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Abstract: Interest in pistachios has increased in recent years due to their healthy nutritional profile
and high profitability. In pistachio trees, as in other woody crops, the volume of the canopy is a key
factor that affects the pistachio crop load, water requirements, and quality. However, canopy/crown
monitoring is time-consuming and labor-intensive, as it is traditionally carried out by measuring tree
dimensions in the field. Therefore, methods for rapid tree canopy characterization are needed for
providing accurate information that can be used for management decisions. The present study focuses
on developing a new, fast, and low-cost technique, based on two main steps, for estimating the canopy
volume in pistachio trees. The first step is based on adequately planning the UAV (unmanned aerial
vehicle) flight according to light conditions and segmenting the RGB (Red, Green, Blue) imagery
using machine learning methods. The second step is based on measuring vegetation planar area
and ground shadows using two methodological approaches: a pixel-based classification approach
and an OBIA (object-based image analysis) approach. The results show statistically significant linear
relationships (p < 0.05) between the ground-truth data and the estimated volume of pistachio tree
crowns, with R2 > 0.8 (pixel-based classification) and R2 > 0.9 (OBIA). The proposed methodologies
show potential benefits for accurately monitoring the vegetation of the trees. Moreover, the method is
compatible with other remote sensing techniques, usually performed at solar noon, so UAV operators
can plan a flexible working day. Further research is needed to verify whether these results can be
extrapolated to other woody crops.

Keywords: leaf area; drone; pistachio; aerial; image analysis; precision agriculture; machine learning;
spatial variability; random forest

1. Introduction

Over the past few years, interest in pistachio nuts has increased due to the high
economic revenues they provide to farmers and their numerous beneficial effects. Pistachios
improve the quality of the diet and supply a number of bioactive compounds with a healthy
nutritional profile, including fiber, healthy fats, phytosterols, and antioxidant compounds,
which help to reduce the likelihood of heart disease [1]. Pistachio trees are dioecious plants.
Therefore, both male and female trees are needed to produce pistachio nuts. Consequently,
male trees must be planted between the female trees, generally in a ratio of 1 to 25 in
commercial orchards [2]. The flowers have no petals, are unisexual and are clustered in
bunches, similar to other woody crops, such as grapevines [3].

Tree-crown size influences the quality of pistachio nuts since canopy volume affects
the crop load, impacting the fruit set and ovary growth, leading to embryo development
disorders, and leaving the nut empty [4]. Moreover, as in other crops, it is essential to
estimate the canopy volume since it determines the amount of solar radiation that the
canopy intercepts, which is directly related to transpiration [5]. Guidance documents for
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irrigation management in agriculture, such as FAO 56 [6], use evapotranspiration, a concept
that combines evaporation and transpiration, two phenomena that occur simultaneously.
Unfortunately, there is no simple way to distinguish between these two processes. On the
one hand, the tree’s water requirements are determined by the transpiration of the canopy
leaves, which is the vaporization of liquid water contained in plant tissues into the atmo-
sphere, predominantly through the stomata. On the other hand, soil water evaporation is
mainly determined by the fraction of solar radiation reaching the soil surface. This fraction
decreases over the growing season as canopy size increases (and consequently the shadow
it generates), significantly reducing evaporation rates [7] because this process mainly occurs
on the wet soil surface, which is not shaded by the canopy [2]. Moreover, FAO 56 employs
factors such as the crop coefficient Kc, the ratio between the actual crop evapotranspiration
and the reference evapotranspiration, an essential input for evaluating crop evapotranspi-
ration. Kc is related to leaf area [8,9] and changes during the growing season according to
leaf area, the solar radiation intercepted by the canopy, and crop phenology [10]. These
components are strictly related to the plant’s genetics. Therefore, knowledge of the genetic
variability on canopy features, such as crown volume, is necessary to conduct breeding
programs that aim to create new cultivars suitable for changing environmental conditions
or different planting systems, such as planting in high-density hedgerows [11]. For all these
reasons, it is important to characterize the size of pistachio canopies.

However, canopy monitoring is time-consuming and labor-intensive as it is tradition-
ally carried out by measuring tree dimensions in the field, both crown height and canopy
diameter. First, traditional methods need measurements of the dimensions of the crown,
such as the radius. Then, the volume is calculated by assuming the tree crown is a classic
3D solid, such as a cylinder, cone, sphere, ellipsoid or paraboloid, which can be a precise
estimation [12]. Still, as farm sizes increase, it becomes more challenging to perform this
task effectively without the support of new technologies [13]. A quick and accurate way to
estimate canopy diameter might involve remote sensing, which helps to analyze different
traits and the within-field spatial variability of the crops and allows the development of
site-specific strategies for the entire orchard, group of plants or even the single plant [14].
Remote sensing has proven its value in precision agriculture, a concept that seeks the
best possible agricultural production, in terms of quality and quantity, by implementing
site-specific management in farms through the use of a wide range of technologies and
techniques focused on the assessment and management of spatial variability within the plot.
Handling this variability is a critical factor in agriculture, since the needs of plants in some
parts of the field may be very different from those in other areas. In this way, the inputs,
such as the amount of water or fertilizer, can be adapted to the needs of the plants [15].
The application of precision agriculture is possible thanks to the combination of a variety
of advanced technologies, such as the use of global navigation satellite systems (GNSS),
the development of software to manage and analyze farms in the context of geographic
information systems (GIS), and, of course, the development of technologies related to the
acquisition of data remotely [16]. In this way, remote sensing allows determining plant
parameters non-destructively, with multiple applications such as crop yield prediction [17],
disease detection [18] or vigor estimation [19]. It has already proven its worth in pistachio
since it is possible to determine the spatial variability of pistachio trees using satellite
remote sensing, as well as their vigor and phenology [20].

Remote sensing consists of a wide range of techniques involving various platforms
and sensors. Unmanned aerial vehicles (UAVs) represent one of these platforms. UAVs are
a game-changer in precision agriculture, with several unique features that enable them to
provide unrivaled remote sensing data, such as high-resolution imagery [21]. They can load
a variety of sensors, such as thermal, multispectral or hyperspectral cameras, which have
successfully demonstrated their value in agricultural applications [22]. Moreover, recent
advances in sensor miniaturization, standardization, and cost reduction have democratized
the use of UAVs and expanded their possibilities, giving a wide variety of options to choose
from, ranging from high-tech hyperspectral and thermal cameras to more simple RGB
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(Red, Green, Blue) cameras. These include different technologies, platforms, sensors, and
methodologies for extracting traits and features of the crop [23]. The use of aerial vehicles
combined with image and data processing based on photogrammetric methods to generate
orthomosaics allows the production of maps with high spatial resolution, providing high
added value, simplifying crop management, to a certain extent, and supporting the farm
manager’s decision-making process [24].

There are several other methods based on remote sensing for estimating the vegetative
development of the plant, such as analyzing the 3D point clouds generated from images
by photogrammetric processes [25,26] or assessing the tree crown volume from airborne
sensor LiDAR (Light Detection and Ranging) data using computational geometry meth-
ods [27]. In addition, other methods measure the distribution of biomass in woody plant
canopies, such as the average leaf inclination angle (ALIA), canopy gap fraction (% sky in
all viewing directions), or the canopy closure (% of ground shaded by foliage) methods [28].
These methods can be helpful but often require time-consuming calculations, expensive
equipment, or powerful computers for data processing. Therefore, using each combination
of sensor and platform entails a series of essential adjustments and different practices for
performing the mission planning properly. Thus, radiometric and geometric calibrations
and adjustments of all kinds must be considered depending on the sensor and platform
used, leading to different exposure to error, extra costs, and prolonged time, depending on
the components used, not only during the development of the flight mission, but also in
the computational needs for image pre- and post-processing [29]. It is, therefore, essential
to consider the best practices in mission planning and to choose wisely the sensor and
platform fitted for the necessities of the work.

In addition, a common approach in remote sensing is using multispectral images to
calculate vegetation indices, which have proven useful because of their relationship with
critical crop parameters, such as health status or leaf area [30–33]. These images allow the
calculation of vegetation indices such as NDVI (normalized difference vegetation index),
which can be used to calculate the planar or planimetric canopy area, that is, the number of
vegetation pixels across a single row [34]. Although in this approach shadows are often
handled as undesirable information and are usually removed from image sets [35,36],
previous work has demonstrated that it is possible to estimate the LAI (leaf area index) of
the vineyard from shadows projected on the ground [37]. However, in this previous work,
vineyards were managed with a different training system and, moreover, pistachio orchards
have a lower density (fewer trees per hectare) and higher tree height than vines. Therefore,
it is interesting to understand whether the projected shadows could also be used to estimate
the canopy volume of pistachio trees quickly and accurately for informing farm managers.

As mentioned above, since field methods are labor-intensive, obtaining canopy ge-
ometry data using remote sensing and image segmentation techniques can significantly
speed up the process and allow for more effective tree monitoring. Therefore, a remote
sensing-based technique with two methodological approaches for obtaining crown volumes
is proposed in this paper. Furthermore, even when the crowns are irregular, the crown
volumes can be shaped as a sphere or an ellipsoid since such classic 3D solids are commonly
employed [12]. Moreover, since the leaf area of the plant is correlated with intercepted
light [38], a rapid and low-cost technique with two methodological approaches for the
estimation of the canopy volume (or crown volume) of pistachio trees is developed based
on the analysis of the ground shadows projected by the plants. To improve the method,
these shadows are combined with the planar area of the vegetation. To our knowledge,
this is the first study that presents and evaluates a field protocol for assessing the crown
volume of pistachio trees using UAV RGB imagery to measure their projected shadows on
the ground. In other woody crops, the canopy attributes are assessed through the LAI [37].
However, in pistachio trees, the canopy is measured by calculating crown volume [39], and
therefore the main objective of the proposed technique is to estimate the canopy volume of
the plant. Crown volume is the apparent geometric volume that includes all the branches
and leaves, even the holes among them [12,40]. Then, the canopy volume is calculated
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following the same procedures as for the ground-truth data, assuming that the tree crown
is a sphere or an ellipsoid.

2. Materials and Methods
2.1. Experimental Site

The pistachio orchard is a 2.03 ha plot located in ‘La Seca’, Valladolid, in the region of
Castilla y León, Spain (X: 341450.3, Y: 4589731.8; ETRS89/UTM zone 30N; Figure 1). It was
planted in 2016 with a NE–SW orientation and a 7 × 6 m triangular planting pattern.
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Figure 1. Location of the pistachio orchard in the ‘Castilla y León’ region, Spain. Coordinates:
X: 341450.3, Y: 4589731.8; ETRS89/UTM zone 30N. Red polygon: UAV flight area. Blue polygon: area
where the ground-truth measures were taken.

The pistachio trees (Pistacia vera L. cv. Kerman grafted on UCB rootstock) were
irrigated periodically during the vegetative cycle, using two different irrigation treatments
in order to generate canopy volume variability aiming to obtain a more representative
model calibration. They were irrigated from February to October 2021 using a computer-
controlled drip irrigation system, adjusting the duration of each irrigation episode to vary
the amount of water applied. The quantity of irrigation water applied was 278 and 418 mm
for each treatment during 2021, respectively. All the trees were irrigated daily, using
subsurface drip irrigation with twelve pressure-compensated drippers per tree (2 L·h−1).

The phenology dynamics were similar to previous years, with the beginning of flower-
ing around the third week of April, full flowering in the last week of April, and the end of
flowering the first week of May. Furthermore, the harvest took place at the beginning of
October. Regulatory pruning was carried out to manage vegetation growth while leaving
the entire quantity of flower buds. In addition, the soil was kept free of any weeds that
would have affected image processing.

Climate data were collected from the closest weather station (VA103, Rueda, Valladolid,
Figure 2), which belongs to the ITACyL and SIAR Network (Agroclimatic information
system for irrigation). The data are provided on the ‘inforiego’ web service (https://www.
inforiego.org/, accessed on 9 July 2022).

https://www.inforiego.org/
https://www.inforiego.org/
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Figure 2. Weather variables over the period from 1 January to 29 July 2021 at the experimental site.

2.2. Methodology

The steps of the methodology were: (1) georeferencing the ground control points
(GCPs), (2) performing the flight mission, capturing UAV RGB images, (3) photogrammetric
process, including orthomosaic building, (4) orthomosaic reclassification, segmenting
the orthomosaic using random forest into three classes: vegetation, soil and shadows,
(5) analysis in two different ways: raster analysis approach (pixel-based classification) and
vector analysis approach, assessing geometries in an object-based image analysis approach
(OBIA). Figure 3 shows the last three steps.
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Figure 3. Workflow. Both methodologies employ a grid based on the planting pattern and the solar
azimuth to identify each tree, assigning a plant id from the polygon id. The orthomosaic is generated
using RGB images, and segmented using random forest algorithm into three classes: vegetation,
soil and shadows. The product is analyzed in two ways: (a) using a raster approach (pixel-based
classification), analyzing the number of pixels of each class within each polygon and (b) an OBIA
(Object-Based Image Analysis) approach, enveloping the pixels within several geometries.

2.3. Ground-Truth Data

The ground-truth data were taken on 29 July 2021, just before the flight mission.
Two ROIs (Regions of Interest) were employed (Figure 1). The red one defines the UAV
flight area, and the blue ROI indicates the area where the ground-truth measures were taken.

In order to ensure enough canopy volume variability, twenty pistachio trees were
selected, ten from each irrigation treatment. Measurements were taken following commonly
used field methodologies [41,42] and in accordance with the instructions of the technicians
of the agricultural holding. In this respect, each plant was accurately measured to define
its dimensions (Figure 4a), i.e., the distance from the canopy to the ground (h) and the
height (a), length (b), and width (c) of the canopy. Subsequently, the canopy volume was
calculated using the sphere formula:

V =
4
3

πr3 (1)

and the ellipsoid formula:

V =
4
3

π(a/2)(b/2)(c/2) (2)

Because the field technicians determined that these geometries fitted better the canopy
shape of pistachio trees. The radius r for the sphere formula is the average of a/2, b/2 and
c/2 (Figure 4b).
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2.4. UAV Imagery Acquisition

The aerial survey was performed on the same day as the ground-truth measurements,
29 July 2021, over the pistachio field using a UAV DJI Phantom Advance quadcopter
(Figure 5) equipped with a DJI FC6310 RGB camera with a 1-inch 20-megapixel sensor,
aperture from F2.8 to F11, a focal length of 8.8 mm (35 mm equivalent: 24 mm), a horizontal
field of view of 84◦, and mechanical shutter for rolling shutter distortion reduction. For
this research, the camera was configured using ISO 400 and a 7.1 aperture, and 248 nadir
images (image size 5475 px × 3078 px) in JPEG format were captured with a side and
frontal overlap ratio of 80%. This UAV model was chosen because DJI is a world’s leading
drone manufacturer [43] and, according to the manufacturer’s Agricultural Drone Industry
Insights Report for 2021 [44], the Phantom series is one of the company’s best-selling
agricultural drones.
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The flight mapping survey (Figure 6a) was designed using DJI Pilot App (v1.9.0),
setting up the UAV horizontal speed of 4 m/s and a flying height of 55 m above ground
level (AGL), resulting in a theoretical average ground sample distance (GSD) of 1.53 cm/px.
In addition, a set of five GCPs were located in the field and georeferenced using a real-time
kinematic (RTK) GPS Triumph-2 JAVAD to enhance the geometric accuracy of the image
mosaicking process, optimize camera positions, and improve the orientation of the data.
The dataset is freely available in a public repository [45]. The survey was planned to obtain
the shadows of the trees projected on the ground (Figure 6b).
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To this end, the flight was scheduled using the NOAA Solar Calculator (https://
www.esrl.noaa.gov/gmd/grad/solcalc/, accessed on 9 July 2022), which implements the
equations described by Jean Meeus [46] and allows to estimate the positions of the sun
for a certain date in any place on Earth, in this case, the location of the pistachio orchard
(Figure 7). Table 1 shows the calculated solar azimuth, elevation, and shadow ratio for the
flight date, 29 July 2021, at 11:23, solar noon, sunset, and sunrise (local time).
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Table 1. Calculated solar azimuth, elevation and shadow ratio using NOAA Solar Calculator for the
flight date, 29 July 2021, at 11:23, solar noon, sunset and sunrise (local time).

Parameter Flight Time
11:23

Solar Noon
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Shadow
ratio 1:1 1:0.42 Not visible Not visible

In this study, the desired sun elevation was β = 45◦, aiming to obtain the actual size
of the plant (1:1 shadow ratio) from the projected shadows. Therefore, the flight for the
planned day for the survey (29 July 2021) was scheduled between 11:15 and 11:30 a.m., and
the azimuth angle was α = 106◦ (Table 1). The solar noon in the location of the pistachio
orchard was at 14:26 (local time). Azimuth is measured clockwise from true north to the
point on the horizon directly below the object. The elevation is measured vertically from
that point on the horizon up to the object.

2.5. Orthomosaic Processing

The first step was to build the orthomosaic, taking into account the locations of the
GCPs, georeferenced in ETRS89/UTM 30N. They were indicated in the images to improve
orthophoto accuracy. Then, the orthomosaic was generated from the RGB imagery using
Agisoft Metashape Professional software, v1.7.6 (Agisoft LLC, St. Petersburg, Russia),
following the software provider guidelines.

Then, the image was segmented, aiming to extract the shadows and vegetation planar
area (Figure 8) using random forest as described by Vélez et al. [37].
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Random forest is a supervised machine learning method, implemented in this work
for segmentation purposes, that uses decision trees for classification and prediction. The
algorithm combines the predictions to give a final output using the bootstrap technique [47].
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In this study, the number of trees was set to 500. Since it is a supervised algorithm,
fifteen polygons (five per class) were located within the orthomosaic over areas with
vegetation, soil, and shadows, segmenting the orthomosaic into three classes: soil, ground
shadows, and vegetation. The classification was very accurate, with an OOB (out of
bag) estimate of the error rate of 0.46%. After segmentation, a sieve filter was applied
(threshold of 20) to remove noise from the raster image. This process discards raster
polygons below a given threshold size (in pixels) and substitutes them using the pixel value
of the largest neighbor polygon.

Both methodologies employ a grid based on the previously defined angles (planting
pattern and solar azimuth), generating parallelepiped polygons (Figure 9), and assigning a
correlative number to each polygon (id).
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Figure 9. Grid generated using the planting pattern and solar azimuth angles (red polygons) to mask
the reclassified image (background) to identify each tree and to calculate the statistics of each plant.

Therefore, in this specific work, the angles were 25◦ due to the orientation of the
planting pattern and 106◦ due to the aforementioned solar azimuth (Table 1), resulting in
a single-polygon area of 43.7 m2. The grid was used on the reclassified image to identify
each tree, assigning a plant id from the polygon id.

Once the orthomosaic is segmented, it is analyzed in two different ways: using a raster
analysis approach (pixel-based classification) and a vector analysis approach, examining
the geometries in an OBIA approach. In the raster analysis approach, the number of pixels
of each class within the polygon corresponding to each plant is counted directly. In the
OBIA approach, the pixels corresponding to each category are transformed into objects,
enveloping them within several geometries.

2.5.1. Pixel-Based Methodological Approach

In the raster analysis approach, or pixel-based classification, the grid was used to
calculate the statistics of each plant, that is, the number of pixels belonging to the vegetation
class and shadow class within each polygon. Since the area of the polygon is known, the
percentage of the pixels of a class in relation to the total is the planar vegetation area or the
area belonging to the shadows, respectively. Subsequently, an average area was calculated
by averaging the shadow area (pixels classified as shadows on the ground) and the planar
area of the vegetation (pixels classified as vegetation) per plant. The planar area, calculated
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from nadir images, captures dimensions in the horizontal plane (the plane parallel to
the Earth’s surface), while the shadow projected on the ground captures dimensions in a
different plane, in this case at 45◦ to the vertical (because it is the sun’s elevation angle,
Figure 6b). From now on, the vegetation is contained in the ‘vegetation plane’ and the
shadows in the ‘shadow plane’.

Finally, in the raster analysis approach, the averaged area was considered a circle and
the equivalent radius was estimated in order to calculate the crown volume as a sphere.
These results were validated against the values of the sphere volumes computed from
ground-truth data.

2.5.2. OBIA Methodological Approach

In the OBIA approach, a raster vectorization process was performed on the segmented
orthomosaic, transforming the raster image into polygons (Figure 10).
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The same procedure was performed twice to exploit the dimensions captured in
vegetation and shadow planes. Therefore, each plant had two linked polygons (with the
same plant id), one from the vegetation plane and one from the shadow plane. Hence, as a
first step, the pixels classified as shadows were converted into polygons.

Subsequently, the polygons were filtered using a 0.2-m2 threshold, aiming to reduce
the noise, and several types of geometries were used to envelop the crown area. In this
way, the minimum bounding geometry algorithm included in the QGIS algorithm provider
(QGIS version 3.22.X, QGIS developer team 2022) was used to create geometries enveloping
the areas. The same approach was followed for the vegetation plane (Figure 11), using a
0.05 m2 threshold for filtering the polygons.
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In both OBIA workflows, the four geometries provided by the QGIS minimum bound-
ing geometry algorithm were employed: circles, bounding boxes (envelopes), oriented
rectangles, and convex hulls. Finally, the spatial statistics were calculated using the poly-
gon shape indices algorithm from SAGA [48], and the crown volume was computed as an
ellipsoid or a sphere depending on the geometry type:

• Circle: The crown volume was calculated as a sphere using an equivalent radius
obtained by averaging the radius of the polygons of the vegetation plane and the
shadow plane. These results were validated against the values of the sphere volumes
computed from ground-truth data.

• Bounding boxes (envelopes) and oriented rectangles: The crown volume was cal-
culated as an ellipsoid. The equivalent three radii were the length of each plane’s
polygon and the polygons’ averaged width. These results were validated against the
values of the ellipsoid volumes computed from ground-truth data.

• Convex hulls: As in the raster analysis approach, an averaged area was calculated
by averaging the area of the two polygons (from the vegetation and the shadow
planes). Then, the averaged area was considered a circle and the equivalent radius
was estimated to calculate the crown volume as a sphere. These results were validated
against the values of the sphere volumes computed from ground-truth data.

Finally, root mean square error (RMSE) was calculated to assess the differences between
predicted and observed values. RMSE is one of the most commonly used measures to
evaluate the error in the environmental sciences [49]:

RMSE =

√
∑n

i=1
(ŷi − yi)

2

n
(3)

where n is the total sample size, y is the actual value (ground truth), and ŷ is the estimated value.
Image, statistical, and data analyses were conducted using QGIS (version 3.22.X,

QGIS developer team 2022) and R software (version 4.2.X, R Foundation for Statistical
Computing, R Core Team 2019, Vienna, Austria, https://www.R-project.org/, accessed on
9 July 2022), using packages randomForest, raster, rgdal, sf, rgeos, and caret, obtained from
the Comprehensive R Archive Network (CRAN).

3. Results

The crown volume of each tree was calculated using ground-truth data (Table 2) and
assuming that the tree crown is a sphere (V.s.) or an ellipsoid (V.e.), using the distance from
the canopy to the ground (h), the height (a), the length (b), and the width (c).

In the current research, the canopy volume calculated using the sphere approximation
(V.s.) was strongly correlated to the volume calculated assuming the canopy is an ellipsoid
(V.e.), showing an R2 very close to 1 (Figure 12). However, the slope of the linear equation
is 1.08. Therefore, the larger the canopy volume of the pistachio tree, the higher the
difference in canopy values when using different geometries. In this case, the canopy
volumes obtained using the sphere approximation become proportionally larger than those
estimated using the ellipsoid approach.

https://www.R-project.org/
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Table 2. Ground-truth values. h: distance from the canopy to the ground; a: height; b: length; c: width;
Av.d.: Average diameter (m); V.s.: Volume of the sphere (m3); V.e.: Volume of the ellipsoid (m3).

Tree h (m) a (m) b (m) c (m) Av.d. (m) V.s. (m3) V.e. (m3)

1 1.02 1.86 2.81 2.86 2.51 8.28 7.83
2 1.1 1.83 2.92 2.77 2.51 8.25 7.75
3 0.98 1.64 2.86 2.65 2.38 7.09 6.51
4 1.01 1.36 1.92 2.06 1.78 2.95 2.82
5 1.02 1.79 2.98 2.76 2.51 8.28 7.71
6 0.9 1.56 2.68 2.45 2.23 5.81 5.36
7 0.99 1.96 2.8 2.99 2.58 9.03 8.59
8 0.97 1.38 2.27 2.36 2.00 4.21 3.87
9 0.98 1.91 2.78 3.32 2.67 9.97 9.23
10 0.99 1.26 1.86 1.97 1.70 2.56 2.42
11 0.95 1.21 1.98 2.12 1.77 2.90 2.66
12 0.81 1.08 1.6 1.88 1.52 1.84 1.70
13 0.97 1.26 1.74 2.07 1.69 2.53 2.38
14 0.81 1.34 2.11 2.34 1.93 3.76 3.46
15 1.02 1.43 2.28 2.18 1.96 3.96 3.72
16 0.92 1.5 2.07 1.96 1.84 3.28 3.19
17 0.88 1.82 2.51 3.46 2.60 9.17 8.28
18 0.89 1.52 2.15 1.95 1.87 3.44 3.34
19 0.9 1.94 3.42 2.92 2.76 11.01 10.14
20 0.9 1.88 3.32 3.27 2.82 11.78 10.69
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The linear regression between the estimated crown volume using the raster analysis
approach and the ground-truth data was calculated, assuming the crown as a sphere
(Figure 13a) or an ellipsoid (Figure 13b). Both approaches showed a clear relationship with
ground-truth data (R2 > 0.8; p < 0.05), although they also slightly underestimated them.
However, when assuming the pistachio tree crown as a sphere, the RMSE value is slightly
higher (RMSE = 2.82 m3) than when assuming an ellipsoid (RMSE = 2.73 m3).
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Regarding the OBIA analysis, linear regressions were calculated between the estimated
and the ground-truth data values (Figure 14).
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Figure 14. Scatter plot and linear fitting of the estimated volume vs. observed values (ground-truth),
assuming the crown is an ellipsoid (a,b) and a sphere (c,d). Estimated values: (a) bounding box,
(b) oriented rectangle, (c) circle, and (d) convex hull. Linear regression models with p < 0.05. The
dashed line is the fitted linear function passing through the origin and the solid is the 1:1 line.
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First, the estimated values were calculated by enclosing the polygons using several
geometries: bounding box (Figure 14a), oriented rectangle (Figure 14b), circle (Figure 14c),
and convex hull (Figure 14d). Then, the estimated volumes were compared to the measured
ones, assuming the tree crown was an ellipsoid (Figure 14a,b) and a sphere (Figure 14c,d).

The results showed a clear relationship (R2 > 0.9), as in the raster analysis approach.
However, in the OBIA approach, the methodology overestimates the values of the pis-
tachio tree canopy in all cases, with higher volume resulting in higher overestimation
(slope > 1). The convex hull geometry (Figure 14d) showed less error than the others with
RMSE = 5.06 m3, whereas the circle geometry showed the highest error (RMSE = 12.22 m3).

4. Discussion

Crown volume is related to light interception and, therefore, to the quantity and
quality of the produced fruit [50], so it is reasonable to consider that crown volume could be
estimated by directly measuring the shadows (which are the result of the light intercepted by
the plant), and the planar area of the vegetation (which intercepts that light). Vélez et al. [37]
demonstrated that it is possible to precisely plan a flight over vineyards by calculating the
azimuth and elevation of the sun, aiming to obtain an optimal projection of plant shadows
on the ground for obtaining information about a dimension of the canopy other than the
horizontal plane (the plane parallel to the Earth surface). This information is often difficult
to get in aerial orthophotography applications. However, shadows projected on the ground
capture dimensions in a different plane, depending on the sun’s elevation angle.

The most appropriate time to capture the images following the present methodology
is defined by the day of the year, the height of the trees, and the amount of available ground
on which the shade will be projected, which will depend on the planting position of the
trees. This article shows how to calculate flight time using a solar calculator based on
astronomical algorithms. The proposed technique was successful, looking for a β = 45◦ sun
elevation angle to calculate the plant’s actual dimensions from the projected shadows.

Overall, the results showed a significant positive relationship between the estimated
and measured canopy volumes. Therefore, both methodologies have proved to be effective
to a limited extent, and under certain conditions. As a result, the estimated crown volume
using the raster analysis approach and the ground-truth data showed a strong relationship
(R2 > 0.8). Moreover, the estimated crown volume using the methodology based on the
OBIA procedure also showed a clear relationship with the ground-truth data (R2 > 0.9). The
estimated crown volumes using the raster analysis approach were slightly underestimated
compared to the ground-truth data. On the contrary, the estimated crown volumes using
the OBIA procedure were largely overestimated compared to the ground-truth data. This
result may be because the OBIA geometries are generated by enveloping the polygons
corresponding to each class, that is, shadows and vegetation, enclosing the existing gaps in
the tree canopy vegetation. Furthermore, the perimeter of the projected tree crown does
not fit exactly with the polygon that encloses it, whether it is bounding boxes, oriented
rectangles, enclosing circles, or convex hulls, having a smoothing effect on the irregular
shape of the surface of the crown and leading to indentations between the generated
polygon and the actual projected surface. Other authors have faced similar issues in
temperate old-growth forests, proposing index-based techniques to estimate the relative
amount of indentations to counterbalance their effect [51]. In this work, the data were fitted
using linear regression, producing a good adjustment and suggesting that the number of
gaps and indentations was proportional to the crown size, with increasing crown volumes
resulting in a bigger overestimation.

Bearing in mind that all values estimated using the OBIA procedure were overesti-
mated, it is observed that the estimated values calculated using the convex hull procedure
are the least overestimated. The estimated values using the bounding box and oriented
rectangle geometries are between the best and the worst results. On the contrary, the circle
overestimated the canopy size more than other geometries. This finding makes sense since
the objective of using geometries is to envelop all pixels belonging to the canopy of the
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tree, and the circle occupies the most extensive area because the definition of its geometry
only depends on one parameter, the radius. In contrast, other geometries employed in the
OBIA approach have more possibilities for adjustment. On the contrary, in the pixel-based
analysis, each pixel is counted to obtain the total number of pixels belonging to a class,
which is closer to the measured values, as the slope of the regression equation is closer to 1
than in the OBIA procedure.

An analysis of the error generated by the different procedures shows that the method-
ological approach using raster analysis has higher predictive accuracy because the error is
lower [49] since the RMSE is at least half the RMSE of the OBIA approach. A more in-depth
analysis of the OBIA approach shows that the RMSE values of the circle were the highest,
confirming that the use of this type of geometry is the worst option. On the other hand, the
RMSE values of the convex hull were lower than the others, indicating that the convex hull
is the most suitable geometry to wrap the shape of the crown.

This result was expected because circles and bounding boxes are simple geometric
shape approximations, but a convex hull is a computational geometry approach, and no
assumptions are made about the shape of the crown, as opposed to the simple shape
approximation [12]. Thus, the convex hull of a set of points is the smallest convex set that
contains them [52], and therefore the area will be lower than a simple geometric shape.
Several other authors have also used convex hulls in their research. Yan et al. [53] found it
difficult to deal with the gaps and holes within the crown. As in the present work, they
obtained overestimated computed values compared to the actual values. Wang et al. [54]
employed convex hulls to reconstruct occluded apples, obtaining good results in extracting
their real shape and showing that convex hulls are a good choice for shape representation
and analysis. Finally, Zhu et al. [55] used convex hulls to calculate the tree crown volume,
increasing their number and decreasing their size with each further iteration, finding a
higher accuracy by summing up all the volumes of all these convex hulls. Therefore, this
could be a way to improve the methodology presented in this paper. Furthermore, the
convex hull algorithm is likely to be improved and fine-tuned to provide an improved
approach for calculating crown volumes [56].

The results of the present work are relevant since it is key to estimate the crown volume
accurately and quickly, as it is related to the leaf area and, therefore, to the photosynthetic
capacity of the plant, which defines the plant’s ability to produce photoassimilates and
determines the maximum crop load, limiting the source-sink ratio of the plant since these
compounds move from leaves to nuts [57]. As a general rule, in all woody crops, the
crop load is crucial as it affects the correct development of the crop [58]. Particularly,
in pistachio, it is even more critical as the crop load also affects the percentage of nuts
with split shells and the percentage of blank nuts. With increasing crop load, the rate
of nuts with open shells decreases, as well as the ratio of empty nuts [4]. Moreover, the
dimensions of the canopy and the crown volume are valuable phenotyping traits to conduct
breeding programs that aim to create new cultivars adapted to climate change and new
cropping systems [11].

A wide variety of remote sensing-based technologies are available for canopy moni-
toring. These techniques are often associated with, or restricted to, digital photogrammetry
reconstructions and LiDAR data, as they are largely available on the market, and have
proven their worth in a range of applications [59]. Thus, UAV RGB images have been
widely used in woody crops for 3D point cloud generation [25,60,61], showing potential in
agriculture for assessing diverse parameters. Gómez-Gálvez et al. [42] generated 3D point
clouds for accurate and high-throughput measurements of canopy traits, using UAV RGB
images captured over olive trees, showing variances across cultivars and between trees of
different ages within the same cultivar. The results of the present work agree with theirs,
suggesting that it is possible to rapidly characterize large numbers of trees and assist in the
identification and definition of tree crowns as phenotypic traits through the use of UAVs
in combination with diverse image processing techniques. Other authors have employed
more complex sensors than simple RGB cameras, such as multispectral cameras for 3D
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point cloud generation [62] or LiDAR [27,51,53]. Certainly, more complex sensors can pro-
vide additional data to improve the technique presented in this work, e.g., by using slices of
the geometries computed using LiDAR instead of RGB imagery to extract the dimensions
of the canopy. However, using more complex technology does not always guarantee better
results. In this sense, Ghanbari Parmehr and Amati found that the point clouds obtained
from scanning canopies using both photogrammetric and LiDAR methods are nearly iden-
tical and provide comparable tree characteristics [63]. Therefore, all remote-sensing-based
methods can be valuable and useful depending on the context. Furthermore, since precision
agriculture seeks the implementation of site-specific management [15] using a wide range
of combined technologies [16], certain remote sensing techniques may be more compatible
than others for integration. In this sense, a specific remote sensing technique that generates
accurate results, such as the generation and evaluation of 3D point clouds [25,42] may
be suitable when enough processing time is available but not when information closer to
real-time is required, e.g., to generate information from UAVs flying just ahead of a tractor
or other agricultural machinery. It is therefore important to dispose of a wide range of
different techniques to be able to choose from. In other fields, architectures for UAV image
processing are already being developed that allow for near real-time results with enough
accuracy [64] as well as for images to be classified according to their contents [65].

In this sense, this work presents a novel technique that shows potential benefits in
terms of compatibility with other remote sensing techniques, increasing the range of tools
available for technicians to obtain useful agronomic information on pistachio tree orchards.
The rationale behind the method is straightforward and robust, as the approach measures
the dimensions directly from the images, that is, from the physical object (the canopy),
taking advantage of the shadows directly generated from the object by adequately planning
the flight mission. In this way, the flight was performed between 11:15 and 11:30, whereas
the solar noon was at 14:26 local time at the location of the pistachio orchard for that
specific day. Therefore, the proposed approach requires different times of the day than
other methods, which must perform the flight at solar midday (solar noon) [29], making
this approach compatible with other remote sensing techniques and enabling integration
into a flexible working day.

Finally, it should be noted that, like other methodologies based on remote sensing, the
proposed approach has its limitations:

1. First, spheres and ellipsoids were used in the present work as tree crowns because
the studied pistachio canopies were similar to these geometries. However, this as-
sumption can lead to errors because the canopy does not have a perfect geometric
shape. The present technique could be adjusted to other shapes (for instance, using
the formula for the cone or the paraboloid [12]). In any case, this article aims to present
a novel technique to estimate pistachio tree (Pistacia vera L.) canopy volume by ana-
lyzing ground shadows using UAV RGB imagery, so it is open to further modification
and improvement in future research.

2. The shadows must be projected correctly on the ground. That is, adequate direct
lighting is required, without clouds obstructing the sun’s rays on the Earth’s surface
and generating diffuse illumination.

3. Another constraint could be the amount of available ground on which the shade
will be projected. It should not be an issue in woody crop plantations because they
are planned to ensure good solar illumination, avoiding the shading of some trees
over others (a typical planting pattern is 7 × 6 m or 7 × 7 m). However, some new
plantations are more intensive, with low spacings (up to 4 × 1.25 m). This implies
planting in hedgerow systems, which can be approached in a similar way to that
reported by Vélez et al. [37].

4. Shadows vary throughout the day depending on the sun’s position. Therefore, it
is essential to plan the mission accordingly to obtain the best information on the
projection of shadows on the ground. Yet, this is not a limitation of this methodology
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alone, as all methods based on remote sensing with solar illumination must consider
natural lighting conditions to obtain good results.

5. The values for filtering the noise (Figures 10 and 11) were chosen after several tests
using different values for a better visual fit, aiming to remove the weeds from the
image and isolate the pistachio tree crowns. This aspect could be improved in future
versions of the approach since this work seeks not to develop an algorithm to identify
weeds in pistachio orchards, but to provide a technique to size the tree canopy.

In future research, it would be interesting to assess the applicability of this methodol-
ogy to other woody crops planted individually, such as olive or almond trees. Moreover,
it would be interesting to explore whether this methodology can be applied to analyze
the density of leaves within that volume, as the gaps within the tree canopy can be ob-
served when analyzing the shadows after the segmentation process (Figure 8). Finally,
using image sensors other than RGB, such as multispectral sensors, could provide useful
information. They usually include the NIR (near-infrared) band, which is highly relevant
in agriculture for physicochemical and morphophysiological analysis, as it can acquire
interesting spectral information of the main photosynthetic pigments and characterizes the
internal structure of the leaves through light scattering [66]. Moreover, the NIR channel
is commonly used to isolate vegetation pixels from the background [67,68]. Therefore,
multispectral imagery could increase the accuracy of the methodology in capturing crop
information and segmenting the image more precisely.

5. Conclusions

This study developed a new, rapid, and low-cost technique, with two methodological
approaches (one based on raster analysis and the other on OBIA), for estimating the canopy
volume of pistachio trees. To this end, the RGB orthomosaic was segmented using machine
learning methods to measure and combine the planar area (vegetation plane) and the
ground shadows area (shadow plane). All approaches showed statistically significant
linear relationships. However, the methodological approach based on raster analysis (pixel-
based classification) was better fitted to ground-truth data and had lower error and higher
predictive accuracy than the OBIA approach. Moreover, the circle geometry was the worst
option to envelop the tree crown whereas the convex hull geometry was the best option.

The proposed methodology gives UAV operators more versatility to plan a flexible
working day, demonstrating that it is possible to take images of the projected shadows
to obtain the actual size of the plant (1:1 shadow ratio) for any given day, with a sun
elevation angle of β = 45◦, using astronomical algorithms to adequately plan the UAV flight
according to the lighting conditions.
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