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Abstract: The next-generation FengYun-3H satellite carrying a greenhouse gas absorption spectrome-
ter (GAS) is planned for launch by 2024 with a strengthened ability to help researchers understand
the global carbon cycle. However, assessments of the atmospheric CO2-detection capabilities of
GAS are still incomplete, mainly in the following aspects: previous studies on the spectral range
of GAS instruments often used the weak absorption band of CO2 molecules (1.61 µm); research on
the measurement accuracies of different atmospheric environments above oceans is lacking; and
most studies considered land surfaces as the bottom boundaries. Here, we simulated high spectral
CO2 absorption spectra in both the strong and weak bands (2.06 and 1.61 µm) while considering the
effects of different instrumental (spectral resolution and sampling rate) and environmental (wind
speed, visibility, and rough sea surface) parameters. This is the first atmospheric CO2 absorption
spectrum study to consider rough-sea-surface effects. The preliminary results show that the root
mean squared error (RMSE) and mean absolute difference (MAD) values of the atmospheric CO2

transmittance spectra of GAS are 0.031 and 0.011, respectively, in the 1.61 µm band and 0.05 and
0.033 in the 2.06 µm band, revealing that GAS is competitive among similar CO2 instruments. This
study provides a design reference for next-generation GAS instruments and contributes to spectral
data CO2 processing in the above-sea atmosphere.

Keywords: CO2; greenhouse gas absorption spectrometer (GAS); CO2 molecular absorption spectroscopy

1. Introduction

In the 21st century, the issue of climate warming has become a global concern. Con-
currently, the use of remote sensing satellites to monitor the atmospheric concentrations of
greenhouse gases has become an important tool for all major spacefaring countries, including
China. Among greenhouse gases, CO2 is of primary concern, and it is especially important to
conduct high-precision remote sensing CO2 detection. In the last decade, many ground-based
weather stations around the world have formed CO2 monitoring networks to observe and
provide atmospheric CO2 concentration data [1]. Compared to ground-based observations,
monitoring atmospheric CO2 from space using shortwave infrared (SWIR) spectroscopy can
provide highly accurate global CO2 distributions, especially for regions where direct mete-
orological observation sites cannot be established, such as the oceans. Remote sensing can
also help improve our understanding of CO2 fluxes (i.e., sources and sinks) [2]. Moreover,
space-based sensors that detect and quantify CO2 in plumes corresponding to individual
point sources can enable the validation of reported inventory fluxes [3]. According to
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atmospheric radiometry, the energy emitted at any given spectral interval depends on the
temperature structure of the atmosphere and the number and distribution of absorbing
molecules. Any increase in CO2 in the atmosphere leads to an increase in the opacity
of the Earth’s atmosphere, and this increase changes the spectral distribution of emitted
energy [4]. If the atmospheric observation spectra obtained from satellite payloads can
meet the established accuracy and error requirements, CO2 flux estimates can be signifi-
cantly improved [5]. Therefore, the observation accuracies and errors of remote sensing
instruments are key constraints in the satellite design process.

The main greenhouse gas monitoring satellites operating currently in orbit are the
Orbiting Carbon Observatory-2 (OCO-2) of the United States [3,6–9], the Greenhouse
gases-Observing Satellite (GOSAT) of Japan [10–12], and the TanSAT of China [2,13–16];
these satellites provide remotely sensed hyperspectral CO2 data. On 15 November 2017,
the first-generation greenhouse gas absorption spectrometer (GAS) was successfully put
into orbit aboard FengYun-3D to provide data support for monitoring global greenhouse
gas concentrations and studying global climate change (Figure 1). Now, the Shanghai
Institute of Technical Physics of the Chinese Academy of Sciences is working on a new-
generation GAS instrument that is expected to be launched in 2024. This new-generation
GAS instrument is one of the main payloads of the FY-3H satellite and will provide the
concentration distributions of major greenhouse gases (CO2, CH4, etc.) in the global
atmosphere. Its detection accuracy will enable it to describe the spatial and temporal
variations in greenhouse gas concentrations on regional and global scales (with strong
sensitivity to changes in boundary layer concentrations). GAS has four hyperspectral bands
and obtains remote sensing hyperspectral data at a relatively high spectral resolution by
grating spectroscopy; the GAS instrument is expected to achieve a CO2 detection accuracy
of 1–2 ppm, more than twice that of the first-generation instrument. At the same time, the
new GAS instrument will have a higher reliability and temperature adaptability than its
predecessor and will be able to meet the demand for long-term, high-accuracy greenhouse
gas spectral data in the field of climate research.

Figure 1. Diagram of the first-generation GAS instrument layout. It is mainly composed of optical
system, signal processing system, refrigeration system, and telemetry and remote control system.

At present, research on the factors influencing the CO2 inversion accuracy in the gen-
eral atmospheric environment is relatively complete. Some researchers have used National
Oceanic and Atmospheric Administration Carbon Tracker (NOAACT) and Atmospheric
Infrared Sounder (AIRS) satellite observations to study the global annual seasonal variabil-
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ity of CO2 [17]. In some studies, the Cross-track Infrared Sounder (CrIS) was used to study
CO2 inversion methods [18]. These satellite payloads are mainly applied to remote sensing
studies of general atmospheric parameters, and their spectral parameters are relatively low
and are not sufficient to complete high-precision CO2 detection tasks. Some authors have
studied on-orbit spectral radiation comparisons between the Thermal and Near-Infrared
Sensor for carbon Observations-Fourier Transform Spectrometer version 2 (TANSO-FTS-2)
instrument (mounted on GOSAT2), and other instruments, but the influence mechanisms of
instrumental and environmental parameters have not been specifically studied [19]. Other
researchers have used OCO-2 and GOSAT data to study the effect of a reduced spectral
resolution on CO2 inversion results, but these research scenarios have mainly been limited
to Europe and Africa [20]. Overall, existing studies on the spectral performance parameters
of remote sensing payloads have mostly been limited to the weak CO2 absorption band,
while spectral performance evaluations of the latest hyperspectral instruments (such as the
new-generation GAS instrument) are lacking; in addition, the spectral detection accuracy
and error analysis of such instruments have not been reported [21,22]. Moreover, there is
a lack of research on the accuracy of CO2 hyperspectral detection methods for different
atmospheric environments above the ocean, and no study has explored on the influence of
the rough sea surface as the bottom boundary of atmospheric radiation transmission.

In this study, we improved the line-by-line radiative transfer models (LBLRTM),
taking into account both the rough sea surface as the bottom boundary and marine aerosol
influences; then, we analyzed the effects of different instrumental parameters on the remote
sensing radiometry accuracy in the atmospheric environment above the sea under two
spectral channels of 1.61 µm and 2.06 µm. We also compared the difference between the
hyperspectral instrument’s sun-glint observation mode and the traditional observation
mode and analyzed the reflectivity of the wind-driven rough sea surface as the radiative
transfer bottom boundary. The high-spectral absorption spectra in both the strong and
weak bands (2.06 and 1.61 µm) of atmospheric CO2 molecules were simulated while
accounting for the effects of different instrumental parameters (the spectral resolution and
spectral sampling rate) and environmental parameters (the wind speed, visibility, and
rough sea surface) above the sea. Moreover, we compared the atmospheric CO2 detection
performances above different sea areas and evaluated the effects of different instrumental
and environmental parameters on the detection accuracy.

2. GAS
2.1. Spectral Bands

The GAS instrument has four spectral bands: the 0.76 µm (O2A) B1 band, 1.61 µm
(CO2 weak-absorption) B2 band, 2.06 µm (CO2 strong-absorption) B3 band, and 2.4 µm
(CH4 absorption) B4 band. The instrument can simultaneously receive the radiation of four
bands in one observation.

The 0.76 µm band is the O2A absorption band. Since the O2 molecular content in the
atmosphere is basically constant, the O2A band measurements can be used to constrain
uncertainties in surface air pressure and cloud and aerosol optical paths. This is the
auxiliary spectrum used to obtain CO2 measurements.

The near-infrared (NIR) 1.6 µm and 2.06 µm spectral bands are the weak and strong
CO2 absorption bands, respectively. The 1.6 µm absorption band is the unsaturated CO2
absorption band, and the peak of the corresponding weight function is mainly distributed
near the sea surface. Therefore, for the sea-surface CO2 monitoring work performed in this
study, the 1.6 µm absorption band is one of our focuses [23,24].

In addition, the 2.06 µm band is the CO2 strong absorption band, which is also di-
vided into two branches similar to the 1.6 µm spectrum. The difference is that the right
branch concentrates most of the high-CO2 information channels, while the left branch
has a minority of high-CO2 information channels, thus indicating the relative dominance
of the right branch in CO2 research. The channels selected from this spectrum are the
channels with moderate absorption intensities. In the channels with strong CO2 absorption,
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near-zero emissivity indicates CO2 absorption saturation, and high emissivity indicates
weak CO2 absorption; thus, only the spectral channels with moderate emissivities of ap-
proximately 0.03–0.05 (normalized to solar radiation) are considered valid when extracting
spectral information [25].

In this paper, we simulate the transmittance spectra and brightness temperature
spectra of the two CO2 absorption bands.

2.2. Spectral Resolution

The spectral resolution is the minimum wavelength interval at which an instrument
can detect spectral radiation energy; the spectral resolution is also known as the spectral
detection capability and is generally expressed by the full width at half maximum (FWHM)
of the instrument line function.

The absorption line width of the CO2 molecule is a constant value of approximately
0.07 cm−1 under standard conditions (at a temperature of 273 K and air pressure of
1013 hPa). Considering the sensitivity of the instrument to changes in the CO2 concentra-
tion and the signal-to-noise ratio (SNR) level, a hyperspectral detector resolution reaching
0.07 cm−1 is the most ideal situation [26]. However, in practice, due to the limitation of
the instrument development level, it is difficult to reach this spectral resolution under the
condition that the SNR is guaranteed.

A number of operational CO2-monitoring satellite payloads are already in orbit around
the world, including TANSO-FTS on GOSAT in Japan, OCO-2 in the United States, and
the Atmospheric Carbon-dioxide Grating Spectroradiometer (ACGS) on TanSAT in China.
Satellite payloads currently under development also include the European Sentinel 7’s
CO2M [27,28] and the U.S. OCO-3 instrument [29,30]. The spectral bands of all instruments
listed above include the two bands of 1.61 µm and 2.06 µm; these bands can thus be used
for simulations and comparisons. The spectral resolution indices of these remote sensing
satellite payloads are shown in Table A1.

2.3. Spectrum Sampling Rate

The spectral sampling rate is the ratio of the sampling interval to the spectral resolution;
this metric represents the number of sampling points on the FWHM of an instrument’s
linear function. The calculation formula is as follows:

N =
FWHM·Ndetector

SBW
(1)

where N is the spectral sampling rate, Ndetector is the number of effective image elements in
the spectral dimension of the detector, and SBW is the spectral width of the single spectral
channel of the instrument.

Hyperspectral CO2 monitors have high spectral resolutions and many single-channel
sampling points, so it is necessary to use a customized planar array detector to record the
continuous spectra separated by the grating in a discrete form. According to Nyquist’s
sampling theorem, to obtain complete spectral information, the spectral sampling rate of
each channel of the spectral monitor should be no less than 2 [31]. When the detector scale
is not sufficient (i.e., at a low sampling frequency), the spectra recorded by the detector will
exhibit undersampling problems. However, the spectral sampling rate can also be limited
by the detector fabrication process and cannot be significantly increased [32].

For the 1.61 µm band, GAS currently uses a 1304 × 472 InGsAs flat-panel detector,
of which the spectral dimension is designed to use 1300 image elements. With a spectral
resolution of 0.07 nm (0.27 cm−1), a spectral sampling rate of >3 can be guaranteed within
a spectral width of 30 nm. For the 2.06 µm band, GAS uses a 1304 × 456 scale InGsAs flat
panel detector. At a spectral resolution of 0.09 nm (0.212 cm−1), a spectral sampling rate
of >3 can be guaranteed within a spectral width of 40 nm.

In the U.S. OCO-3, a 1024 × 1024 HgCdTe flat-panel detector, is selected, and the
actual spectral dimension is 1016 pixels, with spectral sampling rates ranging from 2.2 to
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3.2 in the 1.61 µm and 2.06 µm spectral bands [29]. The spectral-sampling performance of
OCO-3 is thus relatively similar to that of the GAS instrument.

3. Model
3.1. Radiative Transfer Model

In the remote sensing detection of atmospheric trace gases such as CO2, it is very
important to input variables such as atmospheric parameters, rough-sea-surface parameters,
solar spectra, aerosol parameters, and instrumental parameters into the radiative transfer
model to obtain the simulated satellite observation spectrum. A radiative transfer model
is used to simulate the physical process of solar radiation passing through the absorption
and scattering modes of atmospheric molecules and being reflected from the surface to the
satellite receiver. The calculation of the spectrum received by the satellite should not only
take into account the different degrees of absorption of solar radiation by gas molecules but
should also include the effect of aerosol particles and the reflection mechanisms of different
underlying surfaces.

Recently, various hyperspectral sounding payloads have been applied to remote
sensing detections of CO2. Due to the high spectral performance of these payloads, the
accuracy requirement of the radiation relationship velocity model must be increased. The
most accurate method for calculating absorption spectral lines of atmospheric molecules
is the line-by-line integration method. This calculation method integrates each spectral
line within the spectral band to be calculated to obtain the accurate transmittance. This
calculation method can deal with the nonuniform path problem and the overlapping
absorption problem of multiple gases [33]. The calculation procedure is as follows. The
detailed calculation process of radiation transfer and the line-by-line integration method
can be found in Appendix A.

The line-by-line integration method allows for adequate and reliable calculations of
the spectral spacing, absorption spectral lines, and nonuniform paths; thus, the spectral
transmission ratio can be obtained accurately [34].

Remote hyperspectral CO2 detections require an instrument with a spectral resolution
of 0.1 cm−1 or less. We employed the LBLRTM to simulate such high-resolution spectral
data. This model is an efficient and accurate line-by-line integrated radiative transfer model
developed on the basis of the FAS-CODE model, the atmospheric gas molecule spectral
absorption model that is provided by the high-resolution transmittance molecular spectral
dataset (HITRAN). This model can accurately calculate isolated, overlapping molecular
spectral lines at the finest possible spectral resolution and obtain physical quantities such
as the high-precision transmittance and optical thickness by calculating the absorption of
each layer of atmospheric molecules along with some continuous absorption [35,36].

Currently, few LBLRTM simulations have been applied to the atmospheric aspects
above the sea surface, and there is a lack of quantitative studies exploring the relationships
between marine aerosol parameters and the spectra received by instruments. Moreover, the
reflectivity variation in the rough sea surface as a radiative underlying surface is generally
not considered. In this study, we improved the LBLRTM by considering marine aerosols,
the wind-driven rough-sea-surface reflectivity, and the sea-surface sun-glint model.

3.2. Marine Aerosol Model

An aerosol is a gaseous dispersion system composed of solid or liquid particles
suspended in a gaseous medium, with particle sizes generally between 0.01 and 100 µm;
aerosols exert absorption and scattering effects on transmitting radiation. The attenuation
of aerosols depends mainly on the aerosol particle number concentration. The calculation
of aerosol absorption is shown in Appendix A. LBLRTM uses the LOWTRAN model for
the aerosol analysis, and the aerosol calculation part of this model is also integrated into
MODTRAN; this module divides the whole atmosphere into eight altitude regions. The
type of ocean aerosol studied in this paper belongs to the boundary layer region (0–2 km).
The aerosol particle size distribution is similar to the Haze Model C spectral distribution,
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where the shape and components of the particle spectral distribution in the boundary
layer do not vary with height; only the particle number concentration factor is a function
of height [37].

The ocean aerosol type of the LOWTRAN model consists of soluble salts and water, and
the particle distribution is described by the union of three log-normal distributions. This
model simulates the refractive index as a function of relative humidity, which is obtained
by volume-weighted averaging of the refractive index of the dry soluble component aerosol
plus pure water [38]. The radiative attenuation caused by the aerosols is also calculated by
entering the visibility (also called the standard visibility or the standard visual range). In
addition, this aerosol type takes into account the effect of land aerosol transport over the
ocean by introducing a sea-to-land aerosol ratio parameter, called ICSTL, to characterize
the air mass characteristics [39]:

ICSTL = 1− 10,


= 1, open ocean

. . .
= 10, strong continental influence

Empirical Formula : ICSTL = INT
(

9e−τ/4 + 1
) (2)

where INT denotes rounding, and τ denotes the time of departure of the air mass from
the continent. The ICSTL value can also be obtained by subjectively estimating the coastal
industrial zone conditions.

In addition, the ocean aerosol model also considers the effect of wind speed by dividing
ocean aerosols into three parts: (1) the background part generally refers to the small particle
part; (2) the static constant part refers to the past 24 h average wind speed (WHH) transport;
and (3) the newly added part refers to the current wind speed (WSS) transport. From
this information, the normalized attenuation coefficient related to wind speed and relative
humidity can be obtained as BEXT(NL, λ) with absorption coefficient BABS(NL, λ). The
normalized attenuation and absorption coefficients related to wind speed and relative
humidity can be obtained as follows [29]:{

BEXT(NL, λ) = C·
(
A1·10T1XV + A2·10T2XV + A3·10T3XV)

BABS(NL, λ) = C·
(
A1·10T1AV + A2·10T2AV + A3·10T3AV) (3)

where NL is the number of height intervals; T1 XV, T2 XV, T3 XV, T1 AV, T2 AV, and
T3 AV are the extinction and absorption coefficients associated with the land, ocean, and
wind speed, respectively; and C is the coefficient associated with the normalized extinction
coefficient and the relative ratio of particle radii. A1, A2, and A3 take the following values:

A1 = 2000× ICSTL2

A2 = MAX(5.866× (WHH − 2.2), 0.5)
A3 = 10(0.06×WSS−2.8)

(4)

At this point, the aerosol particle spectrum distribution can be expressed as follows:

dN
dr

=
1
F

(
A1·e−log2( r

0.03F ) + A2·e−log2( r
0.24F ) + A3·e−log2( r

2F )
)

(5)

where F is an aerosol particle growth correction factor related to the relative humidity (RH);
its physical meaning is the ratio of the particle radius at ambient RH to the particle radius
at standard RH [39].

F =

(
2− RH

100

)
6
(

1− RH
100

)
1
3

(6)
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3.3. Sea-Surface Sun-Glint Model

In contrast from the land-surface diffuse reflection, in atmospheric gas composition
observations above the sea surface, no water-leaving radiance occurs within the SWIR
band except for specular reflection. As a result, effective subsurface radiation signals
cannot be obtained with land-based sky-bottom observation methods [40]. CO2 remote
sensing detections of the atmosphere over the ocean generally use active high-brightness
sun-glint observations to increase the load in-pupil radiation energy and obtain spectral
observation data with an increased SNR [41,42]. Sun glint is a kind of specular reflection
phenomenon formed by sunlight incident on the sea surface. Through the high-precision
two-dimensional pointing mechanism, the GAS payload can obtain atmospheric remote
sensing radiation information at the location over the sea where the sun glint is located at
the current moment in real time [43].

The geometric diagram shown in Figure A1 was established based on the relative
position relationships among the sun, the Earth, and the remote sensing satellite. In a fixed
orbit at a certain moment, the position of the sun glint corresponding to the satellite is
uniquely determined, and the same plane is shared by the sun, the satellite, the Earth’s
center, and the sun-glint position.

Since the radius of the Earth can be neglected compared to the solar-terrestrial distance,
it can be considered that β = β1. At a certain time, the coordinate system is established with
the center O as the origin; then, the latitudes and longitudes of points S and N are known,
→

OS and
→

ON are known vectors, and γ is known. Moreover, the radius of the Earth is a
known quantity, and the location of point M can be determined by calculating the value of
β. These terms can be determined by using the dichotomous approximation as follows [41]:

f(β) = β1 − β2 (7)

β1 = arccos
( →

OS,
→

OM
)
= β,β2 = arccos

( →
MW,

→
OM

)
(8)ci =

ai+bi
2 , a0 = 0, b0 = γ, c0 = γ

2 , i = 0, 1, 2 . . . .
if f(ai) ∗ f(ci) > 0 → ai+1 = ci, bi+1 = bi
if f(ai) ∗ f(ci) < 0 → ai+1 = ai, bi+1 = ci

(9)

When f(x) converges to a very small value, such as 10−8, it can be considered that
β1 = β2; that is, the sun-glint point M is found, and its latitude and longitude information
is determined. The value of β at this point is equal to the sun-glint solar zenith angle.

3.4. Wind-Driven Rough-Sea-Surface Reflectivity Model

When infrared radiation meets a calm water surface, the situation can be regarded
as the optical transmission between two media; this process generally includes reflection,
scattering, and absorption. For shortwave infrared detection, due to the strong absorption
effect, the sea-surface albedo is generally 0.025 when the angle of incidence is less than
45 degrees [44]. However, the real sea surface is not absolutely calm and is affected by air
movements; thus, the sea surface usually has a certain surface roughness [45]. In this paper,
an isotropic Cox–Munk model is used in the simulations to approximate the roughness of
the ocean surface [46]. After obtaining the wave slope probability distribution, the reflection
and transmission matrices of a small wavefront were calculated. Then, we integrated the
azimuth and zenith to obtain the Mueller matrix for a certain viewing angle. By multiplying
the Mueller matrix of the incident light with the Stokes vector, the reflected and transmitted
light of the solar radiation interacting with the rough sea surface can be obtained. The
geometric propagation model of the reflection of sunlight incident to a rough sea surface is
shown in Figure A2.
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A rough sea surface can be approximated by a number of randomly distributed small
wave facets. According to the Cox–Munk model, the surface slope probability distribution
function of the isotropic model is written as follows [47,48]:

p(µn,βn) =
1

πρ2µ3
n

exp
(
−1− µ2

n
ρ2µ2

n

)
(10)

where µn = cos(θn), θn < π/2, and βn are the wavefront normal vectors
→
n of the polar and

azimuthal angles, and ρ2 is the mean square surface slope. The mean square surface slope
is a function of the offshore surface wind speed W (m/s) as follows:

ρ2 = 0.003 + 0.00512×W (11)

The reflection matrix of the sea-surface wavefront raa(µ′,ϕ′,µ,ϕ) is calculated as follows:

raa
(
µ′,β′,µ,β

)
= D

(
µ,µ′

)πp(µn,βn)

4|µ||µ′|µn
R(π− α2)RFAA(θ

s
i )R(−α1) (12)

where (µ,β) is the direction of incident light,
(
µ′,β′

)
is the direction of reflected light,

µ = cos(θ), = cos(θ′), θ and θ′ are zenith angles (θ is the zenith angle of the exit light,
which is not shown in Figure A2), β and β′ are azimuth angles, and p(µn,βn). As given
Equation (10), D(µ,µ′) is the shading function that explains why incident light may be
obscured by the wavefront slope [49,50]. D(µ,µ′) is expressed as follows:

D
(
µ,µ′

)
=

1
1 + Λ(|µ|) + Λ(|µ′|)′

(13)

where

Λ(µ) =
1
2

{
1√
π

1
δ

exp
(
−δ2

)
− erfc(δ)

}
,δ =

µ

ρ
√

1− µ2
(14)

In the above equation, erfc is the complementary error function.
R(α) is the rotation matrix applied to transition from the incident meridian plane to

the reflection plane and from the reflection plane to the reflected meridian plane; this term
can be expressed as follows [46]:

R(α) =


1 0
0 cos 2α

0 0
sin 2α 0

0 − sin 2α
0 0

cos 2α 0
0 1

 (15)

where the rotation angles α1 and α2 are shown in Figure A3.
The air-to-air Fresnel reflection matrix RFAA(θ

s
i ) is a function of the incidence angle

θs
i in the reflection plane and is expressed as follows [46]:

RFAA(θ
s
i ) =


rs

11 rs
12

rs
12 rs

11

0 0
0 0

0 0
0 0

rs
33 rs

34
rs

34 rs
33

,



rs
11(θ

s
i ) = 0.5

[
rs

l (θ
s
i )

2 + rs
r(θ

s
i )

2
]

rs
12(θ

s
i ) = 0.5

[
rs

l (θ
s
i )

2 − rs
r(θ

s
i )

2
]

rs
33(θ

s
i ) = Re

(
rs

l (θ
s
i )× rs∗

r (θs
i )
)

rs
34(θ

s
i ) = Im

(
rs

l (θ
s
i )× rs∗

r (θs
i )
)

(16)

where Re() and Im() are the real and imaginary components, respectively. The asterisk
denotes the complex conjugate. The terms rs

l (θ
s
i ) and rs

r(θ
s
i ) are the reflection coefficients
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of the parallel and vertical components of the reflected light, respectively, and can be
expressed as follows [46]: 

rs
l (θ

s
i ) =

n2cosθs
i−
√

n2−sin2 θs
i

n2cosθs
i +
√

n2−sin2 θs
i

rs
r(θ

s
i ) =

cosθs
i−
√

n2−sin2 θs
i

cosθs
i +
√

n2−sin2 θs
i

(17)

where n is the water refractive index.
Equation (18) can be used to calculate the reflectance matrix of a wavelet surface, and

the reflectance at a given angle of incidence can be obtained by integrating over the zenith
and azimuth angles [46]:

ra
(
µ′,µ1,β1,µ2,β2

)
=

1
π

∫ µ2

µ1

µdµ
∫ β2

β1

dβraa
(
µ′,β′,µ,β

)
,0 ≤ µ1 ≤ µ2 ≤ 1; 0 ≤ β1 ≤ β2 ≤ 2π (18)

4. Detection Accuracy Evaluation

Due to the limitations of the instrumental parameters, errors arise between the atmo-
spheric spectral data received by the payloads and the real data. In this paper, the CO2
absorption spectral width of 0.07 cm−1 is taken as the reference true spectral resolution
value. As mentioned earlier, a spectral sampling rate greater than 2 is theoretically suffi-
cient to obtain the complete spectral information. Sampling at four times the theoretical
sampling rate can provide extremely fine spectral information although this is not possible
in practical applications. Therefore, in this paper, the spectra are simulated with the spectral
sampling rate set to 8 to obtain reference true values in order to comparing the effect of the
sampling rate. The evaluation parameters include the root mean squared error (RMSE),
absolute difference (AD), absolute percentage deviation (APD), mean absolute difference
(MAD), and mean absolute percentage deviation (MAPD) [21,29]. As an example, these
values are calculated for the transmittance is shown in Appendix A.

Since the simulated data cannot directly show the spectral differences while the
spectral sampling rate varies, in this paper, we interpolate the simulated data using a
wavenumber interval of 0.03 cm−1 when evaluating the spectral sampling rate and calculate
each evaluation parameter for the interpolated spectral data.

5. Results

The improved LBLRTM is used to simulate the effects of environmental parameters
in the underlying ocean surface on the atmospheric radiative transfer results. Because
the radiation energy received by the instrument through the above-sea sun glint must
be increased in atmospheric CO2 remote sensing sounding research, in simulations, the
geographic location of the sun glint, the zenith angle of the observation, and the zenith
angle of the sun glint at the corresponding time must first be obtained. Then, information
on the sea temperature, wind speed and visibility in the corresponding time interval can be
obtained from the marine meteorological database. The wind speed and the zenith angle of
the sun glint are then input into the rough-sea-surface model to obtain very accurate solar
radiation reflectance. The simulation accuracy of the LBLRTM can be improved by refining
the sea-surface environmental parameters; thus, in this way, the detection accuracy of CO2
on the sea surface can be improved.

5.1. Simulation of Sun-Glint Locations and Zenith Angles

The GAS payload was carried for the first time on the FengYun-3D satellite, which has
operated normally in orbit. Both FY-3D and FY-3H are in sun-synchronous orbit. Therefore,
the sun-glint position of the first-generation GAS was used in the following article, and the
instrument parameters were updated to the next-generation in the simulation.

Here, the FY-3D satellite orbital parameters are imported into Systems Tool Kit (STK)
software to generate the real-time position of the sun glint and the solar zenith angle at
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different times. The selected time period spanned from 15:42 to 16:20 on 17 June 2019, when
the GAS sun-glint position shifted from north of Antarctica in the Southwest Atlantic to the
sea west of Canada in the Northwest Atlantic. The position and angle information of the sun
glint at each moment are shown in Table 1. The variation pattern of sun-glint zenith angle
during the day and the distribution of sun-glint positions on the map are shown in Figure A4.

Table 1. GAS sun-glint locations and zenith angles on 17 June 2019.

Time (UTCG) Detic Latitude (deg) Detic Longitude (deg)
Solar Zenith

Angle of the Sun
Glint (◦)

Solar Zenith
Angle of the
Observer (◦)

2019/6/17 15:42 −60.492 −32.266 86.097 118.385
2019/6/17 15:45 −54.053 −31.452 80.454 119.605
2019/6/17 15:50 −42.249 −32.475 69.69 124.232
2019/6/17 15:51 −39.708 −32.873 67.327 125.564
2019/6/17 15:52 −37.108 −33.313 64.898 127.027
2019/6/17 15:54 −31.734 −34.29 59.856 130.316
2019/6/17 15:56 −26.15 −35.363 54.6 134.038
2019/6/17 15:58 −20.382 −36.508 49.177 138.117
2019/6/17 15:59 −17.438 −37.102 46.42 140.265
2019/6/17 16:00 −14.459 −37.71 43.642 142.47
2019/6/17 16:01 −11.45 −38.329 40.852 144.721
2019/6/17 16:05 0.834 −40.935 29.798 153.918
2019/6/17 16:08 10.217 −43.054 22.146 160.478
2019/6/17 16:10 16.512 −44.576 17.932 164.148
2019/6/17 16:15 32.237 −48.988 15.674 166.247
2019/6/17 16:20 47.672 −55.087 25.669 157.627

We selected the sun-glint location in the sea west of Salvador city, Brazil, in the South
Atlantic Ocean at 16:00 on 17 June 2019; this site is located in the World Meteorological
Organization (WMO) SQUARES 5103 zone. The satellite observation zenith angle at this
moment was 142.358◦. The integrated meteorological dataset of the sea-surface database
shows that within ±1 h and 1◦ × 1◦, the temperature in the sea area at that time was
29 ◦C, the sea level pressure was 1014 mbar, the average sea-surface visibility was 20 km,
the wind speed was 8.7 m/s, and the 24 h average wind speed was 7.29 m/s [51]. Although
the location of this sun glint was relatively close to the South American continent, the
influence of land-based air masses on the sea was limited by atmospheric circulation, and
the city of Salvador has a low industrial level, so we set the ICSTL to 6.

5.2. Simulation of Wind-Driven Rough-Sea-Surface Reflectivity

We showed in Section 3.4 that the sea-surface reflectance is mainly determined by
a combination of the solar zenith angle at the sun-glint point and the sea-surface wind
speed. Therefore, the improved Cox–Munk-based model detailed in Section 3.4 was used
to calculate the reflectance of solar shortwave infrared radiation propagating over a rough
sea surface. Compared to other reflectivity models, this model takes into account the
depolarization of the sea surface as well as the sea-surface roughness in the absence of
wind. Since the incident solar light is nonpolarized, only the zenith angle of the incident
direction is considered in the calculation.

From the simulation results (Figure 2), the overall reflectivity was found to increase
with an increasing incident zenith angle. In the low-incidence-angle region (θ < 40◦), the
effect of the wind speed is not obvious, and the variation in the overall reflectivity is
relatively small. In the high-incidence-angle region (θ > 60◦), the reflectivity increases
rapidly with an increasing incident zenith angle, and the higher the wind speed is, the
higher the roughness of the sea surface is and the lower the reflectivity is.

The wind speed of 8.7 m/s and the sun-glint zenith angle of 43.642◦ at 16:00 on
17 June 2019 were input to the model to obtain the sea-surface reflectivity of 0.0291 at that
time [51]. In addition, the parameters of different sea areas in Section 5.4.2 were input to
the model, and the corresponding sea-surface reflectance was obtained; the reflectance is
marked with dots of different colors in Figure 2.
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Figure 2. Wind-driven rough-sea-surface reflectivity simulation results and reflectance for six differ-
ent ocean areas.

5.3. Simulations under Different Instrumental Parameters
5.3.1. Spectral Resolution

The U.S. Standard Atmosphere 1976 [52] model was used in the simulation calcula-
tions, and multiple resolutions were established for comparison. In the 1.61 µm band, the
CO2 absorption line width of 0.07 cm−1 in the 1.61 µm spectrum was used as the refer-
ence standard for the spectral resolution, and 0.482 cm−1 (the ACGS spectral resolution),
0.308 cm−1 (the OCO-3 spectral resolution), and 0.27 cm−1 (the GAS spectral resolution)
were compared with the results to analyze the variation characteristics of the CO2 ab-
sorption spectrum. In the 2.06 µm spectral band, 0.07 cm−1 was also used as a reference
standard, and 0.388 cm−1 (the ACGS spectral resolution), 0.236 cm−1 (the OCO-3 spectral
resolution), and 0.212 cm−1 (the GAS spectral resolution) were applied for comparison.
To eliminate the effect of the spectral sampling rate, the sampling rate was set to 8. The
detailed input model parameters are shown in Table A2.

The LBLRTM has a spectral resolution of 0.0014 cm−1. In the simulation, a Gaussian-
type function is used to simulate the slit function of the grating spectrometer as a line
function of the LBLRTM instrument to convolve with the original spectrum to obtain the
required transmittance spectrum and bright temperature spectrum at the spectral resolution
designated above.

From the simulation results, the CO2 transmittance spectrum exhibits a clear double-
peak structure in the 1.61 µm band and from left to right for the P-branch and R-branch,
respectively. At a spectral resolution of 0.07 cm−1, the wavenumbers of the two branches
are approximately 6228 cm−1, and the local nadir transmittance values are 6216 cm−1 and
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6239 cm−1, respectively. The 2.06 µm spectrum also exhibits a certain bimodal structure,
with local minima of transmittance at 4842 cm−1 and 4865 cm−1 and two branching
wavenumbers at 4854 cm−1. Since this spectrum is a strong CO2 absorption band, the
overall transmittance is significantly reduced compared to the 1.61 µm spectrum.

From the comparison in Figure 3, it can be seen that the overall transmittance decreases
as the spectral resolution increases in both spectral bands, and the double-peak structure is
more obvious. In the 2.06 µm spectrum, the AGAS instrument differs from other instru-
ments due to its relatively large spectral resolution, and the wavenumber where the lowest
transmittance point is located is also shifted. The brightness temperature simulation results
are similar to the transmittance results. The specific data corresponding to each spectral
nadir are shown in Tables A3 and A4.

Figure 3. Comparison of the spectral results obtained at different spectral resolutions. (a) Comparison
of transmittance spectra in the 1.61 µm band; (b) comparison of brightness temperature spectra in the
1.61 µm band; (c) comparison of transmittance spectra in the 2.06 µm band; and (d) comparison of
brightness temperature spectra in the 2.06 µm band.

5.3.2. Spectrum Sampling Rate

In the simulation calculations performed in this subsection, considering that the actual
spectral width of the instrument is limited by the optical spectroscopic system, the actual
design index of GAS is substituted into the model as follows: the 1.61 µm spectral band with
a spectral width of 30 nm and a spectral resolution of 0.27 cm−1 and the 2.06 µm spectral
band with a spectral width of 40 nm and a spectral resolution of 0.212 cm−1. Moreover,
in this paper, the detector is abstracted as an array of image elements in the simulations,
and the difference in the actual performance of the detector is not considered. The actual
performance difference and the effect of the spatial dimension are thus not considered.
Only the comparative transmittance spectra are simulated in this subsection.

Five detectors with 500, 700, 1000, 1300, and 1500 spectral-dimensional elements are
used as examples. In the 1.61 µm spectral band, five spectral sampling rates of 1.167, 1.63,
2.33, 3.03, and 3.5 are represented; in the 2.06 µm spectral band, five spectral sampling rates
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of 1.125, 1.575, 2.25, 2.925, and 3.375 are represented. The sampling rate of 8 was used as
the reference standard for comparisons of both spectral bands. The rest of the parameters
were set to be the same as those listed in Table A2.

The comparison in Figure 4 shows that the larger the spectral sampling rate is, the finer
the peak structure of the CO2 absorption line obtained by the instrument is. As Figure 4b
shows, the spectral sampling rates of 1.167 and 1.63 do not meet the theoretical requirement
of being no less than 2, there is an obvious problem of undersampling, and the bottom of
the peak structure is not sampled properly, causing some spectral information to be missing.
In Figure 4c, the two spectral sampling rates of 1.125 and 1.575 also show similar problems.
When the spectral sampling rate is greater than 2, no significant difference occurs in the
fineness of the CO2 absorption lines shown in the figure.

Figure 4. Comparison of spectral results obtained at different spectral sampling rates. (a) Comparison
of transmittance spectra in the 1.61 µm band. (b) Local magnification of panel (a) in the wavenumber
range of 6231.40–6232.25 cm−1. (c) Comparison of transmittance spectra in the 2.06 µm band.
(d) Local magnification of panel (c) in the wavenumber range of 4857.10–4857.75 cm−1.

5.4. Simulations under Different Environmental Parameters

In this section, the GAS design parameters were applied as the instrumental param-
eters to simulate the CO2 observation spectra in the sea-surface environment to study
the GAS capability of detecting CO2 in different sea areas. The spectral resolution was
0.27 cm−1 in the 1.61 µm band at a spectral sampling rate of 3.3; in the 2.06 µm band with a
spectral sampling rate of 3.4, the spectral resolution was 0.212 cm−1.
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5.4.1. Different Wind Speeds and Visibilities

As described previously in Section 3.2, visibility and wind speed are the main parame-
ters required when assessing the extinction and absorption effects of ocean-type aerosols;
the wind speed in particular additionally affects the sea-surface conditions. In this paper,
the effects of these two parameters on the CO2 detection spectrum were investigated first.
Since it is difficult to model a realistic situation in which only the wind speed or visibility
differs at the sun-glint location while all other parameters remain consistent, simulations in
this subsection are performed only for comparisons of abstract sun-glint conditions.

Six different wind speeds of 0.1, 2, 3, 5, 7, and 15 m/s were selected for simulation
and comparison, assuming that the 24 h average wind speed was the same as the real-time
wind speed. The visibility was fixed at 20 km, the sun-glint zenith angle was fixed at 40◦,
and the corresponding sea-surface reflectance values were 0.0247, 0.0251, 0.0253, 0.0257,
0.0261, and 0.0268. The simulated visibility was selected from five different VIS values of
5, 7, 15, 25, and 50 km for the simulations, and the wind speed was fixed at 7 m/s. The
remaining parameters were the same as those listed in Table A2.

From Figure 5a,c, it can be seen that the transmittance spectra of both spectral bands
decreased with increasing wind speeds. From Equations (3) and (4), it can be seen that
the wind speed is proportional to the attenuation and absorption coefficients; a decrease
in radiant energy occurs with an increase in wind speed, which is consistent with the
simulation results. In the 1.61 µm spectrum, the wind speed increases from 0.1 m/s to
5 m/s, and the transmittance spectrum decreases greatly; the transmittance spectrum
decreases relatively less when the wind speed is above 5 m/s. In the 2.06 µm spectral band,
the effect of the wind speed is similar to that obtained in the 1.61 µm spectral band.

Figure 5. Comparison of simulated spectra at different wind speeds and visibility levels. (a) Compar-
ison of transmittance spectra with different wind speeds in the 1.61 µm spectral band; (b) comparison
of transmittance spectra at different visibilities in the 1.61 µm spectral band; (c) comparison of trans-
mittance spectra with different wind speeds in the 2.06 µm spectral band; and (d) comparison of
transmittance spectra at different visibilities in the 2.06 µm spectral band.
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Figure 5b,d illustrates that the transmittance spectra of both spectral bands decrease with
decreasing visibility. According to the aerosol absorption principle, the visibility is inversely
proportional to the aerosol attenuation coefficient [53], corresponding to a decrease in radiant
energy with a decrease in visibility; this finding is consistent with the simulation results.
Similar to the wind speed simulation results, when the visibility decreases, the decrease in the
1.61 µm spectrum is more obvious than that in the 2.06 µm spectrum.

5.4.2. Different Sea Areas

Six GAS sun-glint scenarios distributed in different global oceans were selected and
compared, as shown in Figure 6. From Table 2 and Figure 7, it can be seen that the
environmental parameters in the sea areas where the sun glints were located at different
times varied greatly and significantly affected the transmittance and bright temperature
spectra received by the instruments. Similar to the results described in Section 5.4.1, the
transmittance spectra are mainly affected by the wind speed and visibility. The wind speed
is the highest and visibility is the lowest in sea area 7304, and in this area, the transmittance
in the two spectral bands is also significantly lower than in other sea areas; the situation is
the opposite in sea area 1106. Among the sea areas, the benchmark of the bright temperature
spectra depends mainly on the air temperature over the sea surface and visibility level.
For example, sea area 1415 is located in a mid-winter spatial and temporal zone, and
the air temperature over the sea surface in this area is relatively low compared to other
sun-glint sites, so the bright temperature spectrum also decreases accordingly. Therefore,
to obtain accurate sea-surface CO2 concentrations, it is necessary to improve the accuracy
of the sea-surface environmental parameters. The overall spectral contrasts between the
two spectral bands are similar with regards to different environmental parameters in the
sea areas.

Table 2. Model parameters in different sea areas at various times [51].

WMO SQUARE 7016 1106 1415 3310 7304 5103

Longitude (◦) (160,170) W (60,70) E (150,160) E (100,110) E (40,50) W (30,40) W

Latitude (◦) (0,10) N (10,20) N (40,50) N (30,40) S (30,40) N (10,20) S

Time (UTCG) 2019/6/30
0:06:00

2019/2/23
8:42:00

2019/11/4
1:58:00

2019/2/2
6:42:00

2019/10/18
15:50:00

2019/6/17
16:00:00

Sun-glint position (4.08◦N,
161.59◦W)

(18.534◦N,
66.611◦E)

(44.87◦N,
156.438◦E)

(31.567◦S,
104.739◦E)

(37.746◦N,
47.067◦W)

(14.459◦S,
37.71◦W)

AT (K) 303.3 298.6 283.3 295.4 297.2 300.2

WSS (m/s) 2.6 6.7 3.1 10.3 10.8 8.7

WHH (m/s) 2.35 6.308 9.58 9.91 8.98 7.29

VIS (km) 10 20 10 20 10 20

SZA of the sun glint (◦) 26.501 31.598 61.02 24.744 49.402 43.642

Sea-surface reflectivity 0.0212 0.0225 0.0665 0.0215 0.0355 0.0291

SZA of the observer (◦) 156.730 152.471 129.452 158.370 137.947 142.470

ICSTL 1 9 7 3 2 6

In the table above, AT indicates the air temperature, SZA indicates the solar zenith
angle, and “WMO SQUARES” is a geographical code system that divides the global map
and latitude longitude grid lines into grid cells each of 10◦ latitude by 10◦ longitude. Each
grid cell has a unique four-digit numeric identifier [54,55].
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Figure 6. Global distribution and dates of sea areas where sun glint occurred.

Figure 7. (a) Comparison of transmittance spectra in the 1.61 µm band for six sea areas; (b) comparison
of transmittance spectra in the 2.06 µm band for six sea areas; (c) comparison of brightness temperature
spectra in the 1.61 µm band for six sea areas; and (d) comparison of brightness temperature spectra
in the 2.06 µm band for six sea areas.

5.4.3. Rough Sea Surface

As described in Section 3.2, the magnitude of the rough-sea-surface reflectivity is
affected by both the wind speed and sun-glint solar zenith angle. In this section, the
differences in the spectra of the radiance received by the instruments are studied in two
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cases: one considering the wind-driven rough-sea-surface model and one not considering
this model. In Table 3, six different wind speed and sun-glint cases were selected to illustrate
the effect of the rough-sea-surface reflectivity compared to a general sea-surface reflectivity
of 0.025.

Table 3. Reflectance of the rough sea surface under six different wind speeds and sun-glint conditions.

WSS (m/s) 7 7 10 10 12 12

SZA of the sun glint (◦) 60 65 65 70 75 80
Reflectivity 0.060 0.080 0.0745 0.0984 0.1246 0.1693

From Figure 8, it can be seen that in the case of a large sun-glint zenith angle (>60◦), if
the change in the reflectivity of the rough sea surface is not considered, this omission will
cause a large simulation error in the radiance spectrum received by the instrument and
thus affect the accuracy of the subsequent CO2 inversion results.

Figure 8. The effect of reflectivity on two bands. (a) Emissivity spectra comparison of 0.080 vs. 0.025
reflectivity in the 1.61 µm band; (b) emissivity spectra comparison of 0.1246 vs. 0.025 reflectivity
in the 1.61 µm band; (c) emissivity spectra comparison of 0.080 vs. 0.025 reflectivity in the 2.06 µm
band; and (d) emissivity spectra comparison of 0.1246 vs. 0.025 reflectivity in the 2.06 µm band. The
comparison of 0.1246 vs. 0.025 was applied for the emissivity spectrum.
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6. Discussion
6.1. Evaluation of the Detection Accuracies at Different Spectral Resolutions

The absolute deviation of the GAS instrument between the 1.61 µm and 2.06 µm bands
is shown in Figure 9, and the detection accuracy evaluation indices are shown in Tables 4
and 5. From the results listed in Tables 4 and 5, it can be seen that the higher the spectral
resolution and thus the more data points the instrument receives that the transmittance
spectrum and bright temperature spectrum can then match with the reference spectrum, the
lower the absolute deviation index of both results is and the lower the RMSE is. This finding
also indicates that the overall simulation spectral curve is relatively close to the reference
spectrum. Among the grating spectrometers, the spectral resolution of the new-generation
GAS is at the international level, and the spectral deviation indices corresponding to the
1.61 µm and 2.06 µm spectral bands are also the smallest among similar instruments.

Figure 9. (a) Absolute deviations of the transmittance spectra at the 1.61 µm spectral band and a 0.27
cm−1 spectral resolution; (b) absolute deviations of the transmittance spectra at the 2.06 µm spectral
band and a 0.212 cm−1 spectral resolution; (c) absolute deviations of the brightness temperature
spectra at the 1.61 µm spectral band and a 0.27 cm−1 spectral resolution; and (d) absolute deviations of
the brightness temperature spectra at the 2.06 µm spectral band and a 0.212 cm−1 spectral resolution.

Table 4. Detection accuracy index corresponding to each spectral resolution in the 1.61 µm band.

Payload SR
(cm−1) Nmp RMSE MAXAD

MAXAPD
(%) MAD MAPD

(%)

Tr
GAS 0.27 4119 0.0304 0.2644 85.45 0.0104 1.74

OCO-3 0.308 3707 0.0329 0.2873 94.89 0.0114 1.90
ACGS 0.482 2308 0.0422 0.3571 116.91 0.0160 2.62

BT
GAS 0.27 4119 0.5251 K 5.7100 K 1.97 0.1507 K 5.103 × 10−2

OCO-3 0.308 3707 0.5620 K 6.1735 K 2.14 0.1638 K 5.548 × 10−2

ACGS 0.482 2308 0.6921 K 7.1785 K 2.48 0.2209 K 7.475 × 10−2

Table 5. Detection accuracy index for each spectral resolution in the 2.06 µm band.

Payload SR
(cm−1) Nmp RMSE MAXAD

MAXAPD
(%) MAD MAPD

(%)

Tr
GAS 0.212 3623 0.0469 0.2390 2.807 × 104 0.0320 111.37

OCO-3 0.236 3254 0.0538 0.2740 2.531 × 104 0.0372 134.31
ACGS 0.388 1979 0.0906 0.3800 5.332 × 104 0.0654 292.68

BT
GAS 0.212 3623 4.3469 K 28.501 K 11.71 1.5292 K 0.57

OCO-3 0.236 3254 4.7765 K 30.526 K 12.54 1.7132 K 0.64
ACGS 0.388 1979 6.4635 K 39.107 K 16.07 2.5352 K 0.94
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In the table above, Tr represents transmittance, BT represents the brightness temperature,
SR represents the spectral resolution, and Nmp represents the number of matching points,
which is equal to the number of data points for which the wavenumber difference between
the current transmittance spectrum and the reference spectrum is less than 0.035 cm−1.

6.2. Evaluation of Detection Accuracies under Different Spectral Sampling Rates

The absolute deviation of the 1300-image scale detector in the 1.61 µm spectral band
from the 2.06 µm spectral band is shown in Figure 10, and the detection accuracy evaluation
indices are shown in Tables 6 and 7. From Tables 6 and 7, it can be seen that as the spectral
sampling rate increases, the absolute deviation of the instrument transmittance spectrum
decreases accordingly, the RMSE decreases, and the fit of the detection spectrum increases.
Compared to the spectral resolution results, the influence of the spectral sampling rate on
the accuracy of the detection spectrum is approximately an order of magnitude smaller.
Considering the detector-production process, the detector image element should prioritize
ensuring that the spectral resolution of the instrument can reach the design level before
considering increasing the spectral sampling rate. Generally, when the spectral sampling
rate reaches 3, the spectral MAPD is less than 1%, which can meet the high sampling
accuracy required; thus, the GAS instrument meets this condition.

Figure 10. (a) Absolute deviation of the 1.61 µm spectral band at a spectral sampling rate of 3.03;
(b) absolute deviation of the 2.06 µm spectral band at a spectral sampling rate of 2.925.

Table 6. Results obtained for the 1.61 µm spectral band at different spectral sampling rates of the
transmittance spectral accuracy index.

SSR RMSE MAXAD
MAXAPD

(%) MAD MAPD
(%)

1.167 0.0086 0.0667 11.50 0.0035 0.49
1.63 0.0047 0.0409 6.98 0.0018 0.25
2.33 0.0024 0.0202 3.49 8.791 × 10−4 0.12
3.03 0.0014 0.0138 2.40 4.980 × 10−4 0.069
3.50 0.0010 0.0110 1.92 3.536 × 10−4 0.049

In the table above, SSR indicates the spectral sampling rate.

Table 7. Results obtained for the 2.06 µm spectral band at different spectral sampling rates of the
transmittance spectral accuracy index.

SSR RMSE MAXAD
MAXAPD

(%) MAD MAPD
(%)

1.125 0.0226 0.1157 150.24 0.0148 5.14
1.575 0.0121 0.0621 71.33 0.0078 2.71
2.25 0.0059 0.0295 36.09 0.0038 1.31
2.925 0.0034 0.0173 19.92 0.0022 0.74
3.375 0.0025 0.0133 14.84 0.0016 0.54
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6.3. Evaluation of the Detection Accuracies Obtained under Different Wind Speeds and Visibility
Levels within the Simulated Spectra

In this section, the reference standard of wind speed is 0.1 m/s, and the difference
indices obtained under different wind speeds are shown in Table 8. Figure 11 shows the
RMSE and MAPD curves and their change rates in the wind speed range of 0.1–25 m/s
under the two analyzed spectral bands. From Table 8 and Figure 11, it can be seen that the
transmittance spectrum decreases as the wind speed increases. When the wind speed is
less than 2.2 m/s, the influence of the wind speed on the transmittance spectrum is less
than 0.7%, and the variation trend with the wind speed is not obvious. In the wind speed
range from 2.2 m/s to 5 m/s, the transmittance spectrum changes abruptly with the wind
speed, and the decline rate increases significantly. When the wind speed increases to more
than 5 m/s, the difference in transmittance spectra becomes more obvious, and the spectral
effect introduced by the wind speed needs to be considered in the simulation. When the
wind speed exceeds 20 m/s, the effect of a further wind speed change on the transmittance
spectra tends towards 0.

Table 8. Differences index in transmittance spectra at different wind speeds.

WSS
(m/s) RMSE MAXAD

MAXAPD
(%) MAD MAPD

(%)

1.61 µm spectral band

0.1 0 - - - -
2 0.0055 0.0057 0.6148 0.0055 0.6147
3 0.0513 0.0528 5.7529 0.0512 5.7176
5 0.0963 0.0993 10.8067 0.0961 10.7359
7 0.1126 0.1161 12.6346 0.1124 12.5523

15 0.1336 0.1377 14.9897 0.1334 14.8986

2.06 µm spectrum band

0.1 0 - - - -
2 0.0050 0.0066 0.6997 0.0048 0.6978
3 0.0358 0.0466 5.0370 0.0341 4.9873
5 0.0663 0.0862 9.3265 0.0630 9.2277
7 0.0775 0.1008 10.9082 0.0737 10.7931

15 0.0932 0.1212 13.1070 0.0887 12.9781

The reference standard of visibility was set to 50 km, and the different index values
obtained under different visibility conditions are shown in Table 9. Figure 12 shows the
RMSE and MAPD curves and their change rates in the visibility range of 5–50 km under
the analyzed two spectral bands. As seen from Table 9 and Figure 12, the instrument
transmittance spectrum decreases overall as the visibility decreases. The variation in
transmittance is larger in the visibility range of 5–10 km and smaller in the >20 km range.
The influence of visibility in the 2.06 µm band is slightly smaller than that in the 1.61 µm
band, and the overall variations in transmittance in the two bands are very similar.

Table 9. Differences index in transmittance spectra at different visibilities.

VIS
(km) RMSE MAXAD MAXAPD

(%)
MAD MAPD

(%)

1.61 µm spectral band

50 0 - - - -
25 0.0747 0.0772 8.3902 0.0746 8.3173
15 0.1754 0.1811 19.6810 0.1752 19.5339
7 0.3746 0.3862 41.9733 0.3741 41.7112
5 0.4773 0.4917 53.4362 0.4766 53.1544

2.06 µm spectrum band

50 0 - - - -
25 0.0483 0.0628 6.8248 0.0460 6.7547
15 0.1171 0.1522 16.5253 0.1114 16.3681
7 0.2588 0.3358 36.4654 0.2461 36.1677
5 0.3351 0.4350 47.1845 0.3187 46.8365
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Figure 11. (a) RMSE in the wind speed range of 0.1–25 m/s; (b) rate of change in RMSE in the wind
speed range of 0.1–25 m/s; (c) MAPD in the wind speed range of 0.1–25 m/s; and (d) rate of change
in MAPD in the wind speed range of 0.1–25 m/s.

Figure 12. (a) RMSE in the visibility range of 5–50 km; (b) change rate of RMSE in the visibility range
of 5–50 km; (c) MAPD in the visibility range of 5–50 km; and (d) change rate of MAPD in the visibility
range of 5–50 km.
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6.4. Evaluation of the Detection Accuracies Obtained under Different Rough-Sea-Surface Conditions

Table 10 shows the deviation index between the reflectivity of various rough sea
surfaces and the reflectivity of 0.025. As seen from Table 10, in the case of a high sun-
glint zenith angle (>60◦), the rough-sea-surface reflectivity is much larger than the general
sea-surface reflectivity (0.025), and this difference has a strong effect on the radiance
spectrum received by the instrument. Among the analyzed conditions, the instrument
radiance spectrum MAPD is greater than 3% for zenith angles >65◦ and greater than 10%
for zenith angles >75◦. The effect of the rough-sea-surface conditions in the 2.06 µm spectral
band is relatively small compared to that in the 1.61 µm spectral band, and the MAPD
difference between these two bands reaches a maximum value of 3.2237% at a reflectivity of
0.1246. According to STK statistics, 43.13% of the GAS sun-glint zenith angles were greater
than 60◦ in 2019. In this case, we must consider the effect of rough-sea-surface conditions;
otherwise, the CO2 detection accuracy would be seriously affected.

Table 10. Differences index in radiance spectra at different reflectivities.

WSS
(m/s)

SZA of the
sun glint (◦) Reflectivity Spectral Band RMSE

(W·m−2sr−1 cm−1)
MAD

(W·m−2sr−1 cm−1)
MAPD

(%)

7 60 0.0600 1.61 µm 6.785 × 10−13 6.624 × 10−13 1.2762
2.06 µm 4.150 ×10−10 3.757 × 10−10 1.7266

7 65 0.0800 1.61 µm 2.320 × 10−12 2.268 × 10−12 4.5303
2.06 µm 8.454 × 10−10 7.674 × 10−10 3.6585

10 65 0.0745 1.61 µm 2.361 × 10−12 2.308 × 10−12 4.6148
2.06 µm 8.637 × 10−10 7.864 × 10−10 3.7633

10 70 0.0984 1.61 µm 5.233 × 10−12 5.116 × 10−12 10.8831
2.06 µm 1.916 × 10−9 1.747 × 10−9 8.9576

12 75 0.1246 1.61 µm 7.940 × 10−12 7.761 × 10−12 17.5713
2.06 µm 2.890 × 10−9 2.628 × 10−9 14.3476

12 80 0.1693 1.61 µm 1.519 × 10−11 1.485 × 10−12 40.2094
2.06 µm 6.282 × 10−9 5.711 × 10−9 38.7185

7. Conclusions

In this study, we simulated the high-spectral absorption spectra in two bands (strong
and weak) of atmospheric CO2 molecules, taking into account both the effects of different
instrumental parameters (the spectral resolution and spectral sampling rate) and envi-
ronmental parameters (the wind speed, visibility, and rough sea surface) above the sea.
The model was improved by considering the effects of marine aerosols, the wind-driven
rough-sea-surface reflectivity, and the sea-surface sun-glint model. The preliminary results
show that, using CO2 molecular absorption spectroscopy as a benchmark for verification,
the RMSE of GAS’s atmospheric CO2 detection transmittance spectra is within 0.031, and
the MAD is within 0.011 in the 1.61 µm band; in addition, the RMSE is within 0.05, and
the MAD is within 0.033 in the 2.06 µm band. These results reveal that GAS is compet-
itive among similar CO2 instruments. The main conclusions of this work are described
as follows:

(1) The higher the spectral resolution of an instrument is, the richer the received detection
spectral information is, the lower the absolute deviation index is, the lower the
RMSE is, and the closer the overall simulated spectral curve is to the real spectrum.
The spectral resolution of the new-generation GAS instrument is at a leading level
internationally, and the spectral deviation index values obtained for the 1.61 µm and
2.06 µm spectral bands are smallest among similar existing instruments;

(2) The higher the spectral sampling rate of the instrument is, the smaller the absolute
deviation of the detection spectrum and the lower the RMSE are. Compared to the
effect of the spectral resolution, the impact of the spectral sampling rate on the accuracy
of the detection spectrum is approximately an order of magnitude smaller. In the
actual instrument design, the detector image element should prioritize ensuring that the
instrumental spectral resolution can reach the design level before considering increasing
the spectral sampling rate. Generally, a spectral sampling rate of 3 is appropriate;

(3) The higher the wind speed of the sea-surface atmosphere is, the lower the overall
instrument detection spectrum is. When the wind speed is less than 2 m/s, the effect
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of the transmittance spectrum introduced by the wind speed is less than 0.02% and can
thus be ignored. When the wind speed is above 5 m/s, the difference in transmittance
spectra is more obvious, and the spectral effects introduced by the wind speed must
be considered in the simulations;

(4) The greater the atmospheric visibility of the sea surface is, the lower the overall
instrument detection spectrum is. The variation in transmittance is larger in the
5–10 km visibility range; at visibilities above 20 km, the variation in transmittance is
relatively low. The overall transmittance trends in the 2.06 µm and 1.61 µm spectral
bands were similar, and the former was relatively less affected by visibility;

(5) Approximately 43% of the sun-glint zenith angles were > 60◦ during the study period.
Under these conditions, it is important to consider the change in the reflectivity of the
rough sea surface; otherwise, the CO2 detection accuracy will be seriously affected.

In general, in this work, we simulated and analyzed the effects of instrumental param-
eters and atmospheric-environmental parameters as well as the bottom-boundary effect of
the rough sea surface on the spectral information received by the GAS instrument. These
results are expected to provide a reference for the design of greenhouse gas hyperspectral
detection instruments and contribute to the spectral data processing of CO2 in the above-sea
atmosphere. In the future, our model will be investigated in more times and sea areas.
Meanwhile, more and newer atmospheric modes will be used in our model to test the
effects of location and season.
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Appendix A

The essence of the radiative transfer calculation involves solving the radiative transfer
equation. The basic radiative transfer equation is expressed as follows:

µ
∂

∂τ
I(τ,µ,ϕ) = I(τ,µ,ϕ)− J(τ,µ,ϕ) (A1)

where I is the radiation intensity, τ is the atmospheric optical thickness, µ is the cosine
of the polar angle, ϕ is the relative azimuth, and J is the source function, which can be
expressed as single scattering and multiple scattering components as well as the emitted
thermal radiation component. These expressions are shown as follows:

J(τ,µ,ϕ) = ω
4π

∫ 1
−1

∫ 2π
0 P(τ,µ,µ′,ϕ−ϕ′)I(τ,µ′,ϕ′)dϕ′dµ′+

ω
4πP(τ,µ,− µ0,ϕ−ϕ0)I0Ta exp(−λτ) + (1−ω)B(T(τ))

(A2)

where I is a vector of four elements (I, Q, U, and V), Q and U are the linearly polarized
radiation intensities, and V is the circularly polarized radiation intensity. The Earth’s
atmosphere is often not considered in model calculations because its V is generally small.
In addition, in the above equation, P is the scattering phase function that must correspond
to the single-scattering albedo, and B is the emission function. No analytical solutions
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exist for the above differential-integral radiative transfer equations, but many numerical
solutions exist [56].

The calculation procedure of the line-by-line integration method is as follows:
Here, we define the optical thickness as follows:

τ = ∑N
j=1 τj =

∫
u
∑N

j=1 kv,j(u)du (A3)

where kv,j denotes the absorption coefficient of the jth spectral line. The absorption coeffi-
cient can then be expressed by the line shape and line intensity as follows:

kv(p,T) ≈∑N
j=1 Sj(T)fv,j(p,T) (A4)

The obtained spectral transmission ratio Tv can be expressed as follows:

Tv =
∫

∆v
exp(−τ)dv

∆v
=
∫

∆v
exp

(
−
∫

u
∑j kv,j(u)du

)
dv
∆v

(A5)

where v denotes the average wavenumber. For the average transmittance function, the
strict wavenumber integration according to the following equation is called the line-by-line
integration:

T(u) =
1

∆v

∫
∆v

exp

−∑line
l

αL,lSlu

π
[
(v− v0l)

2 + α2
L,l

]
dv (A6)

where S is the line intensity, α is the spectral line half-width, and v0 is the number of
spectral line centers.

The detailed calculation of aerosol absorption is shown below.
The aerosol attenuation at any wavelength ground to a certain height H is calculated

as follows:

Taer = (λ,H) = exp
[
−
∫ H

0
β(λ,h)dh

]
(A7)

where β(λ,h) denotes the aerosol attenuation coefficient at any wavelength λ and at any
height h. This term can be approximated by two components as follows [53]:

β(λ,h) ≈ β(λ,0)N(h) (A8)

where β(λ,0) denotes the distribution of the near-surface aerosol attenuation coefficient
with varying wavelengths, and N(h) denotes the distribution of aerosol particles with
varying heights.

The near-surface aerosol-scale spectral distribution can be approximated as a Junge
spectral distribution as follows [57]:

dN
dr

= N0r(−v−1) (A9)

where N0 denotes the aerosol particle number density, and v denotes the Junge index, which
generally lies between 2 and 4. The aerosol complex refractive index m and its variations
with varying wavelengths are given. The aerosol attenuation efficiency factor can be
obtained according to the Mie scattering theory Qe. The relative attenuation coefficient
of aerosol normalized to a 0.55 µm wavelength at ground level (0 km) is obtained σ1

e (λ,0)
as follows:

σe(λ,0) =
∫ r2

r1

πr2Qe(λ,m)
dN
dr

dr (A10)

σ1
e (λ,0) =

σe(λ,0)
σe(0.55,0)

(A11)
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where β(0.55,0) is the absolute attenuation coefficient at 0.55 µm. This term is directly
obtained by converting the ground visibility (Vis) as follows:

β(0.55,0) =
− ln(0.02)

Vis
− βm (A12)

where the 0 in parentheses indicates a near-surface value, and β_m is the surface Rayleigh
scattering coefficient at 550 nm, which is generally approximated as 0.01159 km−1 at sea
level. Absolute aerosol attenuation coefficients at other wavelengths can be obtained from
the results of Equations (A11) and (A12) using ground-visibility observations as follows:

B(λ,0) = σ1
e (λ,0)β(0.55,0) (A13)

The evaluation parameters of transmittance are calculated as follows:

RMSE =

√
1
N ∑kmax

k=k0
(Transok − Transtk)

2 (A14)

AD = Transok − Transtk (A15)

APD =
|Transok − Transtk|

Transtk
× 100% (A16)

MAD =
1
N

kmax

∑
k=k0

(|Transok − Transtk|) (A17)

MAPD =
1
N

kmax

∑
k=k0

|Transok − Transtk|
Transtk

× 100% (A18)

where k is the single wavenumber, Transok is the atmospheric transmittance of the observed
spectrum at wavenumber k, and Transtk is the standard spectral atmospheric transmittance
at wavenumber k.

Figure A1. Sun-glint diagram: S is the direct solar point, N is the subsatellite point, M is the sun-glint
point at the current moment, W is the satellite observation point, and O is the center of the Earth. We

define the vector
→

OS as the solar vector,
→

ON as the satellite vector, and
→

OM as the sun-glint vector. γ
is the angle between the solar vector and the satellite vector, β is the angle between the solar vector
and the sun-glint vector, β1 and β2 are the incident and exit angles of the sunlight at the sun-glint
point, and α is the zenith angle in the direction of the satellite observation.
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Figure A2. Geometric propagation model of the reflection of sunlight incident to a rough sea surface.
θs

i and θs
r are the incidence angle and reflection angle, respectively, relative to the wave facet normal

vector
→
n and relative to the wave facet normal vector in the scattering plane.

→
s and

→
v are the unit

vectors of the incident and reflected light. θ′ is the zenith angle of the incident light, and β and β′ are
the azimuth angles.

Figure A3.
→
v and

→
s are unit vectors of the incident and reflected light, respectively; α1 is the rotation

angle between the incident meridian plane and the reflection plane; and α2 is the rotation angle
between the reflection plane and the reflection.
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Figure A4. The position and angle information of the sun glint at each moment on 17 June 2019.
(a) Sun-glint zenith angles from 0–24 h on 17 June 2019; (b) sun-glint locations from 15:40 to 16:30 on
17 June 2019; and (c) sun-glint zenith angles from 15:40 to 16:30 on 17 June 2019.

Table A1. Table of the spectral resolution index values of different remote sensing loads [21,29,58].

Payload
(Satellite)

TANSO-FTS
(GOSAT) OCO-3 ACGS

(TanSAT)
CO2M

(Sentinel 7)
GAS

(FY-3H)

Country of origin Japan USA China EU China

Detection of component O2, CO2, CH4,
H2O O2, CO2 O2, CO2

O2, CO2, N2,
CO, aerosols O2, CO2, CH4

Waveband (µm)
0.758–0.775
1.56–1.72
1.92–2.08
5.56–14.3

0.758~0.772
1.59~1.62
2.04~2.08

0.758~0.776
1.594~1.624
2.041~2.081

0.747~0.773
1.59~1.675
1.990~2.095

0.75–0.77
1.59–1.625
2.04–2.08
2.05–2.55

Spectral resolution 0.2 cm−1
0.693 cm−1

0.308 cm−1

0.236 cm−1

0.762 cm−1

0.482 cm−1

0.388 cm−1

2.077 cm−1

1.157 cm−1

0.825 cm−1

0.693 cm−1

0.27 cm−1

0.212 cm−1

Table A2. Detailed input parameters for model Settings.

Simulation of Indicator Parameter

Atmospheric model U.S. Standard Atmosphere 1976
Wavenumber range/cm−1 6150–6290; 4806–4902

Aerosol type Maritime
Real-time sea-surface wind speed 8.7 m/s

24 h average sea-surface wind speed 7.29 m/s
ICSTL 6
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Table A2. Cont.

Simulation of Indicator Parameter

Sea-surface temperature 300.2 K
Sea-surface visibility 20 km

Solar zenith angle of the observer 142.358◦

Solar zenith angle of the sun glint 43.642◦

Sea-surface reflectivity 0.0291

Table A3. Transmittance and brightness temperature at spectral nadir of the 1.6 µm spectral band.

Payload CO2
Absorption GAS OCO-3 AGAS

Spectral resolution 0.07 cm−1 0.27 cm−1 0.308 cm−1 0.482 cm−1

Transmittance spectrum

P-branch Tmin
(6216 cm−1)

0.3279 0.5848 0.6025 0.6709

R-branch Tmin
(6239 cm−1)

0.3028 0.5738 0.5897 0.6578
(6241 cm−1)

Brightness
temperature spectrum

P-branch BTmin
(6216 cm−1)

288.8 K 295.1 K 295.4 K 296.5 K

R-branch BTmin
(6239 cm−1)

288.1 K 295.0 K 295.3 K 296.3 K
(6241 cm−1)

In the table above, Tmin is the minimum transmittance, and BTmin is the minimum
brightness temperature.

Table A4. Transmittance and brightness temperature at spectral nadir of the 2.06 µm spectral band.

Payload CO2
Absorption GAS OCO-3 AGAS

Spectral resolution 0.07 cm−1 0.212 cm−1 0.236 cm−1 0.388 cm−1

Transmittance spectrum

P-branch Tmin
(4842 cm−1)

0.00036 0.05783 0.07688 0.19353

R-branch Tmin
(4865 cm−1)

0.00017 0.064857 0.040283 0.14792
(4862 cm−1)

Brightness temperature
spectrum

P-branch BTmin
(4842 cm−1)

242.7 K 270.3 K 272.9 K 281.9 K

R-branch BTmin
(4865 cm−1)

242.3 K 268.7 K 271.4 K 279.7 K
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