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Abstract: Surface longwave radiation (SLR) is an essential geophysical parameter of Earth’s energy
balance, and its estimation based on thermal infrared (TIR) remote sensing data has been extensively
studied. However, it is difficult to estimate cloudy SLR from TIR measurements. Satellite passive
microwave (PMW) radiometers measure microwave radiation under the clouds and therefore can
estimate SLR in all weather conditions. We constructed SLR retrieval models using brightness
temperature (BT) data from an Advanced Microwave Scanning Radiometer 2 (AMSR2) based on a
neural network (NN) algorithm. SLR from the European Centre for Medium-Range Weather Forecasts
Reanalysis v5 (ERA5) product was used as the reference. NN-based models were able to reproduce
well the spatial variability of SLR from ERA5 at the global scale. Validations indicate a reasonably
good performance was found for land sites, with a bias of 1.32 W/m2, root mean squared error
(RMSE) of 35.37 W/m2, and coefficient of determination (R2) of 0.89 for AMSR2 surface upward
longwave radiation (SULR) data, and a bias of −2.26 W/m2, RMSE of 32.94 W/m2, and R2 of 0.82
for AMSR2 surface downward longwave radiation (SDLR) data. AMSR2 SULR and SDLR retrieval
accuracies were higher for oceanic sites, with biases of −2.98 and −4.04 W/m2, RMSEs of 6.50 and
13.42 W/m2, and R2 values of 0.83 and 0.66, respectively. This study provides a solid foundation for
the development of a PMW SLR retrieval model applicable at the global scale to generate long-term
continuous SLR products using multi-year satellite PMW data and for future research with a higher
spatiotemporal resolution.

Keywords: surface downward longwave radiation; surface upward longwave radiation; neural
network-based model; surface radiation budget; AMSR2; passive microwave remote sensing

1. Introduction

Surface longwave radiation (SLR) is a key parameter for understanding the surface en-
ergy balance and global warming [1,2]. Anthropogenic disturbances to the climate, such as
greenhouse gas emissions, have caused a gradual increase in downward atmospheric ther-
mal radiation of ~2 W/m2 per decade [3], resulting in global warming. Cloud longwave
radiative feedback in atmospheric circulation is the important modulating mechanism
that affects the El Niño−Southern Oscillation [4]. Therefore, long-term global surface
radiation budget products contribute to the understanding of climate change and hydro-
logical cycle mechanisms. Currently, SLR derived from thermal infrared (TIR) remote
sensing observations is one of the primary ways to estimate global longwave radiation
variation [5,6]. TIR remote sensing has been used to retrieve the SLR with a moderate
spatial resolution (e.g., 1 km) and good accuracy. However, TIR observations are affected
by the water vapor absorption in the atmosphere and cannot penetrate through clouds like
other optical wavelengths, hence it cannot perform all-weather SLR estimation. Global
average cloud cover is ~67% and plays an important role in the surface radiation bud-
get [7,8]. SLR, especially surface upward longwave radiation (SULR), from beneath clouds
is difficult to retrieve. Consequently, this limits the availability of SLR data for hydrological,
climatological, agricultural, and ecological research.
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Cloudy surface downward longwave radiation (SDLR) has been modeled using sev-
eral methods: (1) The universal Stefan–Boltzmann equation was extended by the param-
eterization of effective atmospheric emissivity or temperature [9]; the parameterization
of effective atmospheric emissivity combines the shortwave clear-sky index to represent
cloud information [9,10]. (2) Near-surface meteorological data from reanalysis datasets
that are intact in space and time have been utilized to estimate all-weather SDLR. Lopes
et al. [11] retrieved SDLR using a reanalysis dataset to avoid the unavailability of remote
sensing retrievals and cloud information from satellite observations. (3) Parameteriza-
tion of cloud-based temperature has been found to be important; however, this model
also requires near-surface meteorological data from a reanalysis dataset [12] or Moderate
Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric profiles [13] and
a satellite-derived cloud fraction. (4) The cloud water path was also used to construct
retrieval models [14]. To date, studies on cloudy-sky SULR estimation are largely absent.
All-weather SULR can be estimated based on the TIR radiative transfer equation which
requires land surface temperature (LST), broadband emissivity, and surface downward
longwave radiation (SDLR). Each component requires various models to reconstruct the
values under the clouds with varying retrieval accuracy. The cloudy-sky SULR from
the Global LAnd Surface Satellite (GLASS) is estimated using LST data extracted from
MOD06/MYD06 and the GLASS broadband emissivity product but ignores the component
of reflected cloudy-sky SDLR [15]. These algorithms are most reliable without significant
cloud cover and during the daytime, since certain parameters (e.g., cloud properties) only
can be retrieved from solar reflectance observations by spaceborne platforms.

Compared with optical remote sensing, passive microwaves (PMWs) have longer
wavelengths, and thereby the ability to penetrate weather phenomena such as clouds, light
rain, and fog, enabling all-day and all-weather observations. In areas such as deserts, PMW
is able to penetrate to a certain depth so that below ground signals that are covered by
vegetation or sand can be directly measured. An important milestone of space-borne PMW
sensing was the Scanning Multichannel Microwave Radiometer (SMMR), launched in
1978. Since then, many sensors/satellites have been launched, including the Special Sensor
Microwave/Imager (SSM/I) in 1987, Advanced Microwave Scanning Radiometer for Earth
Observing System (AMSR-E) in 2002, the Special Sensor Microwave Imager/Sounder
(SSMIS) in 2003, Soil Moisture and Ocean Salinity (SMOS) in 2009, Advanced Microwave
Scanning Radiometer 2 (AMSR2) in 2012, Global Precipitation Measurement Microwave
Imager (GMI) in 2014, and Soil Moisture Active Passive (SMAP) in 2015. Satellite PMW
measurements are expected to play an important role in monitoring climate change and the
hydrological cycle and have unique advantages in estimating surface parameters owing to
the availability of long-term and global observation data.

Multi-channel and dual-polarized PMW measurements have been applied to retrieve
geophysical parameters related to the atmosphere and land/sea surface, including land/sea
surface temperature [16,17], land emissivity [18], soil moisture [19], vegetation optical
depth [20], precipitation [21], cloud liquid water path [22], and column water vapor [23].
It is therefore possible to estimate all-weather SLR. In addition, PMW surface emissivity
is sensitive to soil moisture and surface roughness, and thus varies widely over the land
surface compared with the measurement footprint; as such, surface emissivity is inherently
difficult to accurately determine and causes large uncertainties in surface temperature
from PMW data [24]. However, SLR retrievals using hybrid methods implicitly avoid the
determination of surface microwave emissivity, and as a result, have certain advantages
in modeling and retrieval [25]. Few studies have been dedicated to estimating SLR from
PMW measurements. A nonlinear regression model was constructed based on the radiative
transfer simulations to estimate SDLR from SSM/I measurements [26]. Liu et al. [27] further
employed a neural network model to calculate the net longwave radiation at the sea surface
from SSM/I observations. These studies are aimed to retrieve SLR over oceanic regions.

For the first time, we proposed SLR retrieval models applicable to land and oceanic
regions based on an AMSR2 and the European Centre for Medium-Range Weather Fore-
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casts (ECMWF) Reanalysis v5 (ERA5) data using a neural network (NN) approach. SLR
from ERA5 was used as ground “true” values at 25 km spatial resolution to train SLR
models. They achieved good performances against the Baseline Surface Radiation Network
(BSRN) and Global Tropical Moored Buoy Array (GTMBA) measurements for land and
oceanic sites. Taking advantage of TIR and PMW data, the all-weather SLR data from
PMW measurements can be used in combination with satellite TIR retrievals or ground
observations to generate high-resolution, reliable, and spatiotemporally continuous SLR
products in support of global long-term climate research.

2. Data
2.1. AMSR2 Data

The AMSR2 is a passive microwave instrument aboard the Global Change Observa-
tion Mission Water “SHIZUKU” (GCOM-W) satellite launched on 18 May 2012. AMSR2
measures multifrequency microwave radiation emitted from the Earth’s surface and atmo-
sphere from a 700-km polar orbit. The swath width of AMSR2 is 1450 km, and thereby
near-global coverage can be acquired every 2 days. The frequency characteristics are shown
in Table 1. The seven channels from 6.925 to 89 GHz have vertical and horizontal polar-
izations observed at an incidence angle of 55◦ relative to the Earth’s surface, providing
richer atmospheric and surface information, and yielding a total of 14 potential channels
for SLR retrieval. Channels at 6.925 GHz and 7.3 GHz are used to mitigate radio frequency
interference (RFI). In addition, AMSR2 data have improved horizontal resolution and better
radiometric calibration, which improve the accuracy of retrieval products. The fields of
view of 89.0 GHz (A) and 89.0 GHz (B) have an incidence angle difference of 0.5◦ because
of the feedhorn alignment [28], and measurements in 89.0 GHz (A) with a 55.0◦ incident
angle were used. The AMSR2 Level 3 (L3) daily brightness temperature (BT) product has
a global equirectangular projection in ascending (13:30 local time) and descending (01:30
local time) orbits, and two grid sampling resolutions: 10 and 25 km. The SLR models were
trained using L3 BT products with 25 km grid sampling resolution in 2019, and the trained
models were validated using 2016–2018 and 2020 data.

Table 1. Channel characteristics of the Advanced Microwave Scanning Radiometer 2 (AMSR2) [28].
Each observation frequency has vertical (V) and horizontal (H) polarizations. The measuring range
of each channel is 2.7−340 K. NE∆T: noise equivalent differential temperature; IFOV: instantaneous
field of view.

Short Name Frequency (GHz) Bands NE∆T (K) IFOV (km2)

T6H/T6V 6.925 C 0.34 35 × 62
T7H/T7V 7.3 C 0.43 34 × 58

T10H/T10V 10.65 X 0.70 24 × 42
T18H/T18V 18.7 K 0.70 14 × 22
T23H/T23V 23.8 K 0.60 15 × 26
T36H/T36V 36.5 Ka 0.70 7 × 12
T89H/T89V 89.0 (A) W 1.20 3 × 5

\ 89.0 (B) W 1.20 3 × 5

2.2. ERA5 Reanalysis Data

The ERA5 climate reanalysis product is the fifth and most recent generation of atmo-
spheric reanalysis of the global climate produced by the ECMWF, which started in the
1980s [29]; it offers significant improvements on its predecessors (e.g., ERA-15, ERA-40, and
ERA-Interim). ERA5 provides hourly analysis fields on a 0.25◦ latitude and longitude grid
for a large number of essential atmospheric, terrestrial, and oceanic climate variables from
1979 onward. The reanalysis data integrate satellite observations and ground measurements
into the data assimilation system and provide complete coverage of the Earth’s surface,
which is in contrast to satellite-derived geophysical parameters that suffer data gaps owing
to clouds and swath width. The ERA5 uses the Radiative Transfer for TOVS (RTTOV)
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model version 11 [30] to model radiative transfer in optical and microwave spectra in all
weather conditions, including cloudy and precipitating atmospheres [29].

The basis for the current AMSR2 SLR modeling is the accuracy and long-term stability
of ERA5 SLR data at the global scale. The SDLR product of the ERA5 dataset has the best
performance among the state-of-the-art reanalysis products over the global surface [31],
and overall better accuracy in the three poles [5]. Tang et al. [32] found that the hourly ERA5
SDLR product had a bias of−4.9 W/m2, RMSE of 21.9 W/m2, and R2 of 0.92 when validated
using measurements from 46 BSRN land stations. Another recent evaluation indicated
that ERA5 SDLR had an RMSE of 22.08 W/m2 and bias of −5.25 W/m2 based on valid
observations from 23 BSRN sites between 2004 and 2019 [11]. These results demonstrate
the good performance of ERA5 data in representing global longwave radiation fields.

In this study, we used “mean surface downward longwave radiation flux” and “mean
surface net long-wave radiation flux” at each hour from the ERA5 product; this corresponds
to approximately the 4–100 µm portion of the spectrum. SULR was calculated by the
difference between two flux values. In addition, land-sea mask and surface geopotential
height data from the ERA5 (25 km) and ERA5-land (10 km) static auxiliary datasets were
used to discriminate land/sea conditions and to calculate the surface altitude for each pixel
of AMSR2 data, respectively.

2.3. BSRN Measurements

We validated the estimated AMSR2 SLR at land sites using global data from BSRN [33].
BSRN measures SULR/SDLR by pyrgeometers with high accuracy of 5–10 W/m2 [34,35],
and at high temporal resolution (3 min before 2009, and 1 min from 2009). It has observation
stations around the world, as shown in Figure 1 and Table S1 on Supplementary Material,
representing different climate regions and land cover, which were used in this study. Data
processing followed the approach described by Jiao and Mu [25].
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Figure 1. Spatial distribution of Baseline Surface Radiation Network (BSRN) stations (red dots)
over the global land surface and Global Tropical Moored Buoy Array (GTMBA) buoy stations (blue
triangles) over the ocean.

2.4. GTMBA Measurements

GTMBA provides long-term upper oceanic and atmospheric data from moored buoy
platforms in real-time. It includes the Tropical Atmosphere Ocean (TAO)/Triangle Trans-
Ocean Buoy Network (TRITON) array in the Pacific, Prediction and Research Moored Array
in the Tropical Atlantic (PIRATA) in the Atlantic, and Research Moored Array for African-
Asian-Australian Monsoon Analysis and Prediction (RAMA) in the Indian Ocean [36,37].
The spatial distribution of GTMBA sites is shown in Figure 1 with blue triangles. SDLR is
measured at a height of 3.5 m above mean sea level, and the temporal resolution is either
2 min or 1 h. No SULR is observed by GTMBA; therefore, sea surface temperature (SST)
was used to calculate SULR assuming blackbody emissions. SST was measured at 1 m
below the sea surface, and its temporal resolution was either 10 min or 1 h.
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3. Methods

Development of the proposed SLR retrieval algorithm included several steps (Figure 2).
The candidate inputs into SLR models consisted of 14 BT bands of AMSR2 for ascending or
descending data, as well as auxiliary data (land/sea mask and surface elevation). Invalid
pixels of AMSR2 BT, which are caused by active rain or RFI, were removed. Then, the
quality-checked features were collocated with SULR/SDLR from ERA5 products both
spatially and temporally, generating a daily matched dataset consisting of AMSR2 BT,
ERA5 SULR and SDLR, the land/sea mask, and surface elevation data. A feature selection
procedure was performed to obtain optimal features for model inputs. The daily dataset
with selected input parameters was divided into training, validation, and holdout datasets
for model training. The optimal NN structure was first evaluated based on the above
training datasets. Then, because NN-based model coefficients were randomly initialized,
the NN-based SDLR and SULR models were trained 10 times to select the model with the
best fitting performance. The trained models using 25-km AMSR2 data were applied to
10-km AMSR2 data. These retrieved AMSR2 SULR/SDLR data were validated using BSRN
and GTMBA measurements.
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Figure 2. Workflow of constructing a retrieval model for all-weather surface longwave radiation from
the Advanced Microwave Scanning Radiometer 2 (AMSR2) data. BSRN: baseline surface radiation
network. ERA5: European centre for medium-range weather forecasts reanalysis v5. GTMBA:
global tropical moored buoy array. NN: neural network. RFI: radio frequency interference. SDLR:
surface downward longwave radiation. SHAP: Shapley additive explanation. SULR: surface upward
longwave radiation.

3.1. Physical Basis for SLR Retrievals from PMW Data

Under the clear-sky condition, approximately 80% of the SDLR comes from the atmo-
sphere within the lowest 500 m [38], which is mainly controlled by the atmospheric profiles
of near-surface temperature and water vapor. The cloud covers prevent the escape of up-
ward longwave flux and impose another thermal emitter on the SDLR. AMSR2-polarized
BTs at different frequencies contain information from the atmosphere and ground surface
and can reflect the core information needed to retrieve SLR.

From the perspective of the radiative transfer theory, these parameters are correlated
in model retrievals based on satellite PMW measurements. For a parallel plane and non-
scattering atmosphere, based on the Rayleigh–Jones law, the BT TB,p(ν, θ), in units of
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Kelvins, received by the satellite microwave radiometer in the corresponding frequency v,
polarization model p, and viewing angle θ, can be expressed as

TB,p(ν, θ) = εs,p(ν, θ)TsΓ(ν, θ) + T↑a (ν, θ) + T↓a (ν, θ)
(
1− εs,p(ν, θ)

)
Γ(ν, θ)

+TCB
(
1− εs,p(ν, θ)

)
Γ2(ν, θ)

(1)

where εs,p(ν, θ) is surface microwave emissivity; Ts is surface temperature; Γ(ν, θ) is at-
mospheric transmissivity, which is related to atmospheric optical thickness; T↑a (ν, θ) and
T↓a (ν, θ) are upwelling and downwelling atmospheric radiation, respectively; and TCB
is the cosmic microwave background equivalent of a thermal blackbody spectrum at a
temperature of ~2.73 K. The PMW radiative transfer process consists of emissions from the
surface, extinction and emissions through the atmosphere, and reception by spaceborne
sensors within the same landscapes of the earth−atmosphere system. Radiative transfer
calculations demonstrate the close correlation of PMW measurements with SLR [26]. The
BTs measured by PMW sensors contain information about the downward radiation because
of various microwave reflectivity at the land/sea surface. Furthermore, the downward
PMW radiation is linearly correlated to the differences between vertically and horizontally
polarized BTs [27], which are highly associated with SLR because of the dependence mainly
on near-surface air temperature and moisture, surface temperature and emissivity, and
cloud properties.

3.2. Quality Control of AMSR2 BT

To generate the training dataset, low data quality and radiometric contamination were
first identified and labeled for AMSR2 ascending and descending data to guarantee the
robustness of the SLR models. Two situations were excluded: (1) active rain and (2) RFI. Ac-
tive rain was identified when T23V− T89V > 8 K and T89H < 270 K (see the documentation
of “Algorithm Theoretical Basis Document: GCOM-W1/AMSR2 Precipitation Product”).
Channels at 6.925 and 10.65 GHz are strongly affected by RFI, particularly in urban regions,
which varies with time [39]. Anthropogenic RFI signals are typically narrowband; as a
result, only one C-band channel at 6.925 or 7.3 GHz will be affected. RFI was identified
using a generalized RFI detection approach [40].

3.3. Match-Up of AMSR2 and ERA5 Data

AMSR2 and ERA5 data have the same spatial resolution (25 km that approximates
0.25◦), and therefore no spatial matchup was performed. The satellite overpass time of
AMSR2 L3 observation data is either the updated time of a pixel that overwrites the
previous pixel at the same location or the average time of multiple observations at the same
location (see the documentation of “AMSR2 Higher Level Product Format Specification” in
https://gportal.jaxa.jp, accessed on 13 October 2022). Meanwhile, the ERA5 products are
hourly average data. According to the time of each pixel recorded by the L3 product, the
linear weighted average of ERA5 SLR based on time differences was calculated to match
each pixel of AMSR2 data in order to maintain temporal consistency. Finally, daily AMSR2
BT data for both ascending and descending orbits were matched to SLR data from ERA5.

3.4. Feature Selection from Input Parameter Candidates

PMW remote sensing has the ability to provide all-weather observations of the
earth−atmosphere system but is also subject to different atmospheric influences for differ-
ent frequencies and polarization modes. We took full advantage of all available information
in the AMSR2 radiometric channels and selected the most sensitive bands for SULR and
SDLR retrievals. Such a procedure reduces computation time and redundant information
among AMSR2 frequencies without having a significant impact on estimation accuracy.

The NN-based model could not be directly used to evaluate the input feature impor-
tance based on the synchronous AMSR2 and ERA5 data. Considering the popularity and
nonlinear fitting capacity of tree-based machine learning models, the SLR models were first

https://gportal.jaxa.jp
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trained using the XGBoost library and were then input into the Shapley additive explana-
tion (SHAP) approach to evaluate the feature importance of candidate input features. The
value of feature importance approximates the degree of significance of input features in the
training samples. Daily matched datasets were randomly extracted in a small percentage
(i.e., 20%) to generate a subset dataset for XGBoost model training.

As an optimized distributed gradient boosting library, XGBoost provides a parallel
boosting trees algorithm under the gradient boosting framework to solve machine learning
tasks, such as classification and regression problems [41]. It has high prediction accuracy
and the capability to capture interactions between features without explicitly defining such
relationships. The SHAP method was used to explain the output of the tree-based model
using Shapley values. The SHAP technology is based on a game-theoretic approach that is
often used for optimal credit allocation and has been used to explain the prediction results
of an ensemble tree model to increase the reliability of model prediction [42]. The SHAP
value evaluates how each feature contributes to the model prediction. It is calculated by
hiding each feature from the model one at a time and calculating the mean magnitude
change in the output of the machine learning model. The joint contribution of interactive
features was estimated based on the Shapley interaction index, enabling the consistency
and accuracy of feature importance assessment.

3.5. NN-Based Model Training

A feed-forward multilayer perceptron NN model was used to build the SLR retrieval
models. This model has a strong nonlinear fitting ability and high adaptability to achieve
high prediction accuracy in classification and regression problems. It can simplify complex
physical models and processes by learning the statistical relationship between input and
output parameters from the training dataset. Therefore, NN models are widely used in the
geoscience and remote sensing communities [43,44] and are valuable tools to explore the
estimation of SLR using multifrequency PMW radiation from satellite observations. In this
study, the sample dataset for the NN-based model was derived using the aforementioned
procedures. The daily global BT data had 720 rows and 1440 columns, resulting in a
total of approximately 1 million samples per day, which were divided into training (70%),
validation (20%), and holdout (10%) datasets. The training dataset was used to train
corresponding retrieval models; the validation dataset was used to check the training
process to avoid over- or under-fitting; and the independent holdout dataset was used as
the final benchmark to evaluate the model fitting performance. The data from each day
were input to train the SULR/SDLR models, and the models were continuously trained
365 times (i.e., 365 days in 2019).

The NN-based models had an input layer, one to two hidden layers using a rectified
linear unit activation function, and an output layer with one neuron using a linear activation
function. The Adam optimization algorithm was used to implement fast and reliable
model training. To avoid network overfitting and to enhance the generalization capability
of NN models, regularization of input features and an early stopping technique was
used. The early stopping method can reduce training epochs to minimize overfitting and
accelerate model training. The model parameters were randomly initialized, resulting in
slightly different final NN parameters and SLR retrieval accuracy. Therefore, each training
was repeated 10 times, and we chose the optimal trained model according to the fitting
performance using the holdout dataset. We constructed daytime and nighttime models
using ascending and descending data, respectively, in order to improve model fitting
performances.

The NN structure or topology (i.e., the number of hidden layers and neurons in each
hidden layer) is the hyperparameter that is required to be determined before the model
was trained. Different NN structures were tested based on selected input features (see
Section 4.1) to identify the optimal network structure (i.e., with the lowest RMSE and
bias and highest R2, estimated using the holdout dataset; Figure 3). The single hidden
layer had a relatively weaker performance. The structure of 16 × 8 had fewer neurons,
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simpler topology, and a relatively better performance, with a bias of −1.43 W/m2, RMSE
of 18.59 W/m2, and R2 of 0.97. SDLR is a more complex geophysical parameter than
SULR when estimated using BT at the top-of-atmosphere (TOA). Therefore, more complex
network topologies were used (Figure 4). When the size of the NN structure was larger
than 32 × 8, all structures showed a similar performance; finally, the 32 × 16 structure was
chosen.
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Figure 3. Performances of different neural network (NN) structures for surface upward longwave
radiation (SULR) estimation. The metrics are bias, root mean square error (RMSE), and R2 from top
to bottom. Each NN structure was trained 10 times. The “8” indicates a single hidden layer with
eight neurons, and “8 × 4” indicates two hidden layers in which the first layer has eight neurons,
and the second layer has four neurons. The 16 × 8 structure showed the best performance.
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Figure 4. Performances of different neural network (NN) structures for surface downward longwave
radiation (SDLR) estimation. The metrics are bias, root mean square error (RMSE), and R2 from top to
bottom. Each NN structure was trained 10 times. The “16 × 8” indicates two hidden layers in which
the first layer has 16 neurons, and the second layer has 8 neurons. The 32 × 16 structure showed the
best performance.

3.6. Validation and Evaluation Metrics

The spatial and temporal matchup is essential to valid accuracy assessment. The spatial
representativeness of ground sites is crucial for the coarse spatial resolution (i.e., 10 and
25 km) of the AMSR2 L3 product [45]. In general, the sea surface is considered thermally
homogenous, and locations of BSRN sites are always chosen in relatively homogeneous
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surfaces [33]. As a simple and effective method, the pixel containing the ground station
is selected as the retrieval value [5,6,14,32,46], representing a reasonable approximation,
although the unresolved uncertainties due to the spatial representativeness issue should be
realized [19,31] because the thorough investigation of spatial representativeness of BSRN
and GTMBA in terms of SLR observations has not yet been reported.

In this work, AMSR2 overpass time data were used to match the time of ground-
based SLR measurements from BSRN and GTMBA. Pixels of AMSR2 data that contained
ground sites were extracted to obtain satellite-derived SLR values. The quality check
described in Section 3.2 was performed to acquire high-quality retrievals. BSRN and
GTMBA measurements have various temporal resolutions, with the longest interval of
1 h (see Sections 2.3 and 2.4). The 1-h average of ground measurements was used as the
ground truth value to match the AMSR2-derived SLR [47]. Three statistical metrics were
used to evaluate the retrieval accuracy of the proposed SLR models: the mean bias error
(bias), RMSE, and the coefficient of determination (R2), which are defined as follows:

Bias =
1
N

N

∑
i=1

(Xi, retrieval − Xi, true) (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Xi,retrieval − Xi,true)
2 (3)

R2 =

[
∑N

i=1
(
Xi,true − Xtrue

)(
Xi, retrieval − Xretrieval

)]2

∑N
i=1
(
Xi,true − Xtrue

)2 ·∑N
i=1
(
Xi, retrieval − Xretrieval

)2 (4)

where N is the total count of validation samples; Xi, retrieval is the retrieved SULR/SDLR
value for the ith sample; Xi, true is the true SULR/SDLR value for the ith sample, which
is the ground measurement; Xtrue is the mean of all Xi,true; and Xretrieval is the mean of all
Xi, retrieval .

4. Results
4.1. Selected Features for Model Inputs

The SHAP value was used to quantify input feature contributions to model output
(Figure 5). The values of Mean(|SHAP|) (δ) declined smoothly to a stable value. Band
T89V always had the highest δ, and features with δ > 5 were selected as the model inputs
considering the trend variations in Figure 5 and retaining as few features as possible, as
summarized in Table 2. The seven most important features for the SULR models were
the same for both AMSR2 ascending and descending data (Table 2), with the exception
that bands T89H and T36V were selected for AMSR2 ascending and descending data,
respectively. Both SDLR models for AMSR2 ascending and descending data shared the
same input features. They represented the most significant contributions to SULR/SDLR
variation in ERA5 data. T06 V/H was significantly impacted by RFI effects for various
locations and times, resulting in some anomalous retrievals.

SULR is associated with LST and surface emissivity, while SDLR mostly depends on
near-surface water vapor and air temperature. Water vapor is the most important factor
affecting the TOA BT variation of AMSR2 under clear sky conditions. Meanwhile, cloud
liquid water has the strongest impact on the TOA BT under cloudy or overcast conditions,
and the magnitude becomes greater with a higher PMW frequency. In general, high
frequencies are more sensitive to the atmosphere, including clouds, while low frequencies
are more sensitive to the Earth’s surface. Vertically polarized 89 GHz was used to decrease
the average influence of the atmosphere. The high-frequency channels (e.g., 36.5 and
89 GHz) of AMSR2 are significantly affected by water vapor, while atmospheric effects
can be ignored for AMSR2 channels at 6.925, 7.3, and 10.65 GHz. Vertically polarized
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BT differences at 36.5 and 23.8 GHz can attenuate the influence of atmospheric water
vapor [48].

In operational retrieval practices, BTs at 18.7, 23.8, 36.5, and 89.0 GHz have been used
for LST and land emissivity [49–51], and show high reliability for the accurate estimation
of the cloud liquid water path [51,52]. The atmospheric transmittances of T18, T23, and T36
have the strongest correlation with column water vapor contents [23,51]. The NN-based
models integrate these PMW channels using complex nonlinear structures to find the best
coefficients to estimate SULR/SDLR.
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Table 2. Optimal features for neural network (NN)-based surface upward/downward longwave
radiation (SULR/SDLR) model inputs for the ascending (ASC) and descending (DES) data of the
Advanced Microwave Scanning Radiometer 2 (AMSR2).

No. SULR ASC SULR DES SDLR ASC/DES

1 T89V T89V T89V
2 T06H T06H T23H
3 T23V T23V T23V
4 T06V T06V T89H
5 T36H T36H T06H
6 T89H T23H T36H
7 T23H T36V T36V
8 \ \ T10H
9 \ \ Elevation
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4.2. AMSR2 SLR Data Compared with ERA5 Product

ERA5 reanalysis data were used as the reference in SLR model construction. The
comparison between the estimated SLR derived from AMSR2 and ERA5 data demonstrated
the fitting ability of the proposed SLR models. AMSR2 and ERA5 SULR mapping showed
high comparability in the spatial domain (Figure 6) on the first day of the 2020 validation
dataset. AMSR2 SULR could well represent global longwave radiation variability. In the
daytime ascending data, some terrestrial regions (e.g., Australia and Africa) had the highest
SULR values, while oceanic SULR values were moderate. In contrast, during the nighttime
for descending data, ocean regions had the highest SULR within low–middle latitudes.
The differences in SULR between AMSR2 and ERA5 were low within most oceanic areas
and some terrestrial regions. For example, AMSR2 SULR was overestimated in Greenland,
but underestimated in Australia compared with the ERA5 SULR product. Errors in cloud
properties (e.g., total cloud fraction, cloud liquid, and ice water path) in reanalysis products
can cause significant biases in simulated SLR [53,54]. Moreover, the RFI effect can also
contribute to this discrepancy because T06 V/H channels, which were used in the retrieval
procedure, are strongly influenced by RFI effects [55].
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both land and ocean was performed to offer quantitative accuracy metrics. 

Figure 6. Comparison of the global Advanced Microwave Scanning Radiometer 2 (AMSR2) and Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) surface upward
longwave radiation (SULR) data from 1 January 2020. (a) AMSR2 SULR derived from ascending
data; (b) AMSR2 SULR derived from descending data; (c) ERA5 SULR matched with ascending data;
(d) ERA5 SULR matched with descending data; (e) difference between AMSR2 and ERA5 SULR for
ascending data; and (f) difference between AMSR2 and ERA5 SULR for descending data.

Although global SDLR had a complex spatial distribution, principally due to cloud
effects [13,56], the spatial patterns of AMSR2 and ERA5 SDLR showed good consistency
(Figure 7). The day/night differences in SDLR over land and ocean were small compared
with those of SULR (Figure 6). Cloud cover at low to medium altitudes significantly
enhances SDLR [10,13], as shown by the cyclone system in the Atlantic region (Figure 7b,d).
ERA5 SDLR had smoother transitions than AMSR2 SDLR, as shown in Eurasia, indicating
the impact of surface radiative characteristics on SDLR retrievals. In general, the NN-based
SLR models could reproduce the global spatial distribution of SULR/SDLR from AMSR2
data using ERA5 as a baseline. Validation based on ground measurements on both land
and ocean was performed to offer quantitative accuracy metrics.
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ascending data; (d) ERA5 SDLR matched with descending data; (e) difference between AMSR2 and
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ing data.

4.3. Validation over BSRN Land and GTMBA Oceanic Sites

Based on BSRN measurements, SLR derived from AMSR2 data had promising per-
formances (Figure 8). Slight underestimations of 1.32 W/m2 existed for SULR, and the
bias was −2.26 W/m2 for AMSR2 SDLR estimation (Figure 8a,c). The RMSE and R2 of
AMSR2 SULR were 35.37 W/m2 and 0.89, respectively. At higher SULR values, those from
AMSR2 diverged, indicating the degradation of model performance. At the same time,
AMSR2 SULR of <200 W/m2 in high-altitude and polar regions showed a conspicuous
overestimation that can also be found in CERES-derived fluxes [46]. The SDLR model for
AMSR2 had an RMSE of 32.94 W/m2 and R2 of 0.82, which demonstrate a good agreement
with land site observations (Figure 8c).

The thermal homogeneity of the ocean is always higher than that of the land. Oceanic
thermal radiation can be treated as quasi-blackbody emissions that can well satisfy the
Lambertian surface assumption and facilitate sufficient spatial representativeness of site
measurements [45]. The validation results were significantly better than those on land
(Figure 8). The biases showed a few underestimations, and the RMSEs of AMSR2 SULR
were 6.50 W/m2 (Figure 8b), which was even better than the measurement accuracy of
pyrgeometers (5−10 W/m2) [34,35]. SULR with a high retrieval accuracy, as an alternative
to SST, can be used in monitoring climate phenomena, such as the El Niño–Southern
Oscillation and La Niña [4]. On the other hand, underestimations of SDLR derived from
AMSR2 data based on GTMBA data were −4.04 W/m2 (Figure 8d). AMSR2 BT had a
stronger correlation with SULR, which emits PMW radiation directly into space-based
radiometers through the atmosphere. Meanwhile, the RMSE showed a better accuracy
according to the retrieval models using MODIS data [25]. In summary, the accuracy of
the ASMR2 SLR over the ocean was significantly better than that on land that has more
complex surface and thermal conditions.
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Figure 8. Validations for (a) surface upward longwave radiation (SULR) and (c) surface downward
longwave radiation (SDLR) derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2)
using Baseline Surface Radiation Network (BSRN) measurements and for (b) SULR and (d) SDLR
derived from the AMSR2 using the Global Tropical Moored Buoy Array (GTMBA) measurements.
The color indicates the density of sampling points, with higher density in red and lower density
in blue.

5. Discussion
5.1. Impact of Surface Types

The BSRN observation sites were divided into different surface types, including
island, continental, desert, coastal (~25 km from the coastal line), and polar sites [46]. The
validation results shown in Table 3 were used to analyze the retrieval accuracy on major
surface types. For SDLR validation, polar sites showed a high R2 of 0.91 and a good RMSE
of 22.88 W/m2. In addition, island sites also had a lower RMSE of 20.66 W/m2, where the
land occupies a small percentage, and the emitted radiation was from the dominant ocean
surface. High surface heterogeneity at coastal sites made the spatial representativeness
of ground measurements relative to the AMSR2 footprint worse, causing a larger RMSE.
The desert sites had the largest bias (−12.77 W/m2) and a higher RMSE of 33.48 W/m2.
There was a significant overestimation (17.54 W/m2) for the SULR estimation at polar
sites, and the largest RMSE of 43.36 W/m2 was at coastal sites. The surface type has a
significant impact on the estimated AMSR2 SLR [46], while the spatial representativeness of
ground-based sites is another important influence factor that compromises the robustness
of the validation of low spatial resolution data [45], which has largely been ignored.
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Table 3. Comparison between surface-measured and AMSR2-derived surface upward and downward
longwave radiation (SULR/SDLR) components for the coastal, continental, desert, island, and polar
sites on land. The units of both bias and root mean square error (RMSE) are W/m2. Note that no
SULR measurements were available at the island and desert sites.

Type Bias RMSE R2

SDLR
Island −0.62 20.66 0.50

Coastal −5.33 35.68 0.67
Polar −4.47 22.88 0.91

Continent 0.30 34.70 0.61
Desert −12.77 33.48 0.66

SULR
Coastal −1.02 43.36 0.53
Polar 17.54 27.15 0.94

Continent −4.26 36.22 0.60

5.2. Analysis of Day/Night Effects

Based on BSRN measurements, there was a significant overestimation (13.96 W/m2)
of land SULR in the daytime and an underestimation (−11.09 W/m2) in the nighttime
for AMSR2 data (Table 4). Consequently, the overall validation biases including daytime
and nighttime samples had smaller values. The SULR at the daytime and nighttime
had similar performances, with RMSEs of 35.02 and 35.70 W/m2. For the oceanic SULR
samples, the day/night differences were considerably lower, although daytime validation
had a better performance than that in the nighttime (i.e., less RMSE and bias). The SDLR
on the land showed significant negative biases of −7.85 W/m2 in the nighttime and
overestimated by 3.24 W/m2 in the daytime. SDLR validation based on oceanic sites
revealed underestimations, and bias magnitudes (−4.91 W/m2) in the daytime were larger
than those in the nighttime. The diurnal cycle changes the temperature structure of the
atmospheric boundary layer, resulting in significant discrepancies in the atmospheric
thermal radiative environment. The variability of surface-atmosphere temperatures impacts
the AMSR2 longwave radiation calculations.

Table 4. The validation results of the surface longwave radiation components at land and ocean sites.
The units of both bias and root mean square error (RMSE) are W/m2. SDLR: surface downward
longwave radiation. SULR: surface upward longwave radiation.

Type Bias RMSE R2 Bias RMSE R2

SDLR on the land SULR on the land
Day 3.24 33.40 0.82 13.96 35.02 0.91

Night −7.85 32.47 0.83 −11.09 35.70 0.92
SDLR on the ocean SULR on the ocean

Day −4.91 13.62 0.66 −0.02 4.93 0.87
Night −3.17 13.22 0.66 −5.90 7.74 0.86

5.3. Validation of ERA5 SLR Data

The validation results for ERA5 SLR data using BSRN land and GTMBA oceanic sites
are shown in Figure 9. They had similar performances as shown in Figure 8. The AMSR2-
derived SDLR over the land and ocean had lower RMSEs (32.94 W/m2 and 13.42 W/m2,
respectively) compared with those of ERA5 SDLR. Meanwhile, ERA5 SULR data had better
agreement with GTMBA measurements than AMSR2 SULR data (Figure 9a,b) by about
2 W/m2 in terms of RMSE. The underestimation of AMSR2 SULR, less than 200 W/m2,
was more significant than the ERA5 SULR on the land; in contrast, the AMSR2 model
overestimated SULR in the ocean (Figure 8a), with higher values that were not observed for
ERA5 SULR. The AMSR2-based SDLR has the advantage of modeling atmospheric thermal
flux in all weather conditions.
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Figure 9. Validation of the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis v5 (ERA5) surface longwave radiation using site measurements. (a) ERA5 surface upward
longwave radiation (SULR) based on Baseline Surface Radiation Network (BSRN) data; (b) ERA5
SULR based on Global Tropical Moored Buoy Array (GTMBA) data; (c) ERA5 surface downward
longwave radiation (SDLR) based on BSRN data; and (d) ERA5 SDLR based on GTMBA data. The
color indicates the density of sampling points, with higher density in red and lower density in blue.

5.4. Model Application on 10-km AMSR2 Data

The proposed SLR models, which were trained based on 25-km AMSR2 and ERA5
data, were applied to AMSR2 data with a grid sampling resolution of 10 km. The 10-km
auxiliary data (i.e., surface elevation and land/sea mask) were obtained from the ERA5-
land dataset [57]. Using AMSR2 ascending data for the same day as that shown in Figure 6
as an example, the 10- and 25-km SULR data show high consistency (Figure 10a,b). High-
latitude areas had the lowest SULR values (<300 W/m2). AMSR2 SDLR at 10 and 25 km
spatial resolutions were also identical (Figure 10c,d). Regions lower than 30◦N had a high
SDLR for both inland and ocean areas. In Asia, the 10 km SLR data had a higher spatial
variability compared with the 25 km data.

The overall validation results (Figure 11) were similar to those in Figure 8, indicating
the feasibility of applying the proposed models to AMSR2 10-km data. For example, the
SULR model performance at inland sites had a bias of 1.36 W/m2, RMSE of 38.09 W/m2,
and R2 of 0.86 for the 10 km data, and a bias of 1.32 W/m2, RMSE of 35.37 W/m2, and
R2 of 0.89 for the 25 km data. The validation results for the 25 km data had a generally
higher accuracy, especially in terms of the RMSE. AMSR2 adapts a conical scan mechanism
to acquire PMW data. The footprints (i.e., observable region) of different channels are
significantly different for the same pixel. Therefore, the Backus–Gilbert method was
used to obtain equivalent footprints for all channels through the synthesis of virtual
observations [28]. The gridding process introduced alignment and radiometric errors in
the 10-km AMSR2 product, which likely reduced the model performance. In summary,
training SLR models with 25 km data and then applying them to 10-km AMSR2 data offers
an alternative approach to obtaining SLR data from AMSR2 with higher spatial resolution.
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Figure 11. Validation of the 10-km Advanced Microwave Scanning Radiometer 2 (AMSR2) surface
longwave radiation using site measurements. (a) AMSR2 surface upward longwave radiation (SULR)
based on Baseline Surface Radiation Network (BSRN) data; (b) AMSR2 SULR based on Global
Tropical Moored Buoy Array (GTMBA) data; (c) AMSR2 surface downward longwave radiation
(SDLR) based on BSRN data; and (d) AMSR2 SDLR based on GTMBA data. The color indicates the
density of sampling points, with higher density in red and lower density in blue.

5.5. Advantages, Limitations, and Future Works

This is the first work to demonstrate the feasibility of estimating SLR from PMW
observations on both the land and ocean and provides an alternative to TIR-based SLR
retrieval. Further development and maintenance of PMW-based SLR products are necessary
to help us improve our insight into complex geographic areas where reanalysis datasets
reach their limits in characterizing the spatial variability of geophysical parameters [58]. A
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significant advantage of estimating SLR from spaceborne PMW TBs is the multi-channel
PMW observations over decades, e.g., from the earliest SMMR to the current AMSR2 and
FengYun-3 Microwave Radiation Imager (MWRI) series. If the inter-calibration of different
PMW sensors is well performed [59], the proposed SLR model can be applied not only
to 10-km AMSR2 data but also to other sensors, such as the WindSat and FY-3 MWRI
series. Therefore, it is possible to generate long-term PMW-derived SLR data using a long
time series and consistent PMW observations available from 1978 onwards, which have a
unique value in evaluating the role of SLR in global climate change. In addition, with the
development of sensor technologies, the PMW sensor can measure the earth−atmosphere
system with a higher spatial resolution than current spatial resolutions of 10 and 25 km;
when a PMW sensor is installed on a geostationary satellite platform, it can achieve a
very high temporal resolution. These advantages relative to ERA5 data can happen in the
future, and this work provides the feasibility and basis to achieve SLR retrieval from higher
spatiotemporal PMW measurements.

It is essential for PMW remote sensing data to distinguish atmospheric conditions
(clear sky, cloudy, rain, or mixed) over land and ocean, and different land covers. However,
unlike optical sensors (e.g., MODIS), such products are not available for AMSR2. Therefore,
cloud effects on the retrieval model cannot be analyzed. Land covers such as desert, snow,
glacier, or sea ice, also have important influences on SLR models; their impacts should
be analyzed using stable synchronous data products for quantifying uncertainties and
improving SLR algorithms. Furthermore, radiative transfer in a dense vegetation canopy
and precipitation was not explicitly considered in our SLR modeling. Soil moisture, the
microphysical and optical properties of clouds (e.g., cloud liquid/ice water path), and the
wind speed on the sea also impact PMW radiative transfer and must be confirmed in the
construction of SLR retrieval models. Thorough analyses of influencing factors should be
carried out for model improvement.

The combination of TIR and PMW data is a promising way to generate global long-
term seamless SLR products with the same spatial resolution as satellite TIR data [60].
However, the penetrability of PMW measurements into the ground surface makes them
incompatible with SLR derived from TIR remote sensing data. The transformation of
PMW-derived to TIR-derived geophysical parameters (e.g., LST and SULR) remains a
challenge but is the physical basis for data fusion between TIR and PMW [24]. The further
development of models for estimating SLR from PMW remote sensing techniques will
increasingly depend on an understanding of microwave emission theories, rather than
statistical regression models.

As data-driven models, the potential functional relationships of the proposed models
were learned from a training dataset. The accuracy of ERA5 SLR products is the primary
factor for retrieval performance. Bias correction of ERA5 SLR products can generate
better agreement with ground measurements [61], and bias-adjusted ERA5 data have the
potential to improve retrieval models based on AMSR2 data. Insufficient training samples
for certain conditions reduced the capability of the SLR models to accurately reproduce the
spatiotemporal dynamics of global SLR. An alternative would be to generate a simulation
dataset using PMW radiative transfer models (e.g., the RTTOV model) [26,27]. The inherent
physical processes are coupled with data-driven models, strengthening their generalization
ability under diverse atmospheric and surface conditions. Furthermore, the theoretical
calculation of AMSR2 BT and SLR can perform simulation analyses on atmospheric and
surface conditions, and the sensitivity of input features [52].

6. Conclusions

Satellite PMW observations have been used for various geophysical retrievals; how-
ever, surface radiation budget parameters that rely on microwave techniques have not
been studied in depth. In this study, we identified the statistical relationship between
AMSR2 polarized BT and SLR for both clear sky and cloudy conditions based on a mul-
tilayer NN approach. The algorithm retrieves SULR/SDLR over ocean and land areas in
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a unified model, and separate algorithms are applied for ascending and descending data.
The AMSR2 SLR retrieval models have a high correlation and comparable performance
with respect to the ERA5 SLR products used as a reference in model training, indicating
the ability of the proposed models to generate global SLR data. The SLR models were
optimized using 25-km AMSR2 BT, ERA5 SLR data, and ancillary data of surface elevation.
The performances of the NN-based models were validated using independent datasets of
BSRN and GTMBA measurements. Generally, SULR retrievals over the ocean had a higher
accuracy than those over land on account of thermal homogeneity and quasi-blackbody
emissions from the ocean surface. Moreover, the AMSR2 SLR data at 10 and 25 km spatial
resolutions were in good agreement with ground measurements, confirming the feasibility
of the proposed SLR models for AMSR2 observations at different spatial scales. Our method
demonstrates high reliability in retrieving global SLR under all weather conditions. This
new algorithm is expected to promote the development of satellite-based PMW remote
sensing data to generate global long-term and continuous SLR products for climate studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14235960/s1, Table S1: Description of Baseline Surface Radiation
Network (BSRN) stations used to evaluate surface longwave radiation models.
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