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Abstract: Increasing demand for food, climate change, and other human interventions are leading
to significant increases in water consumption by the agricultural sector. This requires rationalizing
the water used for the production of agricultural crops through improved irrigation management
practices. Therefore, this study aimed to estimate the water footprint (WF) of onion (Allium cepa
L.) and carrot (Daucus carota) crops using the CROPWAT model and the SSEB (Simplified Surface
Energy Balance) algorithm. Experiments were carried out at two center-pivot irrigated fields be-
longing to Tawdeehiya Commercial Farms in the southeastern region of the Riyadh governorate,
Saudi Arabia. Individual bands and vegetation indices (VIs) were retrieved from Sentinel-2 satellite
data, including the normalized difference vegetation index (NDVI), soil adjusted vegetation index
(SAVI), optimized soil adjusted vegetation index (OSAVI), renormalized difference vegetation index
(RDVI), and enhanced vegetation index (EVI), and the land surface temperatures (LST) extracted
from Landsat-8 data were used to estimate crop productivity (CP), crop water use (CWU) (i.e.,
evapotranspiration—ETa), and crop WF. Crop growth/phenology stages and georeferenced biophys-
ical parameters were recorded during the growth period, and crop yield samples were collected
randomly from predetermined sampling locations. It was found that the NIR band was appropriate
for predicting onion yield (R2 = 0.68; p > F = 0.02) and carrot yield (R2 = 0.77; p > F = 0.02). The results
also showed the feasibility of using the RDVI and EVI to estimate the yields of onion and carrot crops,
with bias values of 15% and –17%, respectively. The CWU has also been successfully estimated using
the SSEB algorithm, with an overall accuracy of 89%. The SSEB-estimated CWU was relatively high
compared to the applied amounts by 10.6% (onions) and 12.6% (carrots). Finally, the crop WF was
successfully estimated at 312 m3 t−1 and 230 m3 t−1 for carrots and onions, respectively, with an
overall accuracy of 71.11%. The outcomes of this study can serve as a reference for crop irrigation
management practices in the study region and areas with similar environmental conditions.

Keywords: crop water use; crop yield; satellite images; vegetation indices; water footprint

1. Introduction

The demand for water has increased dramatically around the world, with particular
attention being paid to the water used for the irrigation of agricultural crops and related
industries. Therefore, the sustainable use of water in agricultural production, particularly
in arid regions such as Saudi Arabia, has become one of the key priorities of modern
agricultural strategies. Due to the drastic shortage of freshwater resources and harsh
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environmental conditions, Saudi Arabia is making great efforts to develop sustainable
agriculture. In this regard, improved agricultural monitoring and water footprint (WF)
estimation techniques provide important information on the areas under different crops,
crop conditions, yield forecasts, and the amounts of water used. These data are very
important for optimizing decision-making strategies related to agricultural production and
food security measures [1].

The Water Footprint Analysis (WFA), described by Hoekstra and Hung [2], is a com-
mon tool for estimating the freshwater consumed by different products, and has gained
increasing applicability in estimating freshwater consumption by agricultural crops. The
WF, however, refers to the amount of water applied to produce a unit of the produce [1,3]
and is commonly estimated as m3 kg−1, m3 t−1, etc. The crop WF has three main compo-
nents, namely, the green WF, the blue WF, and the grey WF. The green (irrigation) and blue
(rain) WFs represent the amount of water used by plants (evapotranspiration, ETa), while
the grey WF represents the amount of water used to absorb pollutants from agrochemicals
or water quality levels. What distinguishes the WF method is that it focuses primarily on
the actual water consumed by plants, instead of the total amount of applied water [4,5].
Therefore, application of the WFA tool to estimate the amount of freshwater used by crops
has become essential for the effective management of irrigation water [6–9].

Evapotranspiration can be either measured in situ by specialized devices or indirectly
by mathematical models using climatic, soil, and crop data. Advances in remote sensing
and GIS technologies have contributed to the improvement of agricultural management
systems by integrating weather, soil, and crop data [10–12]. Satellite remote sensing
allows for estimating crop water use (CWU, i.e., ETa) by means of various algorithms
developed based on the surface energy balance components, such as the simplified surface
energy balance (SSEB), surface energy balance algorithm over land (SEBAL), surface energy
balance system (SEBS), mapping evapotranspiration with internal calibration (METRIC),
two-source model (TSM), two-source time-integrated model (TSTIM), and simple algorithm
for evapotranspiration retrieval (SAFER). However, the SSEB algorithm is characterized by
its simplicity, minimal data requirements, ease of implementation, and acceptable accuracy,
and it is therefore widely used to estimate ETa for agricultural fields [13–15].

Several previous crop WF studies have focused on either global [16,17] or local [18,19]
scales. However, most crop WF estimations performed at regional, local, or global scales,
based on crop, soil, and climate data, return crop WF results of varying accuracy [20,21].
Furthermore, the use of remote sensing data for the estimation of crop water requirement,
irrigation scheduling, and water footprint (WF) mapping is still limited in the Middle East.
Hence, a knowledge gap in the area of WF still exists in this region, especially in Saudi
Arabia. Therefore, this research was undertaken to address the spatial assessment of the
WF of carrot and onion crops using free satellite images, such as Landsat-8 and Sentinel-2
images, along with site-specific data, such as crop phenology, yield, climate, and irrigation
data. However, the objectives covered in this research include: (1) quantification of the
WF of carrot and onion crops according to local climates, and (2) a comparison between
the crop WF determined using the satellite-based SSEB and that obtained from field data
combined with the CROPWAT algorithm.

The WF of carrot and onion crops was estimated using the CROPWAT and remote
sensing approaches. The crop water requirement was calculated using the CROPWAT
approach as defined by Allen et al. [22]. The remote sensing estimation of the crop water
use was accomplished by assessing the fraction of ET and then the actual ET (ETa) by
applying surface energy balance principles to the Landsat-8 TIRS bands and Sentinel-2
visible bands. However, the lack of rainfall and its irregularity in the study area led to an
absence of Landsat-8 images coinciding with rainy days. Hence, this study mainly coped
with the blue component of the WF.
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2. Materials and Methods
2.1. Experimental Area

The research study was carried out on two center-pivot-irrigated fields belonging
to Tawdeehiya Commercial Farms in the southeastern region of the Riyadh governorate,
Saudi Arabia, between latitudes 24.172992◦ and 24.210347◦N and longitudes 47.937389◦

and 48.085711◦E. As shown in Figure 1, a 27-ha field (ID: N6) and a 2-ha field (ID: T/PVT)
were grown with carrot and onion crops, respectively. The study area is characterized by
an arid climate, where temperatures range from 11 ◦C in the winter to 49 ◦C in the summer,
and there is an average rainfall of 98 mm in the period from November to early March.
The texture of experimental pivots is characterized as sandy loam soil. The main crops
cultivated in this establishment include onions, carrots, and other vegetable crops.
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Figure 1. Location of Tawdeehiya Farms, central region of Saudi Arabia. (a) Al-Kharj region overlaid
on Kingdom of Saudi Arabia; (b) extent of experimental farm; and (c) experimental fields T/PVT and
N6 cultivated with onion and carrot crops, respectively.

2.2. Experimental Details

The experimental work was carried out in the period between February and July 2020.
The onion crop (cultivar: red onion) was planted on 26 February 2020, on soil beds of 1.4 m
width, 30 cm row spacing, and 10 cm between plants in a row. The carrot crop (cultivar:
scarlet red) was sown on 22 March 2020, on soil beds of 2.5 m width, 30 cm row spacing,
and a 15 cm between plants in a row. Irrigation water was applied to the experimental
fields using a center-pivot irrigation system. Harvesting of onion and carrot crops took
place on 26 April 2020 and 12 July 2020, respectively.
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2.3. Field Sampling and Data Collection

A GeoXH6000 (Trimble, Westminster, CO, USA) handheld GPS receiver was used to
georeference 120 randomly selected sampling locations from the onion field (30 sampling
locations) and carrot field (90 sampling locations). Yield samples were collected from the
same geo-referenced locations by weighing the harvest collected from an area of 2.5 m2

at each sampling site. After removing damaged/irregularly shaped carrots or onions, the
yield samples were weighed and presented in a common harvest unit (t ha−1).

A manual soil auger with a bit diameter of 62 mm and a steel rod length of 1.0 m
was used for the collection of soil samples at a depth of 0 to 10 cm from the soil surface.
The collected samples were characterized for bulk density (g m−3), field capacity (%), and
wilting point (%), adopting the standard laboratory methods. The Kc values for the studied
crops were determined as described by Allen et al. [22].

2.4. Water Footprint Assessment

The overall methodological flow is given in Figure 2 and described in subsequent
subsections. The blue and green water use, in terms of depth (mm), was computed based
on the crop water requirement (CWR) with the use of CROPWAT (Land and Water, Food
and Agriculture Organization, Hot Springs, VA, USA) (Ver. 8.0, FAO), as described by
Allen et al. [22].

Figure 2. Methodological flow: (a) workflow of estimation of water footprint (WF) with the adoption
of CROPWAT approach, indicated with green; (b) workflow of WF assessment using simplified
surface energy balance (SSEB), coded with brown; and (c) crop yield prediction, indicated with blue.

2.4.1. CROPWAT Input Data

CROPWAT is considered an important decision-support model in the field of agricul-
tural production, created by the Food and Agriculture Organization (FAO) through the
Land and Water Development Division, used to calculate the water required to irrigate
different crops according to crop parameters, soil characteristics, and climatic conditions.
CROPWAT requirements, such as mean values of precipitation, wind speed, minimum
and maximum temperatures, sunshine hours, and relative humidity were collected from
the records of the weather station facility of the experimental farm (Figure 2). The crop
coefficients, used to determine the actual evapotranspiration (ETc), vary based on local
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conditions, the crop planting date, crop development stages, and the length of the grow-
ing season [23]. This approach is used to calculate the crop evapotranspiration (ETc) by
multiplying the reference evapotranspiration (ETo), which reflects the atmospheric wa-
ter demand based on the meteorological conditions, by the crop coefficient (Kc), which
integrates crop water requirements and farmland characteristics. The crop coefficients
(Kc) have been estimated for the majority of commercial crops, and are available in tables
with global values covering the different growth stages of the crops [22]. Despite the
fact that the global Kc values are valid only for unstressed crops grown under optimum
agricultural conditions, these are the values most often used when running the CROPWAT
model (Table 1). The crop water footprint (WF) is then estimated according to Equations (1)
and (2) [3].

ETc = CWU (1)

WF =
CWU

CY
(2)

where:
WF = crop water footprint (m3 t−1),
CWU = crop water use (m3 ha−1),
CY = crop yield (t ha−1).

Table 1. Soil and crop data used for the execution of the CROPWAT model.

Parameter Carrots Onions

Root depth (cm) Min. 18.00 15.00
Max. 35.00 25.00

Crop coefficients
(length of the growth
period in days)

Kc—initial 0.35 (30) 0.40 (15)
Kc—mid 1.15 (50) 1.05 (30)
Kc—end 0.65 (60) 0.60 (15)

Soil characteristics Bulk density (g cm−3) 1.27 1.29
Field capacity 0.34 0.34
Wilting point 0.25 0.25

2.4.2. Satellite Data and Image Analysis

Sentinel-2 (S2) and Landsat-8 satellite images for the study period (January–July 2020)
were downloaded (Table 2), and the image analysis and interpretation were performed
with the use of the SentiNel Application Platform (SNAP) developed by the European
Space Agency (ESA) and the ESRI GIS programs. Sentinel-2 multispectral pictures were
utilized to generate land use/land cover (LU/LC) maps, vegetation indices (VI), albedo,
and other data. Landsat-8 images were utilized to estimate the land surface temperature
(LST) of the experimental fields. The extracted region of interest (ROI), i.e., the area cor-
responding to the experimental fields, along with all the datasets, was managed in the
Universal Transverse Mercator (UTM) map projection, WGS84 datum, North zone-38. Sub-
sequently, all the generated datasets were utilized as input for developing crop productivity
(CP), evapotranspiration factor (ETf), crop water consumption (CWU), and crop water
footprint (WF).

Table 2. Summary of satellite and source data.

Satellite Particulars Source

Sentinel-2 Level 2A (MSI) BOA https://scihub.copernicus.eu
(accessed on 30 May 2022)

Landsat-8 Level 2A (OLI, TIRS) https://earthexplorer.usgs.gov
(accessed on 28 August 2022)

Weather data Historical monthly weather
data (2000–2020 *)

https://Worldclim.org (accessed on
12 September 2022)

* 2019 and 2020 are the projected and downscaled datasets.

https://scihub.copernicus.eu
https://earthexplorer.usgs.gov
https://Worldclim.org
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2.5. Estimation of Crop Productivity

Individual bands (blue, green, red, and NIR) and vegetation indices (Vis) (e.g., normal-
ized difference vegetation index—NDVI, soil adjusted vegetation index—SAVI, optimized
soil adjusted vegetation index—OSAVI, reorganized difference vegetation index—RDVI,
enhanced vegetation index—EVI, and the simple ratio vegetation index—SRVI) were used
to predict the crop productivity (CP). Linear regression analysis was performed for the
CP prediction models. The collected yield samples were divided into training (60%) and
validation (40%) datasets. Dependent variables (i.e., individual bands and the generated
VIs) were regressed against crop yield as an independent variable as a training set for
prediction models. The accuracy of the obtained linear models was evaluated, and then
the most accurate models were used for mapping the CP. The remaining set of indepen-
dent variables (40% of yield samples) was used to validate the developed models. Then,
the model accuracy was assessed using standard statistical indicators: the coefficient of
determination (R2), mean bias error (MBE), and root mean square error (RMSE). On the
other hand, potential yield distribution maps and the corresponding error maps were also
developed and examined.

2.6. Estimation of the Crop Water Use

The green (CWUG) and blue (CWUB) portions of the crop water use (CWU) were cal-
culated by accumulating the daily recorded evapotranspiration (ET, mm d−1) for the entire
growth period, following the procedure described by Allen et al. [23]. The evaporative
demand of the atmosphere (ETo) was determined using the standard Penman–Monteith
method revised and recommended by the FAO. The CROPWAT model, which was used to
calculate evapotranspiration, offers two different options for calculating evapotranspira-
tion, i.e., the option of crop water requirements considering optimum constraints, and the
option of irrigation practices, such as determining in real time the actual irrigation supply.
For a remote sensing quantification of ET, the SSEB technique reported by Senay et al. [14]
was used to estimate the CWU as actual evapotranspiration (ETa). The ETa was obtained in
two steps, namely, the estimation of reference ET fraction (ETf) and the reference ET (ETo)
as shown in Equations (3)–(5).

CWU = 10 × ∑lgp
d=1 ETa (3)

ETa = ETf × αET0, (4)

where α is the scale element, usually 1.2. The reference evapotranspiration (ETo) was deter-
mined after the FAO–Penman–Monteith method (Equation (5)), according to
Allen et al. [23]:

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (5)

where:
ETo = reference evapotranspiration (mm day−1),
Rn = net radiation at the crop surface (MJ m−2 day−1),
G = soil heat flux density (MJ m−2 day−1),
T = air temperature at 2 m height (◦C),
u2 = wind speed at 2 m height (m s−1),
es = saturation vapor pressure (kPa),
ea = actual vapor pressure (kPa),
es = ea saturation vapor pressure deficit (kPa),
∆ = slope vapor pressure curve (kPa ◦C−1),
γ = psychrometric constant (kPa ◦C−1)
ETf is the key variable in the SSEB approach because it takes into account the effect

of soil moisture on ETa. ETo determines a potential ET under unconstrained watering
conditions. ETf was computed using temperature datasets (LST and air), considering that
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hot pixels (Th) experience little or no ET [24,25]. Cold pixels (Tc) represent the highest ET.
Both S2 and L8 images were utilized to map the ETf. In this study, however, vegetation
coverage was calculated using the S2 data, and the LST was calculated using the TIRS
bands of the L8 data.

Cloud-free Landsat-8 OLI/TIRS images were subjected to radiometric correction (lin-
ear contrast stretching) to reduce interference errors. The processed images were then used
to calculate the crop evapotranspiration (ETc) through several computational stages includ-
ing the brightness temperature (Tb), surface temperature (Ts), net radiation (Rn), geothermal
flux (G), air heat flux (H), latent heat flux (LE), and finally the evapotranspiration using a
digital image processing module (i.e., the SSEB).

The surface temperature (Ts) of each pixel was examined, and the determined hot and
cold pixels were used for the calculation of the fraction of ET. Hot pixels were selected,
using the NDVI map as a guide, by locating dry bare land (or sparse vegetation) with very
low NDVI values. Similarly, cold pixels were selected from areas of high moisture, healthy,
completely covered with vegetation, and with maximum values of NDVI. The ET fraction
(ETf,x) of an individual pixel (x) was also calculated using Equation (6):

ETf,x =
dTh − dTs

dTh − dTc
, (6)

where:
dTh = the temperature difference between the L8 estimated surface temperature (Ts)

and the hot pixel air temperature (Ta).
dTc = the temperature difference between L8 estimated Ts and cold pixel Ta.
dTx = the temperature difference between Ts and Ta.
Ground temperatures of the six selected pixels (three hot and three cold) were esti-

mated using the ArcGIS software, ver. 10.7.1 (ESRI, Redlands, CA, USA). The database
file of the 9.0 software results was exported to an Excel (Microsoft, Redmond, WA, USA)
spreadsheet, and then, the hot and cold pixels were averaged. Images containing the ETf of
individual pixels were then utilized to calculate the ETa across the study period.

The green CWU (CWUG) and blue CWU (CWUB) for each crop were calculated
following the method described by Hoekstra et al. [3], as in Equations (7) and (8). ETG and
ETB represent the green and blue water evapotranspiration, respectively, from the first day
(d = 1) to the end of the growing season (lgp). The factor of 10 is to convert the water depth
to millimeters, and then to water volume per land area (m3 ha−1).

CWUG = 10 × ∑lgp
d=1 ETG (7)

CWUB = 10 × ∑lgp
d=1 ETB (8)

ETG and ETB are the evapotranspiration (mm) by crops with respect to the green and
blue components of the crop water footprint, respectively.

2.7. Assessment of Crop Water Footprint

The total water consumption (WF, m3 t−1) of a crop is the sum of the blue and green
components of the WF, as shown in Equations (9)–(11) (Hoekstra et al., 2011). Both the blue
and green WFs for a given crop was calculated by dividing the crop water consumption
(CWU, m3 ha−1) by the crop productivity (CP, t ha−1):

WF = WFB + WFG (9)

WFB =
CWUB

CP
(10)

WFG =
CWUG

CP
(11)
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where WFB and WFG are the blue and green water footprint, CWUG and CWUB are the crop
consumption of green (precipitation) and blue (surface and groundwater) water, and CP is
the crop productivity (yield) based on the crop’s water demand and actual transpiration
output from the CROPWAT/SSEB model.

WFB is calculated based on field data as the amount of irrigation water applied is
considered blue water, as given in Equation (12) [26]:

WFMB =
10 × (Ir − (DP + RO))

Yf
(12)

where WFMB (m3 t−1) is the WFB calculated from the recorded irrigation data, Yf is the crop
yield (carrots and onions), Ir is the amount of water used throughout the irrigation season
(mm), DP is the deep percolation of water out of the root zone (mm), and RO is the surface
runoff. Since measuring losses in such large fields is challenging, an average irrigation
efficiency of 70% was used for center pivot irrigation systems to account for total losses due
to runoff, surface flow, and deep percolation [27]. The total crop water requirement for the
studied crops was estimated at 1940 mm and 824 mm for carrots and onions, respectively.
However, the total volume of water used to irrigate the crops was 2658 mm and 1199 mm
for carrots and onions, respectively.

2.8. Statistical Analysis

The crop WF estimates based on the CROPWAT/SSEB models were compared with
the actual field data using different accuracy indicators, namely, root mean square error
(RMSE), mean bias error (MBE), and relative error (RE). The use of these accuracy indicators
allows for a more precise assessment of the generated models’ performance [19]. Statistical
analysis was performed using the analysis of variance (ANOVA) statistical tool in the
Statistical Analysis System (SAS) for Windows (v. 9.4, SAS Institute, Inc. (Cary, NC, USA)).

3. Results

The average daily minimum and maximum air temperatures were 9 ◦C (January) and
47 ◦C (August), respectively, with an annual mean temperature of 34 ◦C. The annual mean
relative humidity was 22.6%, with peak values (36–47%) from November to February and
minimum values (10–17%) from May to September. The highest (58 km h−1) and lowest
(6 km h−1) wind speeds in the study area were recorded during July and October, respec-
tively. The sunshine hours in the study area ranged between 9.5 and 13.5 h, with an annual
mean value of 11 h.

The reference evapotranspiration and rainfall data (Figures 3 and 4) showed that a
mean annual rainfall of 68 mm occurred mainly between February and April. The mean
peak reference evapotranspiration (ETo) of about 20 mm d−1 was recorded from May
to August, with an average daily ETo of 13.2 mm d−1 and an average monthly ETo of
375 mm month−1, ranging between 138 mm (January) and 588 mm (August).
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3.1. Crop Yields

The field-collected (i.e., sampled) harvest, total yield (Y), commercial harvest (CH)
and aboveground biomass (AGB) of the tested crops (onions, carrots) are given in Table 3.
They were subsequently analyzed with respect to NDVI classes (Table 3). The mean carrot
yield ranged from 47.2 to 74.1 t ha−1, with an average commercial harvest (CH) of 56 t ha−1,
while the onion bulb yield was estimated at 44 t ha−1; with a commercial yield of 37 t ha−1.

Table 3. Commercial harvest, aboveground biomass, and total yields of carrot and onion crops.

Crop Yield (t ha−1)
NDVI

Mean
0.18–0.35 0.35–0.50 0.50–0.62

Carrots
Total yield 61.85 74.90 85.61 74.12

Commercial yield 47.22 54.64 67.21 56.36
Aboveground biomass 13.30 15.47 17.34 15.37

Onions
Total yield 36.54 44.75 51.63 44.31

Commercial yield 30.93 36.05 44.16 37.05
Aboveground biomass 3.84 5.22 5.81 4.96

3.2. Yield Prediction Models

A total of nine satellite images over the study area, which showed less than 1% cloud
cover (i.e., cloud-free), were selected for the study period of 1 February to 18 July 2020. The
results indicated that the reflectance at 36 days after sowing (DAS) increased in the NIR
band and decreased in the R, G, and B bands (Figure 5). The amplitude decreased across
the R, G, and B bands at 40 DAS in combination with the highest growth stage of carrot
roots [28–30].

A linear regression analysis was performed with the Sentinel-2 bands and vegetation
indices (RDVI, NDVI, SAVI, OSAVI, EVI, and RVI) layers against the actual yield to gen-
erate carrot and onion yield prediction models. Subsequently, the NDVI layer was used
along with L8 TIRS bands processed for evapotranspiration (ET) mapping (Figures 6 and 7).
The most accurate crop productivity models are presented in Table 4. The NIR band was
found to be appropriate for predicting the productivity of onions with an R2 value of 0.68
(p > F = 0.02) and carrots with an R2 value of 0.77 (p > F = 0.02). On the other hand,
the findings of this study have proven that RDVI and EVI can be used for the pre-
diction of onion and carrot productivity at bias values of 15% (R2 = 0.72) and −17%
(R2 = 0.69), respectively.

Table 4. Onion and carrot yield prediction models (* significant at 0.05; ** significant at 0.01).

Crop Model No. Prediction Model
Model Cross-Validation

R2 R2 MBE (%) RMSE (%)

Carrots
M1 1143.6 × NIR 2212 459.51 0.77 ** 0.64 ** 7.82 13.41
M2 973.1 × EVI − 226.51 0.69 ** 0.62 ** –17.46 9.21
M3 962.86 × RDVI − 219.74 0.58 ** 0.59 ** 5.98 10.43

Onions
M1 915.78 × NIR − 316.2 0.68 * 0.61 * –17.19 12.65
M2 1756.4 × RDVI − 360.81 0.72 ** 0.69 ** 15.21 17.67
M3 1314.3 × EVI − 253.29 0.52 ** 0.49 ** –6.19 11.24
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Figure 6. Monthly mean NDVI and evapotranspiration maps: (a) crop yield and (b) seasonal crop
water use maps of onion crop.
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Figure 7. Monthly mean NDVI and evapotranspiration maps of carrot crop.
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3.3. Evapotranspiration Mapping

The temporal changes in the reference ET (ETo) during the experiments was found to
be 272 mm in February and more than 600 mm in July. Table 5 summarizes the results of the
L8 estimated carrot and onion evapotranspiration (ETc) and the ET values determined from
remote sensing data are depicted in Figures 6 and 7 for onion and carrot crops, respectively.
The SSEB-based ETa was 2320 mm and 1001 mm for carrots and onions, respectively
(Table 5).

Table 5. Crop water use (ETa, mm) values were estimated based on remote sensing models.
MBE = mean bias error (%); RMSE = Root mean square error (%).

Month
Carrots Onions

ETa RMSE (%) MBE (%) ETa RMSE (%) MBE (%)

February 272 −3.63 −13.2
March 234.0 −1.97 −3.9 351 −2.76 −7.6
April 391.6 7.82 61.1 378 −3.33 −11.1
May 560.2 −0.77 −0.6
June 522.0 −6.06 −36.7
July 612.1 −4.67 −21.8

Overall 2319.9 −1.13 −12.6 1001 −3.24 −9.0

4. Discussion

With the use of Sentinel-2-generated empirical models, a yield map of tested crops
was created, as illustrated in Figure 6a (onions) and Figure 8a (carrots). The crop water use
(CWU, i.e., ETc) maps generated with the use of Landsat-8 data are depicted in Figure 6b
(onions) and Figure 8b (carrots). In order to examine the accuracy of predicted maps, an
error assessment of model performance was performed. As illustrated in Figure 9 and
Table 6, the performance of prediction models showed a good to moderate ability to predict
yield. Furthermore, the highest concentration of samples was 136 kg/pixel (carrots) and
96 kg/pixel (onions), corresponding to an average yield of 68 t ha−1 and 48 t ha−1 for
carrots and onions, respectively. The obtained yield range is consistent with the actual
average yield per hectare of the studied crops. The coefficient of determination (R2) during
model cross-validation was found to be 0.69 and 0.62 for carrot and onion crops, and this is
a good indicator for the validity of the predicted yield.
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Figure 9. Scatter plots with regression analysis between estimates and actual yield data of the studied
crops: carrots (a); onions (b). Regression maps: carrots (c) and onions (d). The blue corresponds to a
correlation close to −1 and the brown to a correlation close to 1.
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Table 6. Accuracy assessment of the generated CWU (i.e., ETa) map against the amount of water
actually applied (AWA).

Reference Data

ETo
ETa

(Onions)
AWA

(Onions)
ETa

(Carrots)
AWA

(Carrots) SUM User’s
Accuracy

Map data

ETo 18 1 2 0 0 21 85.71%
ETa (onions) 3 19 1 2 1 26 73.07%

AWA (onions) 0 5 17 4 1 27 62.96%
ETc (carrots) 4 2 1 19 6 32 59.37%

AWA (carrots) 1 1 2 2 23 29 79.31%
SUM 26 28 23 27 31 135 72.08%

Producer’s accuracy 69.23% 67.85% 73.91% 70.37% 74.19% 71.11%
Overall accuracy (18 + 19 + 17 + 19 + 23)/135 = 71.11%

Empirical equations for crop productivity forecasting were generated by regressing the
harvested yield against the vegetation indices (VIs) calculated with the datasets provided
by the Sentinel-2A satellites. Landsat-8 datasets were used for the estimation of crop ET
by the SSEB model. For the carrot crop, the correlation between the actual ETc and the
predicted ETc resulted in an R2 value of 0.97, and a slope of 0.971. The obtained results
are in agreement with the findings of Bezerra et al. [31], who estimated the ETc employing
the SSEB approach; their results showed R2 values of 0.94 for the calibration and 0.90 for
the validation. Additionally, these results are in agreement with Saggi and Jain [32] and
Granata [33], who estimated ETc using machine learning models, with R2 values ranging
between 0.95 and 0.99. The producer accuracy, overall accuracy, and user accuracy were
used to determine the effectiveness of the comparison between the CWU (i.e., ETa) map
and the actual applied irrigated water (Table 6). The overall accuracy of the generated
CWU (i.e., ETa) map employing the SSEB algorithm was 71.11%.

The results of the SSEB for the ET and green and blue components of WF of carrot
and onion fields are given in Table 7. The crop water use of the green portion (i.e., rain
water evapotranspiration—ETG) for the carrot field was 68 (±11) mm. The blue com-
ponent (i.e., irrigation water—ETB) ranged between 2187 mm and 2394 mm. However,
the mean green, blue, and WFG+B of carrots were found to be 15.6, 283, and 312 m3 t−1,
respectively. In the case of onions, however, the WFG, WFB, and WFG+B were 8.6, 227, and
230 m3 t−1, respectively.

The WF result of the carrot crop (312 m3 t−1) was 31% lower than what was reported
(450 m3 t−1) by Multch et al. [34]. The WF of onions (230 m3 t−1) is comparable with the
values (280 m3 t−1) reported by Penaloza-Sanchez et al. [35]. Moreover, it was found that
the green and blue WF components calculated using the SSEB model in this study exceeded
the global averages reported by Mekonnen and Hoekstra [36] by 18% and 133% for onion
and carrot crops, respectively. These differences may be because the global statistics use
both irrigated and rain-fed crop data to monitor the WF of global crops.

Variations in the monthly ET due to changes in weather conditions significantly
affected the crop WF, as higher temperatures in the summer season increased crop water
use due to higher evaporative demand, while lower temperatures in the autumn and the
winter seasons resulted in a longer growing season. Despite the scarcity of water resources
in Saudi Arabia, vegetable production depends mainly on irrigation water, and to ensure
food security, optimal management to ensure high efficiency of crop water use and yield
may contribute significantly to reducing water use in food production.
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Table 7. Water footprint (WF) of studied crops calculated with SSEB model and published data.

Crop Predicted Yield-YP
(kg ha−1)

CWU
(i.e., ETa, mm)

Water Footprint—WF (m3 t−1)
Reference

WFG WFB WFG+B

Carrots

74 2320 16 283 312 This study
23 427 450 [34]

106 28 134 [36]
104 12 116 [37]

0 114 114 [38]

Onions

44 1001 9 227 230 This study
18 243 261 [34]

176 53 229 [35]
192 88 280 [36]

5. Conclusions

This study was carried out to estimate the productivity and water footprint of carrot
and onion crops grown in the central regions of Saudi Arabia under a center-pivot irriga-
tion system. Empirical equations for yield forecasting were generated by regressing the
harvested yields against the vegetation indices (VIs) extracted from datasets provided by
Sentinel-2A satellites. Landsat-8 datasets were used for the estimation of crop ET by the
SSEB model. The results revealed that the NIR band was appropriate for yield prediction
of both onions (R2 = 0.68, p > F = 0.02) and carrots (R2 = 0.77, p > F = 0.02). RDVI and EVI
showed the best results for predicting the crop yields, with bias values of 15% for onions
and –17% for carrots. The SSEB-estimated CWU amounts are higher than the actually
applied quantities by 10.6% (onions) and 12.6% (carrots). The crop water footprint values
obtained in this study are somewhat higher than earlier published results. However, the
outcomes of this study can be a reference for crop irrigation management practices in the
study region and areas with similar environmental conditions. Under the arid climatic
conditions of Saudi Arabia, the return flow of irrigation water and recharge of ground
water is almost nil due to sparse rainfall. Thus, water pollution through agricultural in-
puts (fertilizers, pesticides, etc.) is essential and should be considered grey WF for the
maintenance of soil quality when quantifying the WF.

Author Contributions: Conceptualization, K.A.A.-G. and R.M.; methodology, K.A.A.-G., R.M. and
E.T.; software, R.M. and S.E.-H.; validation, K.A.A.-G. and S.M.; formal analysis, R.M.; investigation,
R.M., E.T. and S.E.-H.; resources, K.A.A.-G. and S.M.; data curation, E.T.; writing—original draft
preparation, R.M., E.T. and S.E.-H.; writing—review and editing, K.A.A.-G. and R.M.; visualization,
E.T.; supervision, K.A.A.-G.; project administration, R.M.; funding acquisition, R.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Plan for Science, Technology, and Innovation
(NSTIP) or the MAARIFAH program, King Abdulaziz City for Science and Technology, Kingdom of
Saudi Arabia for funding this study through the NSTIP strategic technologies programs, under Grant
Number 2-17-04-001-0016.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Deanship of Scientific Research, King Saud
University, for providing facilities for this work. The assistance of the staff of the Tawdeehiya Farms
during the fieldwork is greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 5962 18 of 19

Abbreviations

Acronym/Variable Explanation
CP Crop productivity
CWU Crop water use
CWUB Crop water use—blue WF component
CWUG Crop water use—green WF component
ET Evapotranspiration
ETa Actual evapotranspiration
ETc Crop evapotranspiration
ETf Evapotranspiration factor
ETo Observed evapotranspiration
Kc Crop coefficient
L8 Landsat-8
LST Land surface temperature
S2 Sentinel-2
SSEB Simplified surface energy balance
WF Water footprint
WFG Water footprint—green component
WFB Water footprint—blue component
VIs Vegetation indices
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