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Abstract: Reverse-time migration of multiples can generate imaging results with wider illumina-
tion, higher folds, and broader wavenumber spectra than the conventional migration of primaries.
However, the results of the migration of multiples retain heavy crosstalks generated by interactions
between unrelated multiples, thereby seriously degrading imaging qualities. To eliminate such
crosstalks, we propose a least-squares optimized algorithm of multiples. In this method, different-
order water-column multiples and water-bottom-related multiples are extracted using multiple
decomposition strategies before migration procedures. The proposed method treats the nth-order
water-column multiples as virtual sources for Born modeling to produce the predicted (n+1)th-order
water-bottom-related multiples. In each iteration, the gradients are calculated by crosscorrelating the
forward-propagated nth-order water-column multiples with the backward-propagated seismic residu-
als between the observed and predicted (n+1)th-order water-bottom-related multiples. The developed
approach is referred to as the least-squares reverse-time migration of water-bottom-related multiples
(LSRTM-WM). Numerical experiments on a layered model and the Pluto 1.5 model demonstrate that
LSRTM-WM can significantly remove crosstalks and considerably improve spatial resolution.

Keywords: multiples imaging; multiples decomposition; least-squares reverse-time migration;
depth migration

1. Introduction

Conventional seismic imaging algorithms generally account for primary reflections.
Multiple reflections, i.e., seismic responses that have bounced several times, are regularly
considered as data noise and eliminated before migration. Compared with primaries, mul-
tiples travel along longer paths with smaller reflection angles. The longer traveling routes
assure that multiples can illuminate the shadow zones of primaries, especially for shallow
structures, and the smaller reflection angles allow migrations considering multiples to
produce images with higher spatial resolution than migrations with primaries. Moreover,
since multiples travel several bounces beneath the free surface, multiples involve broader
wavenumber components than primaries. Recent studies have strongly corroborated the
benefits of migration and inversion using multiples [1–12]. By forward propagating orig-
inal data and backward propagating multiples, Guitton [13] conducted the migration of
multiples with one-way wave equation migration, whereas Jiang et al. [14] utilized the
Kirchhoff migration to accomplish the migration of multiples. Verschuur and Berkhout [15]
converted multiples into primaries by combining multi-channel weighted crosscorrelation
with surface-related multiple elimination (SRME) [16] followed by conventional migration
approaches. Different from the migration algorithms mentioned above, Liu et al. [17] com-
bined reverse-time migration (RTM), a two-way wave equation-based imaging algorithm,
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with virtual source conception [18] to migrate multiples, and the method is referred to as
the RTM of multiples (RTMM). RTMM benefits from the advantages of RTM in imaging
complex structures with steep dips or strong velocity contrasts. In RTMM, the source
and receiver wavefields are generated by forward propagating original data containing
primaries and multiples and backward propagating estimated multiples, respectively. After
the implementation of one imaging condition, such as the crosscorrelation or deconvolution
imaging condition, we can obtain the multiples image of subsurface structures. However,
crosstalk artifacts caused by undesired interactions among multiples severely pollute
imaging results and critically hamper the practical applications of imaging of multiples.
Therefore, it is important to establish a crosstalk suppression algorithm for the migration of
multiples.

Following Zhang et al. [19], crosstalks can be categorized into order-related and
event-related components. Order-related crosstalks are caused by interactions between
inconsecutive-order multiples, e.g., first- and third-order multiples, and they comprise a
large proportion of coherent crosstalks. To remove energetic order-related crosstalks, Liu
et al. [20] decomposed multiples into isolated orders followed by migrations of consecutive-
order multiples pairs. This method is referred to as the RTM of controlled-order multiples
(RTM-CM). In consecutive-order multiples pairs (such as pairs of first- and second-order
multiples), seismic events can be sorted into pairs of associated and unassociated multiple
events. In the pair of associated events, the higher-order multiple events can be acquired
by convolving the lower-order multiple events with the accurate impulse response from
some stratum. In the other words, the pair of associated multiple events satisfies the
feedback model [21], whereas the pair of unassociated multiple events does not meet the
requirements of the feedback model, and the interactions between unassociated multiple
events yield event-related crosstalks. As RTM-CM only deals with consecutive-order
multiples pairs, order-related crosstalks can be eliminated effectively, whereas event-related
crosstalks remain. To further alleviate event-related crosstalks, Zhang et al. [19] developed
the RTM of water-bottom-related multiples (RTM-WM), in which the nth-order water-
column multiples and the associated (n+1)th-order water-bottom-related multiples are
forward and backward propagated, respectively. The water-column multiple is defined as
the seismic signal that only travels in the water layer. The water-bottom-related multiples
first bounces in the water layer and then propagate one another round between the sea
surface and the subsurface strata. It is obvious that the pair of forward-propagated nth-
order water-column multiples and backward-propagated (n+1)th-order water-bottom-
related multiples satisfy the feedback model and are associated. By exploiting the associated
multiples, RTM-WM can suppress residual event-related crosstalks.

Theoretically, the inverse of a modeling operator should be employed to conduct
migrations. However, it is difficult to acquire the inverse operator practically. Least-squares
migration (LSM) has been proposed to iteratively estimate and update the approximation
of the inverse operator [22,23]. LSM has been extensively investigated to suppress crosstalk
artifacts, balance imaging amplitude, and increase spatial resolution [24–31]. By combining
LSM with RTMM, the developed least-squares RTM of multiples (LSRTMM) also can be
used to mitigate crosstalks caused by unrelated multiples [32]. Different from the regular
Born modeling, the Born modeling in LSRTMM considers original seismic data, rather than
a point source, as virtual sources [33–35]. As RTMM is used as the modeling and migration
engine for LSRTMM, and the RTMM image contains many crosstalks, the Born modeling
associated with multiples produces numerous unwanted events in the predicted seismic
data, thereby triggering poor-convergence problems, multisolutions [36], and inadequate
crosstalks removal [20].

To enhance imaging quality, we established a least-squares-based migration of mul-
tiples that we call least-squares RTM of water-bottom-related multiples (LSRTM-WM)
by using RTM-WM as the modeling and migration engine. The inversion scheme of
LSRTM-WM resembles that of LSRTMM, while the gradient is updated by the crosscorrela-
tions of the nth-order forward-propagating water-column multiples and the (n+1)th-order
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backward-propagating water-bottom-related multiple residuals. We extended SRME, in
combination with the feedback model, to separate different-order multiples. The effective-
ness of the new method is confirmed by numerical experiments on two synthetic datasets
of a layered model and the Pluto 1.5 model.

2. Methodologies
2.1. Crosstalks Analysis for the Reverse-Time Migration of Multiples

Compared with the RTM of primaries, RTM of multiples (RTMM) treats the original
data as secondary virtual sources instead of a point source and replaces the primaries
with estimated multiples to accomplish the backward-propagated wavefield extrapolation.
Then, the crosscorrelation imaging condition is applied to obtain the final multiples images.
The imaging procedures for multiples are illustrated by the following equations:{

1
v(x)2

∂2TF(x, t)
∂t2 = ∇2TF(x, t)

TF(x = xr, t) = p(xr, t) + m(xr, t)
, (1)

{
1

v(x)2
∂2 MB(x, t)

∂t2 = ∇2MB(x, t)

MB(x = xr, t) = m(xr, t)
, (2)

I(x) =
tmax

∑
t=0

TF(x, t) ∗MB(x, t), (3)

where xr represents the locations of receivers; v denotes the migration velocity; the sub-
script capital F and B represent forward- and backward-propagated wavefield directions,
respectively; TF and MB denote the virtual source and receiver wavefields, respectively;
∇2 indicates the Laplacian operator; tmax is the maximum recording time; and I(x) rep-
resents the multiples image. In RTMM, lower-order multiples are recognized as the sec-
ondary virtual sources of higher-order multiples, but only the crosscorrelations between the
forward-propagated nth-order multiples and backward-propagated consecutive (n+1)th-
order multiples make valuable contributions to the imaging of multiples [17]. As indicated
by the green points in Figure 1a, the interaction between the forward-propagated primaries
recorded at R0 and the backward-propagated first-order multiples recorded at R1 yields
one imaging point. Similarly, the second-order multiples recorded at R2 (or the third-order
multiples recorded at R3) are backward extrapolated and correlated at the imaging point
with the forward-propagated first-order multiples recorded at R1 (or the second-order
multiples recorded at R2). In this paper, we consider the primaries as zeroth-order multiples
and decompose wavefields into different orders. Then, Equation (3) can be expanded into
Equation (4) in the following manner:

I(x) =
tmax
∑

t=0

[
N
∑

i=0
Mi

F(x, t)
]
∗
[

N
∑

k=1
Mk

B(x, t)
]

=
tmax
∑

t=0



N−1
∑

i=0
∑

k=i+1
Mi

F(x, t) ∗Mk
B(x, t)+

N
∑

i=0
∑

k=i+j,j≥2
Mi

F (x, t) ∗Mk
B(x, t)+

N
∑

i=1
∑

k=i
Mi

F (x, t) ∗Mk
B(x, t)+

N
∑

i=1
∑

k<i
Mi

F(x, t) ∗Mk
B(x, t)


,

(4)

where N represents the maximum order of multiples, Mi
F represents the forward-propagated

wavefield with ith-order multiples as virtual sources, and Mk
B represents the backward-

propagated kth-order multiples wavefield. In Equation (4), only the first summation gener-
ates useful imaging results, whereas the other summations cause undesired crosstalks [17].
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To facilitate the following analysis and descriptions, we can decompose Equation (4) into the
useful part Im and crosstalks part C(x), as indicated by Equations (5) and (6), respectively:

Im(x) =
tmax

∑
t=0

N−1

∑
i=0

Mi
F(x, t) ∗Mi+1

B (x, t), (5)

C(x) =
tmax

∑
t=0



N
∑

i=0
∑

k=i+j, j≥2
Mi

F(x, t) ∗Mk
B(x, t)+

N
∑

i=1
∑

k=i
Mi

F(x, t) ∗Mk
B(x, t)+

N
∑

i=1
∑

k<i
Mi

F (x, t) ∗Mk
B(x, t)


. (6)
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Figure 1. Schematic diagrams of RTMM and crosstalks. The green points in panel (a) represent the 
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Figure 1. Schematic diagrams of RTMM and crosstalks. The green points in panel (a) represent the
imaging points. The magenta points in panels (a,b) represent the order-related and event-related
crosstalks, respectively.

Crosstalk artifacts are sorted into two types, i.e., order-related crosstalks and event-
related crosstalks [19]. Order-related crosstalks are caused by the interactions between
inconsecutive-order multiples and comprise a major portion of crosstalks. All order-related
crosstalks (magenta points in Figure 1a) compose the crosstalks term C(x), as shown by
Equation (6). In Figure 1a, the primary recorded at R0 can be forward propagated and
crosscorrelated with the backward-propagated second-order multiples recorded at R2 or
third-order multiples recorded at R3. Because the order difference between forward- and
backward-propagated data is two or three, the interactions cause coherent order-related
crosstalks, as denoted by the magenta points. Similarly, the first-order multiples recorded at
R1 can be treated as the secondary virtual sources of the third-order multiples recorded at
R3, and the interaction between them also yields order-related crosstalk artifacts. When the
migration is conducted by using consecutive-order multiple pairs (Equation (5)), such as
the pair of forward-propagated primaries and backward-propagated first-order multiples,
the imaging result is free of order-related crosstalks but retains event-related crosstalks.
In the consecutive-order multiples pairs, seismic events can be classified into associated
and unassociated multiple event pairs. The pair of associated multiple events is defined
as a pair of multiples in which the backward-propagated higher-order multiple is equal
to the convolution result between the forward-propagated lower-order multiple and the
accurate impulse response from one special interface. The associated multiple events
comply with the feedback model. On the contrary, the pair of unassociated events fail to
meet the feedback model. According to the time-consistent principle, the crosscorrelations
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between associated multiple events retrieve an accurate image, whereas the interactions
between unassociated multiple events create event-related crosstalks. Consequently, an
accurate image, together with event-related crosstalks, comprises the useful term Im(x). As
shown in Figure 1b, when the image is retrieved by backward penetrating the first-order
multiple recorded at R6 and forward penetrating the primary recorded at R4, the two
multiples are unassociated, thereby resulting in event-related crosstalk, as indicated by the
magenta point.

2.2. Multiples Decomposition Strategies

Crosstalk artifacts smear accurate subsurface imaging structures and severely hin-
der the practical applications of multiple imaging. To eliminate energetic order-related
crosstalks, Liu et al. [20] separated multiples into different orders before migration in
combination with RTMM to conduct controlled-order multiples imaging, which is referred
to as RTM of controlled-order multiples (RTM-CM). The imaging condition of RTM-CM
can be expressed by:

Ic(x) =
N−1

∑
i=0

tmax

∑
t=0

Mi
F(x, t) ∗Mi+1

B (x, t). (7)

The comparison between Equations (5) and (7) reveals that RTM-CM is equal to the
useful term of RTMM by exchanging the orders of the inner summations. By removing the
crosstalk terms C(x) in the imaging condition, RTM-CM can effectively avoid order-related
crosstalks, but still retain event-related crosstalk components, as shown in Figure 1b [19].

After the separation of primaries and multiples, RTMM can be accomplished by
simultaneously forward propagating original data and backward propagating the estimated
multiples. However, the regular SRME is unable to provide isolated-order multiples
for RTM-CM. Therefore, we extend the regular SRME. Taking the matrix notation, the
frequency-domain SRME can be formalized by:{

Ψ0 = Ψ−M
M = γΨ0Ψ

, (8)

where Ψ represents the original data matrix, Ψ0 represents the primaries matrix, M repre-
sents the multiples matrix, and γ represents the surface operator. M = ∑N

i=1 Mi, where N
represents the maximum order, and Mi represents the ith-order multiples. Equation (8)
indicates that higher-order multiples are predicted by the time-domain convolutions be-
tween primaries and lower-order multiples. By extending the SMRE, the extraction of
different-order multiples is given by:

^
Φ

i+1

= −Ψ0Φi

Mi = Φi − ε
^
Φ

i+1

Φi+1 = Φi −Mi

, (9)

where ε represents the matching filter, and Φi = ∑N
n=i, i≥0 Mn represents a group of

multiples with i as the minimum order. Taking the isolation of first-order multiples as
an example, the primaries matrix Ψ0 is multiplied with the estimated multiples matrix M

(Φ1) to generate the predicted data matrix
^
Φ

2

, followed by adaptively subtracting
^
Φ

2

from
Φ1 to obtain the estimated first-order multiples. Similarly, higher-order multiples can be
effectively extracted by repeating the loops in Equation (9).

The consecutive-order multiples pair used in RTM-CM contains pairs of associated
and unassociated events. The interaction between unassociated multiple events causes
event-related crosstalks (Figure 1b). Therefore, we attempt to only extract the pairs of
associated multiple events. Among strong multiples, such as the signals from the sea
bottom or the salt boundaries, the water-column multiples bouncing in the water layer are
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easily simulated, and, by using the feedback model, the water-bottom-related multiples
associated with water-column multiples can be obtained. The black ray paths S3R7 and
S3R7R8 of Figure 2a represent the traveling routes of the water-column primary and first-
order water-bottom-related multiple, respectively. The water-column primaries can be
predicted by wave equation modeling [37–39] with a water layer model:

Q̌0
= LRw, (10)

where L represents the forward modeling operator, Rw represents the water bottom reflec-
tivity model, and Q̌0 represents the predicted water-column primaries. After adaptively
matching Q̌0 with Ψ, we can acquire the estimated water-column primaries Q0. The
predicted nth-order water-column multiples Q̌n are then obtained by the n times auto-
convolutions of estimated water layer primaries:

Q̌n
= (−1)nQ0

(
Q0
)n

. (11)

Subsequently, we adaptively match Q̌n with Ψ to extract the estimated nth-order water-
bottom-related multiples Qn. By multiplying Qn with Ψ0 (QnΨ0), we can gain the predicted
(n+1)th-order water-bottom-related multiples M̌n+1

W , followed by adaptively matching with
Ψ to extract the estimated Mn+1

W . For example, assigning n = 0, the water-column primaries
Q0 are obtained using Equation (10), and the predicted first-order water-bottom-related
multiples M̌1

W are then acquired by convolving the water-column primaries Q0 with the
primaries Ψ0. Finally, we adaptively match the predicted first-order water-bottom-related
multiples M̌1

W with the original data Ψ to extract the estimated first-order water-bottom-
related multiples M1

W.
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Figure 2. Schematic diagrams of (a) RTM-WM and (b) residual crosstalks. The imaging point
represented by the green point in panel (a) is created by the crosscorrelation between the forward-
propagating water-column primaries and the backward-propagating first-order water-bottom-related
multiples. The magenta point in panel (b) indicates the residual non-stationary crosstalks.

2.3. Least-Squares Reverse-Time Migration of Water-Bottom-Related Multiples

Following Zhang et al. [19], the imaging condition (Equation (7)) of RTM-CM can be
expanded into:

Ic(x) =
N−1

∑
i=0

tmax

∑
t=0

[
Mn

F,1(x, t) + Mn
F,2(x, t)

]
∗
[

Mn+1
B,1 (x, t) + Mn+1

B,2 (x, t)
]

(12)
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where Mn
F,1 represents the wavefield with the nth-order water-column multiples as sources,

Mn
F,2 represents the wavefield with residual nth-order multiples as sources, Mn+1

B,1 rep-
resents the backward-propagated (n+1)th-order water-bottom-related multiples wave-
field, and Mn+1

B,2 represents the residual backward-propagated (n+1)th-order water-bottom-
related multiples wavefield. As the nth-order water-column multiples are associated with
the (n+1)th-order water-bottom-related multiples but unassociated with the remaining
(n+1)th-order multiples, Mn

F,1 is strictly associated with Mn+1
B,1 but unassociated with Mn+1

B,2 .
Likewise, Mn

F,2 is unassociated with Mn+1
B,1 , and it contains associated and unassociated

components with Mn+1
B,2 . Therefore, we expand Equation (12) into three parts, as shown in

Equation (13):

Ic(x) = Ia(x) + It(x) + Ce(x)

Ia(x) =
N−1
∑

i=0

tmax
∑

t=0
Mn

F,1(x, t) ∗Mn+1
B,1 (x, t)

It(x) =
N−1
∑

i=0

tmax
∑

t=0
Mn

F,2(x, t) ∗Mn+1
B,2 (x, t)

Ce(x) =
N−1
∑

i=0

tmax
∑

t=0

[
Mn

F,1(x, t) ∗Mn+1
B,2 (x, t) + Mn

F,2(x, t) ∗Mn+1
B,1 (x, t)

]
, (13)

where Ia(x) is the accurate imaging term for water-bottom-related multiples, It(x) is the
mixed term containing accurate imaging results and event-related crosstalks, and Ce(x) is
the crosstalks term consisting of event-related crosstalks. To avoid event-related crosstalks,
Zhang et al. [19] only reserved Ia(x) in the imaging condition and developed the reverse-
time migration of water-bottom-related multiples (RTM-WM) in which the nth-order water-
column multiples are forward propagated, and the (n+1)th-order water-bottom-related
multiples are backward propagated (see Figure 2a). Compared with RTM-CM, RTM-
WM simplifies the propagated wavefield and utilizes the associated multiples, thereby
effectively suppressing event-related crosstalks. Nevertheless, as indicated by the magenta
point in Figure 2b, the crosscorrelations between unrelated multiples in associated multiples
pairs cause non-stationary crosstalks, and the crosstalks are random and can significantly
cancel each other out due to destructive interference.

Least-squares reverse-time migration (LSRTM) has been extensively investigated to
eliminate imaging artifacts, improve spatial resolution, and balance imaging amplitudes.
Combining LSRTM with RTMM, the LSRTM of multiples (LSRTMM) has been proposed
to mitigate serious multiples crosstalks. Unlike LSRTM, LSRTMM builds a reflectivity
model that minimizes the objective function between the observed and predicted multiples.
The predicted multiples are generated by Born modeling with the original data as virtual
sources, and the observed multiples are separated using the regular SRME. As RTMM or
RTM-CM produces images with coherent crosstalks and is used as the gradient engine, the
predicted multiples contain numerous undesired data events, thereby resulting in poor
convergence of the objective function and inadequate crosstalk removal.

As RTM-WM can significantly eliminate crosstalks and provide better gradients for
least-squares inversion than RTMM and RTM-CM, we propose the LSRTM of water-bottom-
related multiples (LSRTM-WM) to enhance the imaging quality. Similar to the Born mod-
eling associated with multiples, the Born modeling associated with (i+1)th-order water-
bottom-related multiples can be established by replacing the original data with ith-order
water-column multiples:

( 1
v(x)2

∂2

∂t2 −∇2)M(x, t) = qi(xr, t)

( 1
v(x)2

∂2

∂t2 −∇2)Ms(x, t) = −R(x) ∂2 M(x,t)
∂t2

mi+1
w,p(xr, t) = Ms(x = xr, t)

, (14)
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where R represents the reflectivity model, M represents the forward-propagated back-
ground wavefield excited by the ith-order water-column multiples qi, Ms represents the
scattering wavefield, and mi+1

w,p represents the predicted (i+1)th-order water-bottom-related
multiples. Equation (15) can be rewritten in a short form by:

mi+1
w,p = Li

qR (15)

where Li
q is the Born modeling operator associated with (i+1)th-order water-bottom-related

multiples. To produce a satisfied reflectivity, the difference between the observed and pre-
dicted (n+1)th-order water-bottom-related multiples can be minimized using the following
objective function:

εi+1(R) =
1
2
‖Li

qR−mi+1
w,o ‖2

2, (16)

where mi+1
w,o represents the observed (n+1)th-order water-bottom-related multiples. To

figure out the minimization problem, we use a preconditioned conjugate gradient method
in the following manner: 

g(z+1) = Li
q

T
(

Li
qR(z) − q

)
ω =

[g(z+1)]
T

µg(z+1)

[g(z)]
T

µg(z)

ρ(z+1) = µg(z+1) + ωρ(z)

θ(z+1) =
[ρ(z+1)]

T
g(z+1)

[Li
qρ(z+1)]

T
Li

qρ(z+1)

R(z+1) = R(z) − θ(z+1)ρ(z+1)

(17)

where g indicates the gradient of the objective function in Equation (17), Li
q

T represents the
migration operation, µ denotes the source-side illumination compensation, and z is the
iteration number.

2.4. LSRTM-WM Scheme

(1) Separate primaries from original data using Equation (8) and predict water-column
primaries using Equation (10);

(2) Auto-convolve the water-column primaries n times to generate the nth-order water-
column multiples using Equation (11), followed by convolutions between the nth-
order water-column multiples and the separated primaries to obtain the (n+1)th-order
water-bottom-related multiples;

(3) Set the initial reflectivity model to zero;
(4) Establish the objective function using Equation (17);
(5) Calculate the gradients for the objective function and update the reflectivity model

using Equation (18);
(6) Repeat steps 4 to 5 and stop the iterative inversion when the objective function

decreases to a given threshold;
(7) Stack different-order (from first to N-th) images to retrieve the final image of water-

bottom-related multiples.

3. Numerical Examples

In this section, we verify the feasibility of LSRTM-WM using a layered model and
then utilize the Pluto 1.5 model to confirm the effectiveness and benefits of LSRTM-WM
for imaging complex structures. Together with the apparent fact that the first-order mul-
tiples are generally more energetic than higher-order multiples, the LSRTM-WM was
implemented on the associated multiple pair of water-column primaries and first-order
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water-bottom-related multiples in this study. Under the circumstances, Equation (17) can
be adjusted to:

ε1(R) =
1
2
‖L0

qR−m1
w,o‖2

2 (18)

where L0
q represents the Born modeling operator with the water-column primaries as

incident wavefield, and m1
w,o is the observed first-order water-bottom-related multiples.

3.1. A Layered Model

We first implemented the proposed approach on a five-layer velocity model, as shown
in Figure 3. The model was discretized into 801 horizontal grids and 451 vertical grids both
with a 5 m spatial interval. There were three flat interfaces and one curved interface. The
split-spread geometry and a Ricker wavelet with a 20 Hz dominant frequency were selected
to produce seismic data. There were 96 shot gathers used for migration. The first shot was
fixed at 0.81 km, and the shot interval was 25 m. Each shot gather involved 301 traces with
a 5 m receiver interval. The recording length was 3.92 s, and the time sampling rate was
8 ms. The water-column primaries were simulated by wave equation modeling with the
water (first) layer velocity model.
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Figure 3. The layered velocity model.

After the separation of primaries and multiples using regular SRME, we investigated
conventional LSRTM and LSRTMM. The LSRTM algorithm with six iterations was first
conducted to retrieve a crosstalk-free image, as shown in Figure 4a. The primary image was
treated as the benchmark to examine the performances of multiples in imaging. Figure 4b
shows the migration result of LSRTMM. As RTMM introduced severe crosstalks and was
treated as the modeling and migration engine, LSRTMM suppressed crosstalks unsatis-
factorily, as shown by the black arrows in Figure 4b. To eliminate the artifacts caused by
crosstalks, we applied RTM-WM, and the resulting image was as shown in Figure 5a. Based
on the feedback model, we extracted the first-order water-bottom-related multiples by
convolving the predicted water-column primaries with estimated primaries. By forward
propagating the water-column primaries and backward propagating the associated first-
order water-bottom-related multiples, RTM-WM effectively reduced almost all crosstalks
(indicated by the black arrows in Figure 5a). Compared with the LSRTM and LSRTMM
results, the RTM-WM result exhibited a lower spatial resolution. To settle this problem
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and enhance imaging quality, the developed LSRTM-WM was then used. Figure 5b is
the least-squares image based on the image shown in Figure 5a. As shown in Figure 6, a
further comparison between RTM-WM and the developed LSRTM-WM was executed by
the wavenumber spectra. The LSRTM-WM image presented significantly broader spectrum
components than the RTM-WM image. Moreover, the comparison between Figure 5b
against Figure 4a,b revealed that LSRTM-WM can remove crosstalks more effectively than
LSRTMM and retrieve an image with a high signal-to-noise ratio (SNR), as is quite similar to
LSRTM. This model test verified the feasibility of the proposed method and its advantages
over LSRTMM in terms of crosstalk noise suppression.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

 
Figure 4. (a) The LSRTM image and (b) the LSRTMM image. Both images were produced after six 
iterations. The white arrows in panels a and b illustrate that both LSM algorithms imaged the four 
interfaces well. As shown by the black arrows in panel b, LSRTMM exhibited a poor capacity to 
suppress crosstalks generated by undesired multiples crosscorrelations. 
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interfaces well. As shown by the black arrows in panel b, LSRTMM exhibited a poor capacity to
suppress crosstalks generated by undesired multiples crosscorrelations.
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3.2. The Pluto 1.5 Model

The 2D Subsalt Multiples Attenuation and Reduction Team (SMAART) Pluto 1.5 model
shown in Figure 7 was subsequently used to validate the performance of our approach in
imaging complex structures. The model contained 1387 grids with a 22.86 m grid spacing
along the horizontal direction and 1201 grids with a 7.62 m grid spacing along the vertical
direction. The source wavelet was a Ricker wavelet with a 25 Hz peak frequency. A total
of 232 shots with a shot interval of 137.16 m were evenly organized from 0 km to 31.7 km.
The sources and receivers were located at a depth of 7.62 m. Each shot gather possessed
540 traces with a geophone interval of 22.86 m. The recording length and time sampling
interval were 9 s and 8 ms, respectively. A water layer velocity model, in which the velocity
under the water bottom was set to 4512.20 m/s (the salt velocity), was used to produce
pronounced water-column primaries.
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Figure 8 shows the separated results of different orders using the multiples decompo-
sition strategy. First, we separated the primaries (Figure 8b) and multiples (Figure 8c) from
the original data (Figure 8a) using regular SRME. As indicated by the arrows in Figure 8b,
multiples were well attenuated in the estimated primaries. Subsequently, the primaries
were convolved with multiples to predict multiples with a minimum order of 2, followed
by adaptively subtracting them from all-order multiples (Figure 8c) to obtain the isolated
first-order multiples. The resulting first-order multiples were as shown in Figure 8d. By
using the decomposition workflow, the higher-order multiples, as indicated by the black
arrows in Figure 8d, were well avoided, and the first-order multiples, as denoted by the
white arrows in Figure 8d, remained. The convolution between the predicted water-column
primaries and the separated primaries in Figure 8b was conducted to predict the first-order
water-bottom-related multiples. By adaptively matching the predicted data with the origi-
nal data, we extracted the estimated first-order water-bottom-related multiples (Figure 8e).
As demonstrated by the red arrows in Figure 8e, the multiples unassociated with the
water-column primaries were well removed. The complex multiples extraction strongly
corroborated the effectiveness of the decomposition strategy in separating different-order
multiples.
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After the decomposition of different-order multiples, different migration algorithms
were conducted. Applying conventional LSRTM (six iterations) to the separated primaries
(Figure 8b) resulted in the image in Figure 9a. Note that we had muted crosstalks in the
water layer and considered the LSRTM result as the reference for the following analysis.
By forward propagating the original data (Figure 8a) and backward propagating the
estimated multiples (Figure 8c), we accomplished the LSRTMM, and Figure 9b shows the
imaging result after six iterations. The sedimentary layers, salt boundaries, and dipping
faults were well depicted, whereas the crosstalks caused by RTMM were not thoroughly
suppressed by LSRTMM. The residual crosstalks masked the true strata and may trigger
wrong geological interpretations. For example, the crosstalk pointed by the upper five
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arrows in Figure 9b was approximately parallel to the seafloor, and it was prone to be
recognized as a bottom-simulating reflector (a robust geophysical indicator for the presence
of gas hydrate). To remove crosstalk artifacts, we implemented RTM-WM by forward
propagating the water-column primaries and simultaneously backward propagating the
first-order water-bottom-related multiples (Figure 8e), and the resulting image was as
shown in Figure 10a. Compared with the LSRTMM (Figure 9b), RTM-WM significantly
attenuated almost all crosstalks (see the arrows) and exhibited a higher SNR. Further, we
employed the RTM-WM as the modeling and migration engine and applied the proposed
LSRTM-WM. Figure 10b shows the LSRTM-WM result after six iterations. The comparison
between Figure 10a,b reveals that the LSRTM-WM can effectively enhance imaging quality
by improving spatial resolution. The comparison between Figures 9b and 10b shows that
LSRTM-WM can effectively remove the residual crosstalks which were partially reduced
by the LSRTMM. Moreover, the SNR shown in Figure 10b was quite similar to that of the
conventional LSRTM image using primaries shown in Figure 9a.

In conventional least-squares inversions, in addition to the accurate migration velocity
model, wavelet estimation is another vital task for seismic data processing, especially for
field dataset processing. If the estimated wavelet is far from the accurate one, the conver-
gence of the objective function for LSRTM slowly decreases and even increases. However,
in the imaging of multiples, we treat the seismic data, rather than a point source wavelet, as
the virtual sources at each receiver. Therefore, the imaging of multiples is independent of
wavelet estimation and robustly produces imaging results. In this experiment, we designed
a comparison to investigate the performances of different migration algorithms when the
wavelet is inaccurately estimated. We assumed that the dominant frequency of the wavelet
was 7 Hz and conducted LSRTM of primaries. The LSRTM image with the inaccurate
wavelet after six iterations was as shown in Figure 11. Among all the least-squares images
above (Figures 9a,b, 10b and 11), the LSRTM image using the inaccurate wavelet was the
worst one and exhibited a lower wavenumber feature. This was due to the used 7 Hz
dominant frequency being smaller than the true 15 Hz dominant frequency. Figure 12
displays the convergence curves for the LSRTM (the black line), the proposed LSRTM-WM
(the red line), and the LSRTM with the inaccurate wavelet (the green line). Both the objec-
tive functions of LSRTM and LSRTM-WM quickly decreased as the iterations increased,
whereas the objective function of LSRTM with the inaccurate wavelet slowly decreased.
Notably, the misfit function for LSRTM consistently achieved a faster convergence than that
of LSRTM-WM. This may have been driven by the fact that there were residual unassociated
multiples. The convergence comparisons reveal that LSRTM-WM may robustly produce
higher-quality images than LSRTM in some field data processing. Moreover, as multiples
undergo several bounces beneath the free surface, multiples contain wider wavenumber
components than corresponding primaries [40,41]. To further emphasize the advantages
of imaging using multiples, we compared the wavenumber spectra of the different im-
ages in Figure 13 (the dashed black line represents the RTM-WM image in Figure 10a, the
solid black line is the LSRTM-WM image in Figure 10b, the solid blue line denotes the
LSRTM image in Figure 9a, and the solid red line represents the LSRTM image in Figure 11
with the inaccurate wavelet). Compared with the images of primaries (the red and blue
lines), the images of multiples (the black lines) exhibited significantly broader wavenumber
spectra. As indicated by the red line, the wavenumber spectrum of the LSRTM image
with the inaccurate wavelet was biased toward the lower wavenumber components. This
was caused by the usage of a lower dominant frequency for least-squares inversion. The
comparison between the dotted and solid black lines indicates that the LSRTM-WM can
more effectively broaden the wavenumber spectra than RTM-WM. As the wavenumber
spectra can represent the resolution along the depth direction to some extent, LSRTM-WM
retrieves images with higher resolution than RTM-WM.
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Figure 13. Wavenumber spectra comparison in the depth direction for different migration images.
The dashed black, solid black, solid blue, and solid red lines represent the wavenumber spectra for
images from RTM-WM (Figure 10a), LSRTM-WM (Figure 10b), LSRTM (Figure 9a), and LSRTM with
the inaccurate wavelet (Figure 11), respectively.

4. Conclusions

A new least-squares reverse-time migration of water-bottom-related multiples (LSRTM-
WM) was developed to attenuate crosstalks and enhance imaging quality. In the proposed
approach, SRME, combined with the feedback model, is exploited to separate multiples
into different orders, and RTM-WM is recognized as the forward modeling and migration
engine. Compared to RTM-WM, LSRTM-WM can produce an image with a better signal-
to-noise ratio, higher spatial resolution, and more balanced amplitudes. Furthermore,
LSRTM-WM can effectively eliminate both the order-related and event-related crosstalks
which are partially reduced by LSRTMM. In addition, as multiples bounce several rounds
in the subsurface, the LSRTM-WM image can recover broader wavenumber components
than that of LSRTM using primaries. Moreover, for the usage of seismic data as the sec-
ondary virtual sources, LSRTM-WM is independent of seismic wavelets and can robustly
retrieve an imaging result that is quite similar to that of LSRTM with the accurate wavelet.
Numerical experiments demonstrated the effectiveness and advantages of the proposed
method and verified that the LSRTM-WM is a promising algorithm for imaging complex
marine structures.
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