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Abstract: Approximately 3.5 million people in Nicaragua have experienced food insecurity due to
the El Niño-Southern Oscillation (ENSO)-induced drought from 2014 to 2016. It is essential to study
terrestrial water storage component (TWSC) changes and their responses to ENSO to prevent the
water crisis in Nicaragua influenced by ENSO. In this paper, we investigate the TWSC changes in
Nicaragua and its sub-basins derived from the Gravity Recovery and Climate Experiment (GRACE)’s
temporal gravity field, hydrological model, and water level data, and then determine the connection
between the TWSC and ENSO from April 2002 to April 2021 by time series analysis. The research
results show that: (1) The estimated TWSC changes in Nicaragua are in good agreement with the
variation of precipitation and evaporation, and precipitation is the main cause of TWSC variation.
(2) According to the cross-correlation analysis, there is a significant negative peak correlation between
the interannual TWSC and ENSO in western Nicaragua, especially for interannual soil moisture
(−0.80). The difference in peak correlation between the western and eastern sub-basins may be due
to the topographic hindrance of the ENSO-inspired precipitation process. (3) The cross-wavelet
analysis indicates that the resonance periods between TWSC and ENSO are primarily 2 and 4 years.
These resonance periods are related to the two ENSO modes (the central Pacific (CP) mode with
a quasi-2-year period and the eastern Pacific (EP) mode with a quasi-4-year period). Furthermore,
their resonance phase variation may be due to the transition to ENSO mode. This study revealed the
relationship between ENSO and TWSC in Nicaragua, which can provide a certain reference for water
resources regulation.

Keywords: GRACE; terrestrial water storge component; ENSO; Nicaragua; climate

1. Introduction

The Republic of Nicaragua is located south of North America and is the largest country
on the isthmus of Central America [1]. In Nicaragua, the amount of renewable ground-
water, surface water, and total water is approximately 59.00 km3/a, 160.91 km3/a, and
164.52 km3/a, respectively [2]. These water resources are vital for agriculture, Nicaragua’s
main economic source [3,4]. Therefore, monitoring terrestrial water storage (TWS) changes
is critical for water resources management in Nicaragua.

At present, the common methods used to estimate TWS include in situ measuring (well
or gauging station), satellite remote sensing, numerical simulation, etc. [5–7]. However, in
situ measuring is sparse and uneven, satellite remote sensing (infrared or microwave remote
sensing) only captures information on surficial water bodies, and numerical simulation
is affected by the precision of model parameters. Fortunately, these shortcomings and
limitations can be addressed by the implementation of the Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-FO) [8], which have provided a
novel remote sensing method to monitor monthly TWS at a spatial resolution of 300 km
and equivalent water height (EWH) of 1 cm [9,10]. Nevertheless, the TWS derived from
GRACE/GRACE-FO contains all TWS components (TWSCs), which include canopy water,
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snow water equivalent, soil moisture, surface water, and groundwater [11,12]. Therefore, it
is necessary to combine multisource data, such as in situ observations and satellite remote
sensing observations, to quantitatively estimate regional TWSC changes, which have been
widely applied in the Amazon basin [13,14], Southwest China [15], Southern Africa [16],
Greenland [17], and so on.

Furthermore, TWSCs can be used to study significant climate variability in the Earth
system, such as El Niño and Southern Oscillation (ENSO) [11]. ENSO is a periodic deviation
in the mean sea surface temperatures in the equatorial Pacific Ocean, which can trigger
extreme natural events such as floods and droughts [18]. In recent years, some studies have
investigated the effects of ENSO on regional TWSC. Phillips et al. (2012) [19] indicated that
TWS in tropical regions shows a strong negative correlation with ENSO. Ni et al. (2018) [20]
pointed out that the strongest correlations between TWS and ENSO are found in the tropical
and subtropical regions, especially in the peripheral regions of the Pacific Ocean, such as
the Amazon River basin and La Plata River basin with the maximum cross-correlation
coefficients up to ~0.7.

Nicaragua has suffered from irregular extreme climate patterns caused by the changes
in ENSO [21]. The intensity of precipitation in Nicaragua is strongly influenced by
ENSO [22,23]. Bell et al. (1999) [24] analyzed the association of La Nina events (after
July 1998) with increased monsoon rains over Central America during October–December.
Amador (2008) [25] indicated that the strength of ENSO affects atmospheric circulation pat-
terns, such as the Caribbean low-level jet stream, which affects the intensity of precipitation
over Central America. Munoz-Jimenez et al. (2019) [26] pointed out that Nicaragua was
identified as a hot spot for significant drying conditions related to El Niño. Nevertheless,
these studies on the relationship between extreme drought events and ENSO in Nicaragua
primarily focused on precipitation and other climatic changes. The relationships between
ENSO and TWSC changes in Nicaragua have not been discussed in detail by previous
publications but will help us develop reliable drought forecasting systems and provide
insights into water resources management and mitigation measures in Nicaragua [27,28].

The novelty of our work is to study the differences in the TWSC–ENSO relationship
in two sub-basins, which have not been mentioned in previous studies. To investigate
comprehensively the relationship between ENSO and TWSC changes in Nicaragua, various
data (GRACE/GRACE-FO temporal gravity field, hydrological model, and water level data)
were adopted to estimate TWSC changes from April 2002 to April 2021 in Nicaragua and its
sub-basins. Subsequently, climate data (precipitation and evaporation) were employed to
analyze the variation in TWSC in Nicaragua. Finally, we used the cross-correlation analysis
and cross-wavelet transformation analysis to quantitate the TWSC–ENSO relationship.

2. Study Area and Data Acquisition
2.1. Study Area

Nicaragua is located in the Central American Dry Corridor, a tropical dry forest region
on the Pacific Coast of Central America [26]. According to the Köppen–Geiger climate
classification [29], there are three main climates in the Nicaragua region. The Pacific coastal
lowlands of the central highlands and west coast have a predominantly tropical savanna
climate [1,30]. The Caribbean coastal lowlands along the east coast have a tropical monsoon
climate and a tropical rainforest climate.

The central highlands in Nicaragua range from 610 m to 1524 meters above sea level.
Mountain topography affects the process of atmospheric flux exchange at different spatial
scales [31]. In Nicaragua, groundwater and surface water isotope ratios depicted the strong
orographic separation into the Caribbean and Pacific domains [32], mainly induced by
the governing moisture transport from the Caribbean Sea and complex rainfall-producing
systems across the mountain range. Therefore, we divided Nicaragua into two sub-basins—
eastern Nicaragua and western Nicaragua (Figure 1)—based on the mountain range and
Köppen–Geiger climate classification. Lake Nicaragua (8264 km2) and Lake Managua
(1041 km2) are located in the western basin [33].
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In addition, the rainfall varies greatly in Nicaragua. The Caribbean lowlands are
the wettest section of Central America, receiving between 2500 and 6500 mm of rain
annually [1]. The western slopes of the central highlands and the Pacific lowlands receive
considerably less annual rainfall, being protected from moisture-laden Caribbean trade
winds by the peaks of the central highland. Under the regulation of the Caribbean low-
level jet stream and the sea surface temperature of the eastern Pacific Ocean, the annual
cycle of precipitation in Nicaragua is climatologically characterized by a robust bimodal
distribution, normally termed the midsummer drought [34]. It is characterized by a first
precipitation peak between May and June, a reduction in precipitation between July and
August, and a second peak between late August and early October.
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2.2. GRACE/GRACE-FO Data

We adopted both the spherical harmonic solutions and mascon solutions of GRACE/
GRACE-FO to estimate the TWS changes in Nicaragua from April 2002 to April 2021.
The spherical harmonic solutions are from the Institute of Geodesy at Graz University
of Technology (ITSG) [35], in the form of fully normalized spherical harmonics Stokes
coefficients up to degree and order 60 [36]. To obtain the residual spherical harmonic
coefficients in each month, we subtract the mean gravity field on the basis of the period
from January 2004 to December 2009 (same as mascon solutions) from spherical harmonic
coefficients in each month. The first-degree (representing geo-center motion) spherical
harmonic coefficients were determined by combing the GRACE/GRACE-FO data with
numerical ocean models [37]. The GRACE/GRACE-FO C20 and C30 coefficients have been
replaced by the high-precision C20 and C30 coefficients measured by satellite laser ranging
data [38,39]. The P4M6 de-striping filter and a 500 km Gaussian filter are applied to suppress
longitudinal stripe noise and random errors in GRACE/GRACE-FO spherical harmonic
coefficients [40]. Finally, the ICE-6G_D model is employed to make the glacial isostatic
adjustment (GIA) corrections [41]. In this work, we use ITSG-SH as the abbreviation for
spherical harmonic solutions.

We implemented the newest release (CSR-RL06M v02) of mascon solutions provided
by the Center for Space Research (CSR) in Austin [42]. In this work, we use CSR-M as the
abbreviation for CSR-RL06M v02. The CSR-M solutions are the monthly global equivalent
water thickness values provided in the grid with a spatial resolution of 0.25◦ × 0.25◦. The
CSR-M solutions have made the replacement and corrections consistent with the spherical
harmonic solution, including C20 replacement, C30 replacement, first-degree corrections,
and GIA corrections. Nicaragua is near the equator, where ellipsoid corrections have a
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minor impact on TWS changes [43]. Therefore, we did not consider executing an ellipsoid
correction to the spherical harmonic solutions.

2.3. Hydrological Model and Satellite Altimetry

The Global Land Data Assimilation System (GLDAS) was jointly developed by the
Goddard Space Flight Center (GSFC) and the National Centers for Environmental Predic-
tion (NCEP) [44]. This model uses remote sensing satellite data and surface observational
data as the inputs for four land surface process hydrological models: NOAH, VIC, CLM,
and MOSAIC. Based on model simulation and data assimilation algorithms, the model
outputs are the global surface state variables and the flux data. Many previous studies have
proved the applicability of GLDAS to large-scale water balance analyses [45–47]. Based
on the selection (NOAH) of Philip et al. (2012) [19] and Ni et al. (2018) [20], we employed
the soil moisture outputs of the GLDAS2.1-NOAH025 model in this paper. These outputs,
with a spatial resolution of 0.25◦ and a temporal resolution of one month, cover the same
period as the GRACE/GRACE-FO model.

Schwatke et al. (2015) [48] proposed a new method to compute the inland water
level time series of rivers and lakes based on an extended outlier rejection and a Kalman
filter approach incorporating cross-calibrated multi-mission satellite altimeter data. These
time series are available from Database for Hydrological Time Series over Inland Waters
(DAHITI: https://dahiti.dgfi.tum.de). We collected water level (surface water components)
time series for Lake Nicaragua (April 2002 to April 2021) and Lake Managua (July 2002 to
April 2021) from DAHITI. The missing value of the two months (April and May in 2002)
were interpolated by singular spectrum analysis iterative interpolation [49].

2.4. Climate Data and Climate Index

The ERA5-land is the land component of the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 climate reanalysis. The ERA5-Land model contains
detailed records of the surface water energy cycle [50]. The high spatial and temporal
resolution of ERA5-Land, its extended period, and the consistency of the fields produced
makes it a valuable dataset to support hydrological studies, initialize numerical weather
prediction and climate models, and support diverse applications dealing with water re-
source, land, and environmental management [51]. The monthly mean data variables
analyzed in this study include precipitation and evaporation at a spatial resolution of 0.1◦.
Figure 2 shows the spatial variation in the monthly average precipitation, evaporation, and
the monthly average difference between precipitation and evaporation values from April
2002 to April 2021 in Nicaragua.
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ENSO events have been connected to climate effects (e.g., droughts and floods) by the
evidence of teleconnections within the coupled ocean–atmosphere and land systems [20].
In this work, we use the Niño 3.4 index (from April 2002 to April 2021) as a measure of
ENSO strength. The ENSO Niño 3.4 index is the monthly anomaly value of sea surface
temperature defined in the area of Niño 3.4 (5◦N–5◦S, 170◦W–120◦W) [18]. An El Niño or
La Niña event is identified if the five-month running mean of the Niño 3.4 index exceeds
+0.4 ◦C (for El Niño, or −0.4 ◦C for La Niña) for at least six consecutive months [52].

https://dahiti.dgfi.tum.de
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3. Methods
3.1. TWS Changes Estimation

The residual spherical harmonic coefficients were obtained using the method of Wahr
et al. (1998) [12] to estimate the TWS changes. To reduce the signal leakage [53], we applied
a forward modeling technique of the ITSG-SH monthly TWS changes derived from ITSG-SH
solutions [40]. This procedure comprises the following steps: (1) We converted the residual
spherical harmonic coefficients to the GRACE/GRACE-FO-derived global mass changes
(OBS) using the same filter (i.e., 500 km Gaussian and P4M6 filter). Next, we assigned the
OBS to the land region of a new simulated gridded mass change (FM0). (2) We reassigned
a uniform water layer to the ocean areas of FM0, negatively equaling the total mass over
land to make the total ocean mass changes equal to that on land. (3) We applied the same
truncation and filter as the FM0 to obtain the observation (FM1) of FM0. (4) Subsequently,
we compared the FM1 and OBS. This method minimizes differences between the FM1 and
OBS through an iterative approach. Consequently, we added differences to the FM0 (i.e.,
modeled ‘true’ mass) at each grid point. (5) The updated FM0 was regarded as the new
input in step 2 until the number of iterations process (in steps 2 to 5) or the differences
between FM1 and OBS were below a defined threshold.

In this paper, we set the maximum number of iterations to 20 to reduce the noise
accumulation because of overiteration [54]. The modeled ‘true’ mass FM1, after going
through the same filter (500 km Gaussian and P4M6 filter), provided the global TWS
changes that closely resemble TWS changes derived from the ITSG-SH solutions.

Finally, the global gridded mass changes (from CSR-M and ITSG-SH) were weighted
by latitude cosine to compute the TWS change time series of a particular region. The TWS
changes derived from GRACE/GRACE-FO in all missing months from April 2002 to April
2021 were filled by singular spectrum analysis iterative interpolation [49].

3.2. Time Series Analysis

Because the periods of ENSO are primarily interannual variations, the linear trend,
annual, and semiannual terms from each time series (TWSC and climate data in two sub-
basins) need to be removed [20]. A time series can be decomposed into a linear trend,
annual, semiannual, and residual term by harmonic analysis [55]:

TS(t) = a0 + a1t + a2 cos(2πt) + a3 sin(2πt) + a4 cos(4πt) + a5 sin(4πt) + ε (1)

where TS(t) is the time series; t is the time; a0, a1, a2, a3, a4, and a5 are parameters to be
solved by least squares fitting; ε is the residual signal. After removing the linear trend,
annual, and semiannual terms from each time series (TWSC and climate data in two sub-
basins), the residuals are determined. A 13-month moving average filter is further applied
to the residuals, leaving a time series X(t) mainly dominated by interannual (low-frequency)
variations [56].

Subsequently, the cross-correlation ρ(τ) of X(t) and ENSO index Y(t) can be expressed
as [57]:

ρ(τ) =
σXY(τ)

σXXσYY
=

 RXY(τ)
σXXσYY

=
∑N−τ−1

n=0 X(n+τ)×Y∗(n)
σXXσYY

, τ ≥ 0
R∗

YX(−τ)
σXXσYY

, τ < 0
(2)

where Y(t) is a function of the lag τ with Y(t) leading X(t), σXY (τ) is the cross-covariance,
σXX and σYY are the respective variances of X(t) and Y(t), N is the length of time series, and
the asterisk represents the complex conjugate. The value range of ρ(τ) is between −1 and 1.
The peak correlation with τ over one year is unlikely to be a true TWSC-ENSO connection,
but rather ENSO events repeat in the last decade or so [58]. Thus, we selected τ with the
peak correlation within one year.

The cross-wavelet transformation can detect the correlation between the two time
series in both time and frequency domains, combined with the wavelet transformation
and cross-spectrum analysis [59]. In this study, the cross-wavelet transformation was
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mainly employed to investigate resonant periods between the original time series (TWSC
changes, precipitation, and evaporation without decomposition) and ENSO. Grinsted et al.
(2008) [60] provided the toolbox for cross-wavelet transformations. MATLAB source code
is available from the web server (www.iamg.org, accessed on 24 June 2022).

3.3. Workflow

The data processing workflow for this study is shown in Figure 3.
(1) To study the TWSC changes in Nicaragua, we computed the TWS changes, surface

water changes, and soil moisture changes from GRACE/GRACE-FO data, water level, and
the GLDAS2.1-NOAH025 model, respectively. For brevity, soil moisture and surface water
are abbreviated as SMSW;

(2) Next, we analyzed the time series of TWSC changes and climate data in Nicaragua
and its sub-basins;

(3) We use time series analysis (harmonic analysis, cross-correlation analysis, and
cross-wavelet analysis) to study the relationship between the ENSO and each time series in
Nicaragua.
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4. Results
4.1. TWSC Changes in Nicaragua

Precipitation and evaporation are the significant sources of TWSC changes in
Nicaragua [45,61]. We analyze the relationship between climate data (precipitation and
evaporation) and TWSC changes in the time domain. Figure 4 shows the monthly variation,
mean annual cycle, and annual variation for TWSC (CSR-M, ITSG-SH, and SMSW) and
climate data.

From Figure 4, TWSC changes are mainly regulated by precipitation in Nicaragua.
When Nicaragua enters into the rainy season (from May to December, see Figure 4b), TWSC
begins to increase. The mean annual cycle of precipitation from May to October was more
than 200 mm, about twice the evaporation of the corresponding month. While precipitation
began to decrease rapidly in October, TWSC began to decrease. Additionally, the annual
variation in precipitation is consistent with TWSC changes, see Figure 4c. From 2002 to
2012, TWSC increased gradually. However, the TWSC began to decrease in 2012 and
speeded up in 2014. Approximately 3.5 million people experienced food insecurity after

www.iamg.org
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suffering major crop losses resulting from the prolonged warm ENSO-induced drought
from 2014 to the beginning of 2016 [62]. Fortunately, the following increase in annual
precipitation (2016–2017) mitigated the drought timely. From 2017 to 2021, the TWSC was
still decreasing slowly.

Figure 4. (a) Monthly variation, (b) mean annual cycle, and (c) annual variation in TWSC changes
(CSR-M, ITSG-SH, and SMSW) and climate data (precipitation and evaporation). The annual variation
in climate data is an accumulation of one year. The annual variation in TWSC is a mean value of
one year.

Meanwhile, we computed the annual amplitude and annual phase as well as the linear
trend of TWSC (over the three above periods and the whole study period) by harmonic
analysis (Table 1). From April 2002 to April 2021, the linear trends of TWSC changes
derived from CSR-M, ITSG-SH, and SMSW are 0.19 mm/a, −3.67 mm/a, and −2.62 mm/a,
respectively. Further, we computed the annual amplitude and annual phase in every grid
point from TWSC using harmonic analysis (Figure 5).

Table 1. Harmonic analysis of TWSC changes.

Sources Annual Amplitude (mm) Annual Phase (◦)
Linear Trend (mm/a)

2002-04
2021-04

2002-04
2012-03

2012-04
2017-03

2017-04
2021-04

ITSG-SH 130.48 280.94 −3.67 8.76 −44.56 −32.32
CSR-M 112.27 290.34 0.19 6.13 −12.82 −6.57
SMSW 152.04 283.10 −2.62 2.93 −15.39 −15.56

Because the size of Nicaragua (130,400 km2) was only over 30% of the GRACE/GRACE-
FO actual spatial resolution (~100,000 km2) [63], the spatial variation in annual amplitude
and phases of CSR-M and ITSG-SH did not show significant east–west differences as SMSW,
see Figure 5. The annual phase difference between ITSG-SH (280.94◦) and CSR-M (290.34◦)
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is about 10◦. The ITSG-SH is closer to SMSW in terms of annual amplitude and phase.
Because the SMSW lacks groundwater components and also has some uncertainty [64], the
SMSW cannot be used to evaluate two GRACE/GRACE-FO solutions in Nicaragua.
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4.2. TWSC Changes in Nicaragua Sub-Basins

There are significant differences in climate (Figure 2) and SMSW (Figure 5c) between
the eastern basin and western basin, so we mainly analyze changes in climate and SMSW
in the two sub-basins. We computed monthly variation (Figure 6) and mean annual cycle
(Figure 7) from four kinds of sources (SMSW, soil moisture, precipitation, and evaporation).
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Figure 6. The monthly variation of SMSW, soil moisture, precipitation, and evaporation in east-
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In Figure 6, the SMSW in western Nicaragua has a significant long-term period change
compared with that in eastern Nicaragua. From Figure 7, the western SMSW has a larger
annual variation than the eastern SMSW. Soil moisture in the two basins changed with the
alternation of rainy and dry seasons. When the precipitation in the two sub-basins began to
decrease after October, soil moisture in the two sub-basins also decreased rapidly. However,
the western SMSW did not begin to decrease until after November. The reason for these
differences in hydrological processes between western Nicaragua and eastern Nicaragua is
that the two lakes (Lake Managua and Lake Nicaragua) exist in the western basin, which
can preserve the water and increase evaporation [65].
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4.3. Relationship between TWSC and ENSO
4.3.1. Cross-Correlation Analysis between Interannual TWSC and ENSO

To investigate the connection between TWSC changes, climate data, and ENSO in
the two sub-basins, we obtained the interannual signals (CSR-M, ITSG-SH, SMSW, soil
moisture, precipitation, and evaporation in Nicaragua sub-basins), as shown in Figure 8.
To better visualize the results, we multiplied the ENSO index by −1 in Figure 8. The peak
correlation coefficients with corresponding lags between ENSO and the interannual signals
are shown in Figure 9.

Figure 8. The interannual signals (CSR-M, ITSG-SH, SMSW, soil moisture, precipitation, and evapo-
ration) and the ENSO index in eastern (a) and western (b) Nicaragua.

Strong La Nina events in 2008 and 2011 correspond to significant positive interannual
TWSC, and strong El Niño events from 2015 to 2016 correspond to significant negative
interannual TWSC in Nicaragua sub-basins (Figure 8). There is a significant negative
correlation with lags between interannual TWSC and ENSO (Figure 9), especially for
the interannual western soil moisture (−0.80). This connection is because ENSO can
regulate climate models to affect water transport processes in Nicaragua, especially the
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precipitation [25]. As a rule, El Niño/La Nina produces drier/wetter conditions in the
Pacific Ocean and the opposite in the Caribbean Sea [26]. Thus, the correlation (−0.74)
between western precipitation and ENSO is stronger than that between eastern precipitation
and ENSO. It also indicates that the ENSO signal is feeble on the Caribbean side, which is
consistent with the result of Hidalgo et al. (2017) [66].

Figure 9. The peak correlation coefficients with corresponding lags between interannual signals
(CSR-M, ITSG-SH, SMSW, soil moisture, precipitation, and evaporation) and ENSO in Nicaragua
sub-basins. A positive/negative value of lags means that the ENSO phase is ahead/behind the
interannual signal. All the peak correlations are computed at a 95% level of confidence.

The difference in peak correlation between the two sub-basins may not only be due to
the influence of other climate models with different spatial and temporal scales [22,23] but
also related to the influence of the ENSO propagation process [67]. Kowal et al. (2022) [68]
analyzed that precipitation spatial distribution will respond more to the slope position
relative to the wind, distance to the coast, and local topography. From the view of signal
propagation, when the ENSO signal passes through the alpine terrain of Nicaragua from
west to east, the linear disturbance of ENSO may be weakened or delayed. This terrain
hinders the linear broadcast of the ENSO signal [31].

Subsequently, we analyze the differences in peak correlation with corresponding lags
caused by TWSC (Figure 9). We focus on the peak correlation with corresponding lags
in western Nicaragua. With the increase of different components, the peak correlation
becomes weaker, and the corresponding lags increase. Western interannual soil moisture
has the strongest correlation (−0.80) without lag. With the addition of a surface water
component, the peak correlation coefficient (SMSW) becomes −0.70 with lags (3 months).
After adding the groundwater component, the peak correlation coefficient (TWS) is stable
(−0.72 or −0.73), but the lags increase.

The difference in peak correlation for each TWSC is because ENSO acts on all the
hydrological processes, including precipitation, evaporation, runoff, and others [19]. To
be specific, the difference in peak correlation between SMSW and soil moisture is because
the availability of surface water can affect hydrological processes such as evaporation and
runoff [69]. Munoz et al. (2019) [26] analyzed that the low relief around the depression
of Lake Nicaragua is likely to play a role in moisture transport. Furthermore, the differ-
ence in peak correlation with lags between SMSW and TWS (CSR-M, ITSG-SH) is due to
groundwater storage changes. The response of groundwater to ENSO-induced hydrologic
processes is delayed, which depends on various factors affecting infiltration and recharge
rates, such as local geology, land use, and land cover [70].
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4.3.2. Cross-Wavelet Analysis between TWSC and ENSO

To better analyze the resonance between ENSO and TWSC, the cross-wavelet analysis
was adopted to study the connection between the original time series (TWSC and climate
data without decomposition) and ENSO. The results are shown in Figure 10.
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Figure 10. The cross-wavelet transforms between ENSO and eastern soil moisture (a), SMSW (c),
precipitation (e), and evaporation (g), the cross-wavelet transforms between ENSO and western soil
moisture (b), SMSW (d), precipitation (f), and evaporation (h), and the cross-wavelet transforms
between ENSO and TWS (CSR-M (i) and ITSG-SH (j)) in Nicaragua. The solid red lines are the edge
of the influence cone. The 5% significance level against red noise is exhibited as thick lines, and the
relative phase relationship is denoted as arrows (with in-phase pointing right, antiphase pointing
left, and time series (TWSC changes, precipitation, and evaporation) leading ENSO by 90◦ pointing
straight down).
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In 2004–2010 and 2002–2021, a significant negative correlation (Figure 10b,d) is re-
vealed between western TWSC (both soil moisture and SMSW) and ENSO, with a period of
2 years and 4 years, respectively. In addition, the negative correlation resonance between
TWS (CSR-M and ITSG-SH in Nicaragua) and ENSO is stable, with a period of about
2~4 years from 2002 to 2021. Furthermore, western precipitation (Figure 10f) also has a
similar resonance, but the resonance period shifts gradually from 2 years to 4 years in 2002–
2021. In Figure 10f, the resonance period of over 5 years in 2002–2021 for the connection
between western precipitation and ENSO also exists. However, this resonance is beyond
the cone of influence, which is unreliable. So, we concluded that the resonance periods of
TWSC and precipitation with ENSO are mainly 2 and 4 years. In addition, it should be
noted that all resonance phases began to change in 2012. Compared with resonance in the
western basin, the significant resonance (2~4 years) between ENSO and eastern time series
(TWSC and precipitation) is only in 2012–2021.

El Niño events have been categorized into two sea surface temperature patterns, an
eastern Pacific (EP) with a quasi-4-year period and a central Pacific (CP) ENSO with a
quasi-2-year period [71], which refer to the respective location of the maximum positive sea
surface temperature anomalies and associated convection [72,73]. According to the study
by Hu et al. (2018) [74], there were mostly EP ENSO from 2002 to 2015, EP La Nina events
occurred in 2005 and 2007, and EP El Niño events occurred in 2015. Therefore, we think
that the above phase variation and major resonance period (2 and 4 years) in Figure 10 are
correlated with the interdecadal transition of ENSO modes [74].

5. Conclusions

In this paper, we adopted various data to compute TWSC changes, precipitation,
and evaporation in Nicaragua and further analyzed them in the time domain (monthly
variation, annual variation, and so on) and space domain. Subsequently, the relationship
between ENSO and TWSC changes in Nicaragua from April 2002 to April 2021 is studied.
The conclusions are:

(1) There is a strong correlation between TWSC changes in Nicaragua and climate
data (precipitation and evaporation). Moreover, precipitation is the main reason for the
temporal and spatial variation of TWSC in Nicaragua;

(2) The cross-correlation analysis indicates a significant peak correlation (−0.80) be-
tween ENSO and soil moisture in the western basin, while the peak correlation coefficient
between other western TWSC and ENSO was kept between −0.70 and −0.73. The dif-
ference in ENSO response between the two sub-basins may be due to the topographic
hindrance of the ENSO-inspired precipitation process;

(3) The cross-wavelet analysis demonstrates that the resonance periods between TWSC
and precipitation with ENSO are mainly 2 and 4 years. These resonance periods are related
to two types of ENSO (EP ENSO and CP ENSO). In addition, this resonance phase variation
is due to the interdecadal transition of the ENSO type.

At last, we think that the influence of terrain on TWSC may be used for signal ex-
traction in the future [75], especially in a small-scale basin. The relationship between
topographic gradient changes and TWSC changes can also be further explored to help us
extract and understand geophysical signals.
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