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Abstract: With the process of increasing urbanization, there is great significance in obtaining urban
change information by applying land cover change detection techniques. However, these existing
methods still struggle to achieve convincing performances and are insufficient for practical appli-
cations. In this paper, we constructed a new data set, named Wenzhou data set, aiming to detect
the land cover changes of Wenzhou City and thus update the urban expanding geographic data.
Based on this data set, we provide a new self-attention and convolution fusion network (SCFNet)
for the land cover change detection of the Wenzhou data set. The SCFNet is composed of three
modules, including backbone (local–global pyramid feature extractor in SLGPNet), self-attention and
convolution fusion module (SCFM), and residual refinement module (RRM). The SCFM combines
the self-attention mechanism with convolutional layers to acquire a better feature representation.
Furthermore, RRM exploits dilated convolutions with different dilation rates to refine more accurate
and complete predictions over changed areas. In addition, to explore the performance of existing
computational intelligence techniques in application scenarios, we selected six classical and advanced
deep learning-based methods for systematic testing and comparison. The extensive experiments on
the Wenzhou and Guangzhou data sets demonstrated that our SCFNet obviously outperforms other
existing methods. On the Wenzhou data set, the precision, recall and F1-score of our SCFNet are all
better than 85%.

Keywords: computational intelligence; land cover/land use; change detection; self-attention; remote
sensing images

1. Introduction

With the development of economy and science and technology, China’s urbanization
process has achieved a continuously significant increase [1]. One of the main features of
the continuous acceleration of urbanization is the rapid expansion of urban land types
and scales caused by the increase in urban population [2]. Therefore, the timely and
effective detection of urban land use/cover changes has potential value for practical ap-
plications, such as dynamic monitoring of geographic conditions [3], urban development
planning [4], and urban expansion trend analysis [5,6]. In this context, change detec-
tion techniques based on multi-temporal remote sensing images were applied to obtain
quantitative or qualitative information on land use and land cover changes [7–10].

In recent decades, many change detection techniques have made remarkable progress.
In the early stage, change detection can be achieved in two steps, i.e., difference image
generation and difference image segmentation. Common difference image generation
methods include image difference [11,12], image ratio [13,14], and change vector analysis
(CVA) [15–17]. Difference map segmentation can usually be achieved by choosing a suitable
threshold (e.g., Otsu [18]), or by using clustering algorithm (e.g., k-means [19,20], fuzzy
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c-means [21], support vector machine (SVM) [22]). Accordingly, many methods have
been widely used in practical applications [23]. For example, a method based on spectral
CVA is applied to extract the change information of Wuhan city [24]. In [25], change
detection and geographic information system based on remote sensing is used to analyze
the land use changes during fifteen-year time period of 1991–2006; The change detection
based on CVA is employed to acquire change information in Himachal Pradesh, India [26];
In [5], the author promoted a modified ratio operator to generate a change image; Urban
change information can be obtained by using this method based on multitemporal synthetic
aperture radar (SAR) images in Beijing and Shanghai, China; A land cover change detection
method based on SVM was developed to map urban growth in the Algerian capital [27].
Various applications can be found in [28,29]. Although these approaches have been used in
practical applications, they still require manual re-editing due to their low accuracy and
efficiency. Moreover, with the popularization of very-high resolution (VHR) remote sensing
images and rapid urban expansion, there is an urgent need to propose more timely and
effective change detection methods to obtain more accurate information on land use and
land cover changes [8,14].

With the popularity of deep learning (DL) technology in the field of computer vision,
the technology has attracted continuous attention in the field of remote
sensing [30–32]. Many DL-based methods have been applied to many remote sensing tasks,
such as: change detection [33,34], hyperspectral classification [35,36], remote sensing scene
classification [37], semantic segmentation [38], and object detection [39], etc. Under this
situation, DL-based change detection has made some progress [40,41]. In the early stage,
DL was used to achieve difference image segmentation in change detection due to its
excellent classification performance. Zhao et al. proposed a deep neural network to classify
the difference image into a binary change map [42]. Lei et al. promoted a change detection
network for landslide inventory mapping [43]. The method was first to generate a differ-
ence image, and it was denoised by multivariate morphological reconstruction. Then, a
fully convolutional network within pyramid pooling was devised to segment the difference
image into a change map. In the following years, in order to avoid the noise introduced
by traditional difference image generation methods, many DL-based methods are further
proposed for change detection. For example, Gong et al. presented a novel DL-based
change detection method, which can omit the process of a difference image generation.
This method can effectively avoid using the traditional difference image generation method
and reduce its adverse effect on the change map. Similarly, Lv et al. employed a dual-path
fully convolutional network to directly obtain the landslide map without calculating the
change magnitude image. The landslide mapping performance of this method was verified
on real landslide sites on Lantau Island in Hong Kong, China. Although these DL-based
methods have achieved significantly better performance than traditional methods, these
methods are still limited by the amount of experimental data in the data set and are difficult
to extend to various practical applications on a large scale.

In recent years, more advanced DL-based end-to-end change detection methods have
been proposed to alleviate the limitation of the amount of data [40]. These methods
usually implement end-to-end change detection by treating the change detection task as
a semantic segmentation task. In [44], three architectures based on a fully convolutional
network are presented for end-to-end change detection, including fully convolutional
early fusion (FC-EF), fully convolutional Siamese concatenation (FC-Siam-Conc), and fully
convolutional Siamese difference (FC-Siam-Diff). According to this, many researchers
have proposed many advanced end-to-end change detection networks based on these
architectures. In recent years, to further expand the application of DL-based change
detection, many researchers have constructed and open-sourced many advanced change
detection networks and the large data sets of many different application scenarios. For
instance, Ji et al. opened a data set, named the WHU data set, which includes a high-
quality multi-source data set for building extraction, building instance segmentation and
building change detection [45]. Meanwhile, the paper proposed a Siamese U-Net (SiUnet)
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for building extraction [45]. The network can also provide competitive results on the
WHU data set. Chen et al. released a large-scale data set, named LEVIR-CD [46], which is
composed of 637 Google Earth remote sensing image pairs of 1024× 1024 (0.5 m/pixel).
In [46], a Siamese spatial-temporal attention neural network is also devised and applied to
the LEVIR-CD for building change detection. Similar large-scale data sets are S2looking
in [47]. After that, many new models were proposed for these data sets. An attention-
guided change detection network is devised for these data sets in [48], and devoted to
achieve a better accuracy of building change detection. Liu et al. designed a Siamese local–
global pyramid network (SLGPNet) and transfer learning for building change detection,
which achieves excellent performance in detecting building changes [49]. The above studies
have shown that deep learning-based change detection methods have made some progress
in urban scenarios, especially building change detection. However, only developing a
building change detection approach cannot satisfy the change detection requirements of
urban land use and land cover in complex urban scenarios.

Recently, to further promote the practical application of DL-based change detection
methods [50,51], some general urban change detection data sets containing changes in
different ground objects were created and released. In [52], a Google Earth data set was
published, which is a more challenging data set as it covers various changes in different
cities in China (Beijing, Shenzhen, Chongqing, Wuhan, and Xi’an). Moreover, the paper
also provided a deeply supervised image fusion network for this Google Earth data set and
obtained a better detection performance. In addition, Peng et al. created a publicly VHR
Google Earth data set (named Guangzhou data set), which covers the suburban areas of
Guangzhou City [53]. For the Guangzhou data set, the changes are mainly caused by the
urbanization process in China in the past decade, mainly including the following changes:
buildings, waters, roads, farmland, bare land, forests, ships, etc. As the above large-scale
urban change detection data set becomes available, more state-of-the-art (SOTA) methods
have been proposed for the change detection task of complex urban scenes. For instance, a
high-frequency attention Siamese network was proposed in [54], which can improve the
performance by exploiting a high-frequency attention block; In [55], Fang et al., designed
an SNUNet, which combines the Siamese network and the NestedUNet. The SNUNet
can perform better than other SOTA change detection methods on a large-scale change
detection data set with season-varying. In addition, transformer-based networks have
reached SOTA performance in computer vision. Recently, transformer-based networks have
attracted the attention of many researchers in the field of remote sensing, especially change
detection. In this context, some transformer-based change detection networks have been
proposed. A bitemporal image transformer (BIT) was developed for change detection [56],
which can capture the contextual information within the spatial-temporal domain. This
network can accomplish the SOTA performance compared to several recent attention-based
models. Similar methods can be found in [57,58].

Despite the fact that these methods achieved convincing performance in many public
urban change detection data sets, they currently face some limitations. Firstly, almost all of
these SOTA approaches rely on a large number of labelled samples for network training.
Secondly, in general, the performance of each method on different data sets is still not
sufficiently stable. Finally, there is a lack of reliability validation for using these methods in
practical applications. In this situation, two key points need to be noticed in the practical
application of change detection [59].

• The usability and generalization of DL-based change detection methods in practical
application scenarios still need to be verified.

• It is potentially meaningful to flexibly and comprehensively use one or more of the
existing methods to meet the goal of real-change detection application scenarios.

In this paper, we create a new and challenging urban change detection data set
oriented by practical applications, named the Wenzhou data set. The purpose of the
Wenzhou data set is to achieve geographic surveying and mapping dynamic update by
urban change detection, thereby providing a solid geographic information basis for the
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development of Wenzhou’s “smart city”. Driven by this purpose, we systematically test and
compare the existing popular SOTA approaches using the Wenzhou data set, including two
classical methods (FC-EF [44] and FC-Siam-Conc [44]) and four SOTA methods (SiUnet [45],
SNUNet [55], SLGPNet [49], and BIT [56]). In addition, in order to meet the performance
requirements of the Wenzhou data set in practical applications, we propose a self-attention
and convolution fusion network (SCFNet) by combining multiple existing change detection
networks or modules. The SCFNet consists of three modules. First, the backbone network
of our SCFNet is the local–global pyramid feature extractor in SLGPNet [49], which can
effectively capture multi-scale features. Then, a self-attention and convolution fusion
module (SCFM) [60] is employed to replace the position attention module in the backbone
network. The SCFM aims to capture the non-local features. Finally, a residual refinement
module (RRM) [61] is deployed after the output of our backbone network. The RRM is
composed of multiple residual convolutions with different dilation rates, which can refine
the initial change results at the original image scale. The significant contributions of this
paper are summarized as follows:

(1) We created a new and challenging Wenzhou change detection data set, which is mainly
used to acquire timely and effective land cover changes induced by urbanization in
Wenzhou city, China. Based on the Wenzhou data set, we systematically tested the
adaptability and performance of some existing popular and SOTA change detection
approaches.

(2) We constructed a self-attention and convolution fusion network (SCFNet) for land
cover change detection, which can integrate multiple existing change detection net-
works or modules to enhance the performance of the model further. The constructed
SCFNet can basically meet the practical application requirements of land cover change
detection in Wenzhou city, China.

(3) Compared with other SOTA methods, experiments on our created Wenzhou data
set demonstrated that our SCFNet can acquire better and more balanced precision
and recall. That is, the precision and recall both reach an accuracy of more than
85%. Furthermore, the effectiveness of our SCFNet is also validated on the public
Guangzhou data set and achieves a good performance.

The rest of this paper is arranged as follows. In Section 2, the materials and method-
ology are described in detail. Section 3 presents the experiments and results. Finally, the
conclusions and future works are provided in Section 5.

2. Materials and Methodology

In this section, we present a detailed presentation of the materials and methodol-
ogy used in this study. First of all, the details of the study area and data set are de-
scribed in Section 2.1. Subsequently, in Section 2.2, the methodology is introduced in
detail. In particular, an overview of the constructed SCFNet is provided in Section 2.2.1.
Sections 2.2.2 and 2.2.3 illustrate the SCFM and the RRM, respectively.

2.1. Study Area

In this paper, we chose Wenzhou city as the study area, as shown in Figure 1. Wenzhou
city is located in the middle of the coastline of the Pacific Rim (approximately 18,000 km)
in mainland China, in the southeast of Zhejiang Province. The urban area of Wenzhou is
approximately 1054 square kilometers, with mountains, forests, water bodies, and various
surface types. In recent years, with the rapid and stable development of Wenzhou’s urban-
ization process, the urban landscape of Wenzhou city has undergone tremendous changes.
Consequently, the research and application of the DL-based land cover change detection
approach is performed to provide a geographic information basis for Wenzhou’s “smart
city” construction, natural resource management, and urban geographic dynamic update.
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Figure 1. The spatial location of the study area of Wenzhou City, China.

In this study, we selected some representative areas (as shown in the rectangular area
in Figure 1) from Wenzhou City to create our data set, named Wenzhou data set. Some
representative examples of this data set are presented in Figure 2. The Wenzhou data
set was captured between 2017 and 2021 by an aviation aircraft equipped with a Digital
Mapping Camera III at an altitude of approximately 4.44 km. The spatial resolution was
0.2 m/pixel after re-sampling. This data set covers an area of approximately 112.026 square
kilometers. The purpose of our created Wenzhou data set was to update the geographical
data of urban expansion. Hence, it is mainly focused on land cover from natural objects
to become related to urban construction areas (such as the changes in natural objects into
buildings, bridges, roads, and other places related to urban expansion, without paying
attention to changes in waters etc.). It is worth mentioning that the core changing features
are built-up areas because of urbanization. The main challenges and requirements of this
data set lie in the four following aspects.

(1) Bi-temporal images of the Wenzhou data set were collected from multiple periods
(from 2017 to 2021). This may increase the difficulty of change detection since the
bi-temporal images are shot under different atmospheric conditions, such as the sun
height and moisture, etc.

(2) The changes in the built-up area of the Wenzhou data set are complex. Due to a large
number of demolition and reconstruction projects in the Wenzhou urban area, the old
and new houses in the old urban area and “urban villages” alternate, and high-rise
buildings and low-rise buildings coexist. These conditions make land cover change
detection in the Wenzhou data set more challenging.

(3) Since the primary type of change in the Wenzhou data set is a built-up area, and other
types of changes are relatively small, this may lead to an imbalance in the number of
different types of ground objects.

(4) To avoid secondary manual editing in practical applications, DL-based change detec-
tion methods require both precision and recall to be higher than 85%.

To sum up, according to the above characteristics, the Wenzhou data set is very suitable
for systematically testing existing DL-based change detection methods. Furthermore, there
is potential value in providing a reliable and satisfying solution for the Wenzhou data
set. Hence, this study will further promote the practical application of DL-based change
detection methods.
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(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Figure 2. Some representative examples of the Wenzhou data set. (a1,a2) T1-time image, (b1,b2) T2-
time image, and (c1,c2) ground truth image. White: changed pixels; Black: unchanged pixels.

2.2. Methodology

In this section, the proposed method is demonstrated in detail in three different parts.
In the first part, the overall framework of SCFNet is briefly illustrated. In the second part, a
mixed module of self-attention and convolution, SCFM, is introduced in detail. Finally, an
employed performance refinement module, RRM, is illustrated in the third part.

2.2.1. Overview of Self-Attention and Convolution Fusion Network

A proper backbone is significant for correctly detecting building changes in the remote
sensing data that are not perfectly orthophotos. Through extensive experiments, we
found it difficult for many conventional state-of-the-art deep neural networks to acquire
acceptable results over the new constructed data set. To tackle non-orthophoto bi-temporal
images and the corresponding annotations, we employed a modified Siamese local–global
pyramid network (SLGPNet) [49], which has been tested in similar tasks, as the backbone
of the proposed SCFNet. The SLGPNet utilizes two different feature pyramids to better
capture the local and global relationships between building objects over bi-temporal images,
resulting in excellent results. Based on this fact, the encoder and decoder of SLGPNet are
exploited in our work to acquire more accurate annotations of changed buildings over the
study area. Additionally, another two network modules, SCFM and RRM, are introduced
in the proposed network for finer performance.

Given the information below, the proposed method can be explained as follows: As
shown in Figure 3, the bi-temporal remote sensing images are firstly concatenated and
input into the local–global pyramid encoder to acquire the deep representative change
information. Then, we exploit SCFM to refine the extracted feature through the fusion of
the self-attention mechanism and convolutional layers. At the decoding stage, deep change
information is gathered and integrated layer-by-layer. Finally, the change map is acquired
after being refined by RRM.
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Figure 3. A brief illustration for proposed SCFNet. The SCFM and RRM indicate the self-attention
convolution fusion module (SCFM) and residual refinement module (RRM), respectively.

2.2.2. Self-Attention and Convolution Fusion Module

The fusion of self-attention and convolutional layers have been proven helpful for
deep learning-based image processing [60]. Inspired and encouraged by its success, similar
techniques are introduced in the proposed method for better feature representation. In the
SCFNet, the SCFM is employed to replace a self-attention-based module in the SLGPNet
to better capture the semantic and location mapping of varied buildings in the study area,
since there is an extra convolution path in the SCFM compared to the replaced module.
Additionally, the SCFM can contribute to overcoming a specific challenge of the proposed
data set, which is the commonly occurring non-orthophoto data. That is because there is
a learnable shift operation-based convolution path in SCFM, which has the potential to
better fit the non-orthophoto data set through the feature-level shift. As a result, the SCFM
is introduced for a better feature representation and a finer annotation of non-orthophoto
change information, and its brief process is depicted in Figure 4. With the illustration in
Figure 4, the SCFM can be better described in the mathematical style below.

Conv 1x1

Conv 1x1

Conv 1x1

3x[head,C/head,H,W]

      
        (a)Convolutional Path

CAT

      
        (b)Attention Path

C
o
n

v
 1

x
1

 

QQ

KK

VV

Shift Operation with 
Multiple Convolution 

Groups

Multi-head 
Self Attention

[C,H,W]

[C,H,W]

Input Feature Maps

[C,H,W]

Input Feature Maps

[C,H,W]
Output Feature Maps

[C,H,W]

α 

β 

Legend

              Concatenation          Learnable Parameter α          Learnable Parameter β           Feature Summation

       Query Features for Self-attention        Key Features for Self-attention         Value Features for Self-attention

CAT α β 

QQ KK VV

Figure 4. A brief illustration of the employed SCFM.

Firstly, the input feature maps of SCFM, Finput ∈ RCinput×H×W , comes from and was
processed by the previous encoder layers of SCFNet, where H ×W, and Cinput are the
spatial and channel sizes of Finput, respectively. Then, Finput are transformed into three
different parts with the size of Rhead×Coutput/head×H×W , which can be described as follows:

FQ = Reshape
(

conv1
1×1

(
Finput

))
(1)

FK = Reshape
(

conv2
1×1

(
Finput

))
(2)
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FV = Reshape
(

conv3
1×1

(
Finput

))
(3)

where
{

convi
1×1|i = 1, 2, 3

}
and Reshape indicates the convolutions with the kernel size of

1× 1 and a shape transformation from Coutput × H ×W to head× Coutput/head× H ×W,
respectively. The head represents the head number of multi-head attention in the SCFM,
which is a fixed number of 4 in our method. At the next stage of SCFM, these features
will be processed by two different paths, i.e., (a) convolutional path and (b) attention path,
which can be illustrated as follows:

(a) Convolutional Path: In this path, features will be firstly gathered and projected
by a feature concatenation and a 1× 1 convolution, respectively. Then, a learnable shift
operation will be conducted to the extracted feature maps, which is a multi-group convo-
lutional layer with a set of reinitialized kernels. In this case, the extracted feature maps
will firstly be shifted to several different fixed directions for a wider but rough cognition
of non-orthophoto building objects. Then, the shift operation can be adjusted to a finer
condition with these learnable kernels during supervised learning. The output of the
convolutional path, Fconv ∈ RCoutput×H×W , can be represented as follows:

Fconv = shi f t_operation
(

conv4
1×1

(
CAT

(
FQ, FK, FV

)))
(4)

where CAT indicates the feature concatenation, and conv4
1×1 represents a 1× 1 convolutional

layer. The shi f t_operation denotes the multi-group convolutional layer with the kernel size
of 3.

(b) Attention Path: In the attention path, the extracted query, key, and value features
are processed by a multi-head self-attention mechanism for a better feature representation,
which can be briefly denoted as follows:

Fatt = sel f _attention
(

FQ, FK, FV
)

(5)

in which Fatt ∈ RCoutput×H×W is the output of attention path in SCFM, and sel f _attention
indicates the aforementioned multi-head self-attention with the head number of 4. Notably,
positional encoding is also utilized in this stage for better location mapping.

With the output of both paths acquired, two learnable parameters are employed to
generate Fo ∈ RCoutput×H×W , and the final output of SCFM can be represented as:

Fo = α ∗ Fconv + β ∗ Fatt (6)

where α and β are the learnable adjustment parameter for convolutional and attention
paths, respectively. They are utilized to acquire a more stable and reliable output for SCFM.

2.2.3. Residual Refinement Module

In the proposed data set, large-scale building change areas are almost everywhere,
which can be discovered in Figure 2. However, the predicted annotations can be incomplete
for the deep learning-based method. More than that, in the application scene of this work,
the completeness and correctness of the detected change areas are equally significant.
Driven by this additional requirement, the RRM, which is inspired by [61], is introduced in
the proposed method for more complete land cover detection. As shown in Figure 5, the
RRM employs a series of dilated convolutions to refine the raw output of SCFNet to seek
more complete annotations, which can be represented as outlined below.

Let F0 ∈ RH×W be the raw output waiting for the refinement of RRM, where H,W de-
notes the height and width, respectively. Then, a set of extracted features,

{
Fi ∈ R32×H×W}

where {i = 1, 2, 3, 4, 5}, can be denoted as:

Fi+1 = dilated_convi
3×3(Fi) (7)
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where dilated_convi
3×3 indicates 3× 3 convolutions with different dilation rates. Then,

these features are gathered and fused by a feature-wise summation and a convolutional
layer, which can be demonstrated as:

Fm = conv3×3(F1 + F2 + F3 + F4 + F5) (8)

Finally, the refined output Fro can be acquired as:

Fro = Fm + F0 (9)

Raw Output

8 16 322 41

1

Refined Output

[1,H,W]

[1,H,W]

[32,H,W] [32,H,W] [32,H,W] [32,H,W] [32,H,W] [32,H,W]

Legend

            Convolution with dilation rate of n

            Feature summation

n

Legend

            Convolution with dilation rate of n

            Feature summation

n

Figure 5. The structure of the RRM.

3. Experiments and Results
3.1. Experimental Settings
3.1.1. Data Set Descriptions

Wenzhou Data Set: For our created Wenzhou data set, to adapt the memory of the
graphics card, the images for the entire study area are cropped into 4442 non-overlapping
pairs of 512× 512 pixels. We randomly divided all images into a training set (3554 tiles), a
validation set (117 tiles), and a testing set (771 tiles). As such, all models were systematically
tested and evaluated on the Wenzhou data set.

Guangzhou Data Set: This data set focuses on the land cover changes that occurred
in the suburban areas of Guangzhou City, China, which share some similarities with the
application scene in Wenzhou. Both of them depict the urbanization process that happened
around the urban area. The remote sensing data of the Guangzhou data set is captured by
Google Earth, between 2006 and 2019, with a spatial resolution of 0.55 m. In detail, it has
19 VHR bi-temporal image pairs with the sizes ranging from 1006× 1168 to 4936× 5224,
which includes a large number of complicated scenes in different areas around Guangzhou.
In our experiments, they are cropped into 3130 non-overlapping image pairs with the size
of 256× 256. We used 2191 of them for training. Furthermore, the rest of them are utilized
as the testing data.

3.1.2. Evaluation Metrics

In the experiments, four widely used evaluation metrics were selected for the quan-
titative assessment and comparison of land cover change detection, including Precision,
Recall, F1− Score, and intersection over union (IoU) [49,54,56]. These four evaluation
metrics can be calculated by the following formula.

Precision =
TP

TP + FP
(10)
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Recall =
TP

TP + FN
(11)

F1-Score =
2× Precision× Recall

Precision + Recall
(12)

IoU =
TP

TP + FP + FN
(13)

where TP, TN, FP, and FN denote true positive pixels, true negative pixels, false positive
pixels, and false negative pixels, respectively. The confusion matrix can obtain TP, TN, FP,
and FN based on the binary classification. Here, the Precision represents the proportion
of correctly detected changed pixels among the detected as changed pixels. The Recall
represents the proportion of correctly detected changed pixels among the truly changed
pixels. The F1− score is an indicator that takes into account both precision and recall,
because F1 can be regarded as the harmonic average of precision and recall. Additionally,
the IoU represents the ratio of the intersection and union between pixels detected as
changed and true changed pixels.

3.1.3. Benchmark Methods

To systematically evaluate and compare the performance of the existing DL-based
change detection methods and our SCFNet, six benchmark methods were selected in the
experiments. These approaches are presented as follows:

(1) FC-EF [44]: This method is a benchmark change detection model, which is a simplified
U-shaped network. It employs an early fusion strategy to fuse bi-temporal images for
change detection. This is a widespread end-to-end change detection framework.

(2) FC-Siam-Conc [44]: The model is also a U-shaped network. The difference is that it
adopts a post-fusion strategy to fuse the features of bi-temporal images. Specifically,
this model first extracts the deep features of the bi-temporal images by means of
a Siamese encoder. Then, these deep features can be fused by the concatenation
operation, and input into the decoder to obtain the change detection results. This is
another attractive Siamese-based end-to-end change detection framework.

(3) SiUnet [45]: The method is a Siamese U-Net framework for building extraction. It uses
a down-sampled counterpart of original bi-temporal images to enhance the multi-scale
features of the network, resulting in improved detection performance. To this end, we
adopted an early fusion strategy to deploy the SiUnet for the change detection task.

(4) SNUNet [55]: The model is constructed by the combination of Siamese network and
NestedUNet, which can reduce the loss of localization information [55]. This method
can achieve the SOTA performance on the CDD data set [55,62].

(5) SLGPNet [49]: This approach is an end-to-end Siamese-based building change de-
tection network, which devises a local–global pyramid structure for building feature
extraction. It obtains the best accuracy on WHU [45] and LEVIR-CD [46] data sets for
change detection.

(6) BIT [56]: The model is a SOTA transformer-based change detection network. It exploits
a transformer encoder and decoder to build the contexts within the spatial-temporal
domain for change detection. This network acquires a promising performance on the
LEVIR-CD [46], WHU [45], and DSIFN [52] data sets.

3.1.4. Implementation Details

In the experiments, all models were deployed based on the PyTorch platform. These
models were trained on an NVIDIA RTX 3090 graphics card. The hyper-parameters of these
benchmark methods are set to the optimal configuration. For our SCFNet, we employed the
Adam optimizer with a weight decay rate of 1× 10−5, and the learning rate is initialized to
1× 10−4. Furthermore, binary cross entropy was adopted as the loss function for network
training. The batch size of all models was set to 4 on both the Wenzhou and Guangzhou
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data sets. It is worth noting that not all models exploit a data augmentation strategy. All
models are trained and tested based on these settings for land cover change detection.

3.2. Results
3.2.1. Results on Wenzhou Data Set

As shown in Figure 6a, the confusion matrix of the proposed method is acquired on the
Wenzhou data set. This confusion matrix indicates the overall performance of our method,
especially on the changed and unchanged classes. Concretely, the quantitative results over
Wenzhou data set indicate that the proposed method achieves an overwhelming advantage
in all evaluation metrics compared to other benchmark methods, as listed in Table 1.
Especially in IoU, the proposed SCFNet achieves the best performance of 75.36%, which is
over 10% more than the second-best method. Moreover, both the Recall and Precision of
SCFNet are over 85%, which achieves the requirement of this application scene in Wenzhou.
Since our approach achieves the best recall and precision, it also has the best F1 performance
over these benchmark methods, which suggests that our method can compete with current
SOTA methods. These advantages in the Wenzhou data set can also be discovered in the
corresponding visual results, as depicted in Figure 7. Generally, the proposed method
can obtain more accurate change maps with less missed and false alarms. For example,
in the fourth pair, the proposed SCFNet almost entirely detects two build-up areas with
less false positive pixels than other methods. In this scene, BIT achieves a relatively low
false alarm level, but the missed alarm is hard to ignore. To conclude, the proposed method
outperforms these SOTA benchmark methods with significant advantages.
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Figure 6. The confusion matrices of the results of the proposed SCFNet on two data sets. (a) Wenzhou
data set; and (b) Guangzhou data set.

Table 1. Quantitative comparison of different methods on the Wenzhou data set.

Methods Precision (%) Recall (%) F1-Score (%) IoU (%)

FC-EF [44] 67.14 56.24 61.21 44.10
FC-Siam-Conc [44] 52.39 53.18 52.79 35.85

SiUnet [45] 84.49 73.58 78.66 64.83
SNUNet [55] 73.83 61.33 67.00 50.38
SLGPNet [49] 78.39 75.84 77.09 62.72

BIT [56] 80.83 75.27 77.95 63.87
Proposed SCFNet 86.60 85.31 85.95 75.36
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(a)
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(e)

(f)
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True Positive True Negative False Negative False Positive

Figure 7. The results of the different methods on the Wenzhou data set: (a) T1-time image; (b) T2-time
image; (c) ground truth image; (d) FC-EF [44]; (e) FC-Siam-Conc [44]; (f) SiUnet [45]; (g) SNUNet [55];
(h) SLGPNet [49]; (i) BIT [56]; and (j) proposed SCFNet.

3.2.2. Results on Guangzhou Data Set

As shown in Figure 6b, the confusion matrix of the proposed SCFNet is obtained on
the Guangzhou data set, which shows the overall accuracy. In addition, the quantitative
experimental results on the Guangzhou data set are listed in Table 2. In the aspects of main
evaluation metrics, i.e., F1 and IoU, the proposed SCFNet still has significant advantages
compared to other benchmark methods, which are over 1%. In terms of precision and recall,
the performance advantages of SCFNet are not that significant. However, the proposed
SCFNet can have both higher precision and recall, which can be challenging for other
methods, thus contributing to the best F1 of SCFNet. In contrast, although BIT achieves
the highest precision, it fails to achieve a higher F1 and IoU, since BIT has a relatively low
recall performance. Similar conclusions can be discovered from the visual results shown
in Figure 8. For instance, the proposed method can obtain more complete and accurate
building annotations in the sixth pair of visual results over the Guangzhou data set. Gen-
erally, these visual results indicate that RRM helps the proposed method achieve a more
complete annotation of changed land cover.
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Table 2. Quantitative comparison of different methods on the Guangzhou data set.

Methods Precision (%) Recall (%) F1-Score (%) IoU (%)

FC-EF [44] 77.62 56.97 65.71 48.94
FC-Siam-
Conc [44] 83.02 55.42 66.47 49.78

SiUnet [45] 85.54 73.48 79.05 65.36
SNUNet [55] 49.17 50.00 49.58 32.96
SLGPNet [49] 85.25 80.88 83.00 70.95

BIT [56] 87.86 71.84 79.05 65.36
Proposed
SCFNet 87.35 80.96 84.03 72.46

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

True Positive True Negative False Negative False Positive

Figure 8. The results of different methods on Guangzhou data set: (a) T1-time image; (b) T2-time
image; (c) ground truth image; (d) FC-EF [44]; (e) FC-Siam-Conc [44]; (f) SiUnet [45]; (g) SNUNet [55];
(h) SLGPNet [49]; (i) BIT [56]; and (j) proposed SCFNet.
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3.3. Ablation Study

In our SCFNet, three modules, including backbone in SLGPNet [49], SCFM, and
RRM, are integrated into the SCFNet for land cover change detection on the Wenzhou
data set. Previous experimental results show that our SCFNet can achieve a convincing
performance. In this section, we further implemented the ablation experiment on Wenzhou
and Guangzhou data sets to analyze each component’s effect in the SCFNet.

To achieve this, the quantitative results of networks with different module combina-
tions were obtained for both data sets, as listed in Tables 3 and 4. For the experimental
results in the Wenzhou data set, the accuracy obtained with the backbone alone is obviously
insufficient. When the SCFM and the backbone were combined, the four evaluation indica-
tors (precision, recall, F1-score, and IoU) were improved by 0.50%, 0.53%, 0.53%, and 0.74%,
respectively. Here, SCFM only replaced the position attention module in the backbone,
so the improvement obtained is slight. Similarly, the performance of combining the RRM
and the backbone is more prominent. For example, compared with using backbone alone,
the F1-score and IoU metrics were improved by 2.13% and 3.07%, respectively; compared
with the network combining the backbone and the SCFM, the F1-Score and IoU metrics
obtained 1.60% and 2.33% improvements, respectively. This is because the RRM can employ
a larger receptive field to refine the initial change detection maps. According to this, the
introduction of RRM can significantly improve the accuracy. Finally, when these three
modules were deployed simultaneously, our SCFNet could achieve the best performance
on four evaluation metrics. Notably, precision, recall and F1-score are higher than 85% after
the full SCFNet is implemented for the Wenzhou data set.

Table 3. Quantitative evaluation of the combination of different modules on the Wenzhou data set.

Backbone SCFM RRM Precision (%) Recall (%) F1-Score (%) IoU (%)

X 85.79 76.80 81.04 68.13
X X 86.29 77.33 81.57 68.87
X X 85.04 81.39 83.17 71.20
X X X 86.60 85.31 85.95 75.36

Table 4. Quantitative evaluation of the combination of different modules on the Guangzhou data set.

Backbone SCFM RRM Precision (%) Recall (%) F1-Score (%) IoU (%)

X 85.27 79.40 82.23 69.82
X X 84.35 82.02 83.17 71.19
X X 83.54 83.91 83.72 72.01
X X X 87.35 80.96 84.03 72.46

The experimental results on the Guangzhou data set report similar conclusions. The
SCFM and RRM successfully improved the F1-score by 0.94% and 1.49% for the bare
backbone in this data set, respectively. When used together, the complete SCFNet achieves
the best F1-score in the Guangzhou data set. In addition, for a more intuitive comparison,
Figure 9 presents the performance of different model combinations on different evaluation
metrics. Figure 9 shows that our SCFNet combined with SCFM and RRM can effectively
improve recall without reducing precision in the Wenzhou data set. To sum up, our SCFNet
consists of these two modules in the existing network that can further improve the change
detection performance.
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Figure 9. The performance comparison of the combination of different modules on different evalua-
tion indicators for two data sets. (a) Wenzhou data set and (b) Guangzhou data set.

4. Discussion

To further discover the relation between the computational cost and performance
for recent DL-based methods, we count the FLOPs and parameters (Params) of each
model in Table 5. Basically, a model with higher computational costs usually leads to
better performance. Although the proposed method has a higher computational cost, it
achieves the best performance. Moreover, our SCFNet outperforms SLGPNet with a lower
computational cost. Based on the computational cost and related performance shown in
Table 5, we systematically discuss the performance of each benchmark method as follows:

(1) FC-EF [44] and FC-Siam-Conc [44]: FC-EF [44] can achieve a better performance than
FC-Siam-Conc on the Wenzhou data set, while FC-Siam-Conc [44] has higher accuracy
than FC-EF [44] on the Guangzhou data set. Overall, these two models performed
poorly on both the Wenzhou and Guangzhou data sets. This is because the capacity of
these two models is too small to handle complex data sets.

(2) SiUnet [45]: it achieves the second- and third-best performance on Wenzhou and
Guangzhou data sets, respectively. The SiUnet [45] exploits the down-sampled coun-
terpart of the original bi-temporal images as a branch of the Siamese network, en-
hancing the network’s ability to represent multi-scale features. Hence, SiUnet [45] is a
simple and effective model for the Wenzhou and Guangzhou data sets compared with
other benchmark methods. This strategy is worthy of follow-up research.

(3) SNUNet [55]: Surprisingly, SNUNet [55] did not perform satisfactorily on the both
Wenzhou and Guangzhou data sets. Although SNUNet [55] combines the Siamese net-
work and NestedUNet to reduce the loss of localization, NestedUNet may introduce
too many shallow features leading to incorrect semantic discrimination for facing the
complex scene.

(4) SLGPNet [49]: SLGPNet [49] can reach a relatively stable accuracy on both the Wen-
zhou and Guangzhou data sets. This model is composed of a local–global pyramid
feature extractor and a change detection head. The local–global pyramid feature
extractor combines the position attention module, local feature pyramid, and global
spatial pyramid, which has a robust multi-scale feature representation ability for
change detection. However, the accuracy of this method still has some limitations
for practical applications. The reason may be that the change detection head of this
method contains only a few parameters, which makes the feature fusion of the final
bi-temporal image insufficient for change detection.

(5) BIT [56]: Furthermore, BIT [56] is a SOTA transformer-based network for change detec-
tion. This model acquires the third-best and second-best accuracy on the Wenzhou and
Guangzhou data sets, respectively. That is because BIT [56] can employ a transformer
encoder to build the context of semantic tokens and exploit a Siamese transformer
decoder to project semantic tokens into the pixel space for effective feature extraction.
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Nonetheless, BIT [56] is difficult to balance between P and R. This limits the overall
performance of BIT [56].

(6) Proposed SCFNet: Unlike the above methods, our SCFNet achieves the best perfor-
mance on the both Wenzhou and Guangzhou data sets. Moreover, our SCFNet obtains
precision and recall balanced accuracy on the Wenzhou data set, and its precision,
recall, and F1-Score are higher than 85%. The core reasons include two aspects. First,
the introduction of SCFM can improve the feature extraction capability of complex
scenes. Second, the RRM deployed in SCFNet is able to refine the initial change
results to obtain more accurate and complete change detection maps. Based on the
above discussion, there are still some limitations in extending the existing methods to
practical applications, such as the Wenzhou data set.

Table 5. Quantitative comparison of the performance (in F1-Score) and computational costs of
different models.

Models FLOPs (G) Params (M) Wenzhou (%) Guangzhou (%)

FC-EF [44] 76.68 21.55 61.21 65.71
FC-Siam-
Conc [44] 73.23 24.68 52.79 66.47

SiUnet [45] 185.08 31.05 78.66 79.05
SNUNet [55] 162.60 12.03 67.00 49.58
SLGPNet [49] 226.49 70.99 77.09 83.00

BIT [56] 17.54 3.50 77.95 79.05
Proposed
SCFNet 212.23 72.85 85.95 84.03

According to the performance of our method, the comprehensive utilization of existing
methods is an effective solution to promote DL-based change detection toward practical
application. We hope this discussion provides a meaningful reference for subsequent
related methods and applications.

5. Conclusions

This paper conducted an application-oriented study over the expanding built-up areas
of Wenzhou City, China. A large scale of high-resolution bi-temporal remote sensing data
was captured and annotated to obtain the land cover change information of Wenzhou
between 2017 and 2021. With the help of these data, a new deep learning-based approach,
SCFNet, was proposed for automatic land cover change detection over the study area.
It employs the local–global pyramid encoder and decoder to build the backbone, and
another two modules, i.e., SCFM and RRM, to further improve the performance. The
SCFM combines the self-attention mechanism with convolutional layers to acquire a better
feature representation. Furthermore, RRM employs dilated convolutions with different
dilation rates to obtain more complete predictions over changed areas. In addition, a
widely used open change detection data set, Guangzhou data set, and several current SOTA
change detection methods were utilized to test the proposed method further. Furthermore,
extensive experimental results indicated that SCFNet can outperform other benchmark
methods in both large-scale data sets, i.e., the Wenzhou and Guangzhou data sets. As for
future work, self-supervised and semi-supervised learning techniques can be utilized in
our method to reduce the dependence on large-scale annotated data, which can lower the
cost of collecting and constructing data.
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