have
reached 15,000 m2 or more if one considers that each building had at least one raised floor.
This number is consistent with estimates made through archaeological sources that cite a
population of about 1000 people (240 hearthstones) in the village during the 13–14 century.
The village is spread over several levels and is divided into a number of building cores,
with the first located in the lowest area located to the south, composed of rectangular
building bodies, some of which are divided into several rooms. A second large nucleus
is distributed in the northern and eastern part of the slope and is characterized by an
arrangement of terraced building bodies on two different levels. The entrance to the site
must have been located to the southeast near the embankment that gives access to the
built-up parts (Figures 14 and 15, n.5). The innermost part of the site (northwest) has
a fortified area consisting of a moat (Figures 14 and 15, n.3) enclosing a parade ground
with several structures that could have functioned as housing for guards, storerooms, or
functional places for life in the lordly area. The settlement ends with a quadrangular tower,
of which only the lower part is preserved. The settlement of Perticara looks similar to many
others from the same period of the Italian Middle Ages [82,83].

4. Conclusions

This paper presents a machine-learning approach devised for the LIDAR-based identi-
fication of archaeological sites under canopy in hilly regions that pose critical challenges
for searching subtle archaeological remains. The presence of dense vegetation and tree
cover makes the reconnaissance of archaeological remains very difficult and the erosion,
increased by slope, tends to affect over time the microtopographical features of potential
archaeological interest, thus making them hardly identifiable. Filtering of LiDAR data,
combined with data enhancement methods (e.g., Lee filter, derived LiDAR data, LISA, clas-
sifiers, and segmentation), allowed us to overcome several obstacles including (i) removing
vegetation, (ii) improving the visibility of features of archaeological interest (Figure 5), as
well as (iii) extracting features of archaeological interest (Figures 6 and 7).

Overall, the results of the UAV LiDAR-based approach applied to the Perticara site
highlight three important findings from a technological, methodological, and archaeological
point of view, as listed below, respectively:

i. The resolution of the LiDAR data from the drone is abundantly sufficient to recog-
nize microtopographic features of archaeological interest, even in a context such as
Perticara, characterized by such high-wooded cover;

ii. The automatic approach of extracting the same features, compared with the qual-
itative interpretation (in turn corroborated by ground validation), has proven to
be effective and therefore mature to be used in operational scenarios of preventive
archeology;

iii. From an archaeological point of view, the application has allowed the reconstruc-
tion of the urban form, and the identification of its constituent elements from a
constructive and functional point of view.
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55. Štular, B.; Lozić, E.; Eichert, S. Airborne LiDAR-Derived Digital Elevation Model for Archaeology. Remote Sens. 2021, 13, 1855.

[CrossRef]
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