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Abstract: Vegetation in arid central Asia (ACA) has been experiencing significant changes due to
substantial warming and humidification since the 1980s. These changes are inhomogeneous due
to the ecological vulnerability and topographic complexity of ACA. However, the heterogeneity of
vegetation changes has received limited attention in the literature, which has focused more on the
region’s overall general features. Thus, this paper analyzes the regional heterogeneity of vegetation
changes during the growing season in ACA and further explores their underlying drivers. The results
reveal an antiphase trend of vegetation, with an increase in eastern ACA and a decrease in western
ACA. This antiphase pattern is primarily constrained by the divergent hydrothermal and climatic
contexts of different elevation gradients. At elevations higher than 300 m (in the eastern ACA),
increased growing season precipitation dominates vegetation greening. Conversely, vegetation at
elevations lower than 300 m (in western ACA) is influenced by growing season soil water, which
is driven by winter precipitation (pre-growing season precipitation). Additionally, the temperature
could indirectly impact vegetation trends by altering precipitation, soil water, glaciers, snow cover,
and runoff. Our findings have implications for restoring the ecosystem and sustainable development
in ACA.

Keywords: vegetation; antiphase trend; elevational gradients; direct effect; lag effect

1. Introduction

Climate change alters hydrological cycle processes such as snow cover, runoff, and
soil water, which affect the ecosystem [1]. As the most critical component of the ecosys-
tem, vegetation activities could well represent ecosystem variations [2], and vegetation is
highly sensitive to climate change [3–5], especially in arid ecosystems [6]. For example,
dryland vegetation was observed as having a robust increase in precipitation sensitivity [7].
Increased precipitation provides favorable conditions for vegetation growth [1,8] and vice
versa [6]. Warming potentially limits vegetation growth by reducing water resource avail-
ability [1] and affecting vegetation productivity [9,10]. The dynamics of soil water also
significantly affect vegetation. For instance, increased global vegetation greenness has
begun to level off due to growing soil moisture limitations [11]. Additionally, a lack of soil
water even results in a regional or worldwide decline in the greenness of vegetation [12,13].
In addition, glaciers, snow cover [14], and permafrost [15,16], as essential parts of eco-
hydrological processes, also contribute to vegetation change. Arid central Asia (ACA,
including arid central Asia and Xinjiang in China) is controlled by the mid-latitude westerly
circulation, its distance from the ocean, making water vapor transport difficult to reach,
and the perennial descending motion in the lower and middle troposphere, making it the
world’s largest non-zonal arid zone [17]. ACA is characterized by fast warming, scarce
precipitation, and ecosystem vulnerability [17–22]. A series of studies have focused on ACA
vegetation and its driving factors in recent decades [1,5,23,24]. For example, Zhao et al.
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pointed out that most numbers of pixels related to vegetation in central Asia increased in
the growing season and spring from 1982 to 2003, which is highly correlated with current
precipitation and evapotranspiration [5]. Some researchers showed a transition of vegeta-
tion change from increasing to degrading in the 1990s in central Asia, and water deficits
explain a large part of this transition [1,23,24]. Meanwhile, vegetation in Xinjiang has been
increasing significantly since the 1980s [25,26].

Previous research has concentrated more on the isolated features of vegetation changes
in central Asia and Xinjiang, or the overall changes in ACA. However, ACA has a complex
topography, with elevation ranging from −156 to 8238 m, which results in divergent vegeta-
tion change and the region’s response to the climate at different elevation gradients [27,28].
Although there is a vertical lapse rate associated with temperature, it is not the sole dom-
inant factor causing the divergent changes [28]. Furthermore, the eastern part of ACA
(Xinjiang in northwest China) has been experiencing climatic warming and humidification
in recent decades [29–31], whereas central Asia shows a drying trend [32]. The difference
in the climate change in ACA may exacerbate the existing divergent vegetation changes at
varying elevations. However, the heterogeneity in vegetation changes at different eleva-
tion gradients and the related climate effects are still unknown in ACA. Thus, we aim to
understand the impact of elevation on heterogeneity in vegetation changes in ACA.

In this study, we first investigated the spatiotemporal variations of vegetation from
1982 to 2015 in ACA using a normalized differential vegetation index (NDVI) dataset over
two elevation gradients and vegetation types. Meanwhile, the independent and interactive
effects of natural factors on vegetation were investigated using the linear mixed effect
model (LMM). Furthermore, the direct and indirect effects were separated by the structural
equation model (SEM). These explorations can provide constructive suggestions for the
efficient use of water resources and the ecologically sustainable development of the region.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is the core region of arid central Asia, ranging in latitude from 36◦N to
50◦N and longitude from 50◦E to 90◦E. According to the aridity index [33], the region covers
arid, semi-arid, and dry sub-humid areas (Figure 1a). The area covers 5.18 million km2, and
the desert covers nearly 40%. ACA warms rapidly, reaching 1.6 ◦C over the century [34],
with winter precipitation dominating in the west and summer precipitation in the east
(Figure 1b,c) [35]. The topography of ACA is complex, with elevation differences higher
than 7000 m. The low elevations have high temperature and low precipitation with annual
precipitation less than 300 mm; at high elevations such as the Tianshan Mountains, precip-
itation is relatively high, and glacial melt has gradually increased in recent years due to
climate warming, which causes runoff to increase [14,31].

2.2. Data
2.2.1. Vegetation Index

NDVI is an important indicator of vegetation activity, even in mountainous areas [7,35,36].
The Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 3g v1 dataset was
used in this study. This dataset is derived from the advanced very high-resolution radiometer
(AVHRR). The 8 km resolution GIMMS NDVI 3g v1 dataset has a temporal resolution of
16 days and covers the period of 1982–2015 [37]. We combined the original data into the
monthly, growing season, and yearly scales using the maximum value composite (MVC). The
MVC can effectively reduce the effect of clouds, atmosphere, solar altitude, etc. [38].
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Figure 1. (a): Location and topographic characteristics of the study area. The rectangle with a black 
border is the study area of this study. The different shapes and colors of lines are the dividing 
lines between arid, semi-arid, and dry sub-humid areas. The average monthly temperature and 
precipitation in the western arid central Asia (ACA) (b) and the eastern ACA (c). The blue bars 
represent precipitation, and the red curves represent temperature.  

2.2. Data 
2.2.1. Vegetation Index 

NDVI is an important indicator of vegetation activity, even in mountainous areas 
[7,35,36]. The Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 3g v1 
dataset was used in this study. This dataset is derived from the advanced very high-
resolution radiometer (AVHRR). The 8 km resolution GIMMS NDVI 3g v1 dataset has a 
temporal resolution of 16 days and covers the period of 1982–2015 [37]. We combined 
the original data into the monthly, growing season, and yearly scales using the maxi-
mum value composite (MVC). The MVC can effectively reduce the effect of clouds, at-
mosphere, solar altitude, etc. [38]. 

2.2.2. Datasets of Effect Factors 
The monthly precipitation data were obtained from the Global Precipitation Clima-

tology Centre (GPCC, http://gpcc.dwd.de/, accessed on 22 November 2022) at Deutscher 
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Figure 1. (a): Location and topographic characteristics of the study area. The rectangle with a black
border is the study area of this study. The different shapes and colors of lines are the dividing
lines between arid, semi-arid, and dry sub-humid areas. The average monthly temperature and
precipitation in the western arid central Asia (ACA) (b) and the eastern ACA (c). The blue bars
represent precipitation, and the red curves represent temperature.

2.2.2. Datasets of Effect Factors

The monthly precipitation data were obtained from the Global Precipitation Climatol-
ogy Centre (GPCC, http://gpcc.dwd.de/, accessed on 22 November 2022) at Deutscher
Wetterdienst (DWD). We used the GPCC Full Data Monthly Product dataset with a resolu-
tion of 0.25◦ × 0.25◦, which is the most accurate in situ precipitation reanalysis dataset in
the GPCC [39].

The monthly temperature data with a resolution of 0.5◦ × 0.5◦ was provided by
UK’s National Centre for Atmospheric Science (NCAS) at the University of East Anglia’s
Climatic Research Unit (CRU), which is one of the most widely used climate datasets
(https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 22 November 2022) [40]. We
selected version CRU TS4.05 for our analysis.

The European Center for Medium-Range Weather Forecasts’ Reanalysis (ECMWF) pro-
vides a consistent view of the evolution of land variables from 1981 to present (https://www.
ecmwf.int/, accessed on 22 November 2022) [41]. The soil water and snow cover data in this
dataset have been proven to be applicable and the soil water is divided into four layers (0–7 cm,

http://gpcc.dwd.de/
https://crudata.uea.ac.uk/cru/data/hrg/
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7–28 cm, 28–100 cm, and 100–289 cm). We chose the surface layer (0–7 cm) and the second layer
(7–28 cm) to represent the soil water conditions in the study area [42].

2.2.3. Vegetation Types and DEM

Vegetation types were obtained from the European Space Agency (ESA) Climate
Change Initiative (CCI), where a time series of consistent global LC maps at 300 m spatial
resolution on an annual from 1992 to 2015 is available (http://maps.elie.ucl.ac.be/CCI/
viewer/download.php, accessed on 22 November 2022). According to the International
Geosphere-Biosphere Programme (IGBP) and related research [41], ESA CCI LC is catego-
rized into six vegetation types in this study: forests, open vegetation, grasslands, croplands,
shrubs, and bare land.

The digital elevation model (DEM) data is provided by NASA’s Shuttle Radar Topog-
raphy Mission (SRTM), which is available for download from https://www.usgs.gov/
centers/eros, accessed on 22 November 2022.

2.3. Methods
2.3.1. Trends and Regression Analysis

The Theil–Sen median trend analysis and Mann–Kendall test were used to evaluate
trends in growing season average NDVI from 1982 to 2015 [43–45], as they are robust
nonparametric statistical methods for trend detection. We used the function “trend_manken”
provided by NCAR Command language (NCL) version 6.6.2 [46] (https://www.ncl.ucar.
edu/, accessed on 22 November 2022) to conduct the trend analysis and test it. Moreover,
the regions where p ≤ 0.05 were considered statistically significant in this study. The
temporal trends of growing season factors and of vegetation response to these factors
were performed by linear regression analysis and correlation analysis using the functions
“regCoef ” and “escorc_n” in NCL.

2.3.2. Linear Mixed-Effect Model (LMM)

The linear mixed-effect model (LMM) is widely used because it: (1) enables the simulta-
neous estimation of the effects of multiple variables and their interactions on the dependent
variable; (2) takes into account random effects from different repeated measurements; and
(3) quantifies the degree to which those factors explain vegetation change [47–50]. In this
study, the LMM was used to assess the effects of temperature, precipitation, snow cover,
and soil water on vegetation. The LMM analysis was carried out in R language [51] using
the “lme4” package [52], and p values for fixed-effect parameters were estimated using the
“lmerTest” package [53]. The optimal model was selected according to the reasonableness of
the assumptions, coefficient of determination (R2), and the smaller AIC (Akaike information
criterion) [54]. Finally, we constructed the best-fit model by considering the four factors
and their interactions as fixed effects and treating vegetation types and elevation gradients
as random variables.

2.3.3. Structural Equation Model (SEM)

The structural equation model (SEM) separates the proposed direct and indirect compo-
nents and their interactions. SEM also enables us to quantify the relative relevance of each
factor via the path coefficients (PC) [9,15,47]. SEM analysis was carried out using AMOS
software version 24.0 [55,56] and the “lavaan” package in R [57], and the results were consistent
between the two programs. AMOS results are reported in this study as it generates both
unstandardized and standardized outputs. The PCs and parameters are estimated using
the maximum likelihood method. Here, we propose three hypotheses: (1) The vegetation is
directly impacted by temperature, precipitation, snow cover, and soil water. (2) Snow cover
and precipitation indirectly affect vegetation through soil water. (3) Temperature indirectly
affects vegetation through precipitation, snow cover, and soil water.

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://www.usgs.gov/centers/eros
https://www.usgs.gov/centers/eros
https://www.ncl.ucar.edu/
https://www.ncl.ucar.edu/
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3. Results
3.1. Characteristics of Vegetation Variations in ACA

Vegetation in ACA grows primarily from May to September in the east and from April
to October in the west (Figure 2b) [58]. These time periods are defined as the growing
season of the eastern and western ACA, respectively. The temporal variation of growing
season NDVI in ACA has been greening at 0.0002 yr−1 since 1982 (Figure 3b). However,
the changes in NDVI are characterized spatially by antiphase patterns (Figure 2a). The
greening (0.0005 yr−1) area is mainly in eastern ACA, accounting for 43.21% of the study
area (Figures 2c and 3b). The browning (−0.0004 yr−1) area is mainly in western ACA,
accounting for 56.79% (Figures 2c and 3b). By counting the trends of NDVI at different
elevation gradients, this boundary coincides more with a 300 m elevation (the solid black
line in Figure 2a and the gray shade in Figure 3a). In summary, the vegetation of most
grids in ACA shows a decrease at elevations lower than 300 m and an increase at elevations
higher than 300 m, which has also been proven in other growing season scales and an
annual scale (figure omitted).
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Figure 2. (a): Spatial distribution of growing season NDVI trends in ACA from 1982 to 2015. The
solid black curve is the boundary at an elevation of 300 m, its west side is the area with an elevation
lower than 300 m and the east side is the area with an elevation higher than 300 m. The black dots are
areas that passed the significance test (p < 0.05); (b): cross-sectional plots of monthly distributions of
the average value of NDVI, with the white lines showing May and September and the black lines
showing April and October; (c): cross-sections of monthly vegetation trends, with the black line in
the range of 65◦E to 70◦E.
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Figure 3. (a): NDVI trends during the growing season at different elevations. The X-axis represents
all grid points in ACA arranged by elevation instead of the actual elevation as multiple grid points
share one elevation; the gray shaded band represents the area where elevation is around 300 m;
(b): changes in the mean values of growing season NDVI. Green represents the whole region of ACA;
red represents the western region of ACA (elevation lower than 300 m), and blue represents the
eastern region of ACA (elevation higher than 300 m).

3.2. Response of Vegetation to Factors

Previous studies have demonstrated the influence of anthropogenic and natural cli-
matic factors on vegetation formation, classification, and change [45,59–62]. In the water-
scarce and arid ACA regions, the response of vegetation to climatic factors [1] (e.g., temper-
ature, precipitation), and especially natural factors related to water resources [24,31] (e.g.,
soil water and snow cover), has attracted our attention. In Figure 4, we can see that trends
of these elements show an antiphase distribution in ACA bounded by 300 m. Specifically, in
the western ACA, there was a significant and dramatic increase in temperature (Figure 4a),
as well as widespread decreases in precipitation (Figure 4c) and soil water (Figure 4e), and
the snow cover is absent (Figure 4g). In eastern ACA, there was a moderate increase in tem-
perature (Figure 4a) and an increase in precipitation (Figure 4c) and soil water (Figure 4e).
At the same time, snow cover was significantly reduced (Figure 4g). Regression analysis
further demonstrates that there is also a different distribution of regression coefficients
among temperature, snow cover, and NDVI in eastern and western ACA (Figure 4b,h).
Nevertheless, there is a broad and significant positive correlation between precipitation,
soil water, and NDVI in the overall area (Figure 4d,f).

These results demonstrate that the differences in climate context and hydrothermal
conditions between the eastern and western of ACA affect NDVI. However, it remains
difficulty of explaining the antiphase changes of NDVI using any individual elements. We,
therefore, hypothesize that all these factors interact and that these interactions may affect
vegetation, and we verify this hypothesis in the following subsections.
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3.3. Liner Mixed Effect of Factors on NDVI

The LMM was utilized in this study to distinguish the independent and interactive
effects of temperature, precipitation, soil water, and snow cover on NDVI. In the LMM,
the following variables were set as fixed effects: temperature, precipitation, snow cover,
soil water, and their interactions; vegetation types and elevation gradients were set as
random effects. The results show that soil water, snow cover and precipitation and have the
greatest effect on NDVI, with estimates of 4.37 × 10−1, 2.66 × 10−1, 2.44 × 10−1 (R2 = 0.80,
p < 0.001), respectively, which is consistent with the previous regression analysis. The
interactions between temperature and precipitation (p < 0.001), temperature and snow
cover (p < 0.001), precipitation and soil water (p < 0.001), and snow cover and soil water
(p < 0.001) all have significant effects on NDVI (Table 1).
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Table 1. Results of linear mixed-effects models of temperature (Tmp), precipitation (Pre), snow cover
(Snow C), soil water (Soil W), and their interaction on NDVI.

Estimate p Value

Fixed
Effect

(Intercept) −4.28 × 10−2 8.61 × 10−1

Tmp −7.84 × 10−3 3.44 × 10−1

Pre 2.44 × 10−1 <2 × 10−16 ***
Soil W 4.37 × 10−1 <2 × 10−16 ***

Snow C 2.66 × 10−1 <2 × 10−16 ***
Tmp: Pre 2.77 × 10−2 1.18 × 10−7 ***

Pre: Soil W 6.03 × 10−2 <2 × 10−16 ***
Tmp: Soil W 1.83 × 10−2 3.07 × 10−3 **
Temp: Soil C 1.31 × 10−1 <2 × 10−16 ***

Soil W: Snow C −1.32 × 10−1 <2 × 10−16 ***

Groups Name Variance Std.Dev.

Random
Effect

Elevation gradients 0.25 0.50
Vegetation types 0.18 0.43

Residual 0.24 0.50
Significant codes: 0 ‘***’ 0.001 ‘**’ .

Random effects on elevation gradients and vegetation types are also observed, with a
variance of 0.25 and 0.18, accounting for 37.01% and 17.89% of the total residuals, respec-
tively (Table 1). This means that they can explain almost 50% of the residual, indicating
that the effect of factors on vegetation is indeed divergent in different vegetation types and
elevational gradients.

3.4. SEM Results of Two Elevational Gradients

The antiphase trends in vegetation over the elevation gradients are proven in Section 3.1.
Meanwhile, hypotheses of independent and interactive effects of factors on vegetation
simultaneously are presented in Section 3.2. The above results are then proven by using
LMM in Section 3.3. Here, SEM was conducted to further investigate how these interactions
affect vegetation directly and indirectly. The results reveal that at elevations lower than 300
m, all hypothesized paths can account for 58% of the total variation in NDVI (R2 = 0.58).
For direct effect, soil water contributes the most to NDVI, with the PC being 0.64, followed
by precipitation, snow cover, and temperature, with PCs of 0.17, 0.15, and 0.09, respectively.
In terms of the total effect, soil water is still the most impacted factor (PC = 0.64). The
total effect of precipitation on NDVI (PC = 0.35) is greater than the direct effect (PC = 0.17)
because it has an indirect effect (PC = 0.28) through soil water. Although the temperature
has a direct positive effect on NDVI, the total effect is negative (PC = −0.44) because
temperature affects NDVI through precipitation (PC = −0.59), snow cover (PC = −0.56),
and soil water (PC = −0.24) as a negative indirect effect, which outweighs the direct effect
(PC = 0.09) (Figure 5a and Table 2). In summary, at elevations lower than 300 m, high
temperatures accompanied by little precipitation led to a decrease in soil water, which may
also be related to increase in evaporation due to warming. This is the reason for vegetation
degradation at elevations lower than 300 m.
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Figure 5. Direct and indirect effects of temperature, snow cover, precipitation, and soil water on
NDVI in areas lower than 300 m (a) and higher than 300 m (b). Gray arrows represent positive
correlations, blue arrows represent negative correlations, and thicker arrows represent larger PCs.

Table 2. The total, direct and indirect effects of temperature (Tmp), precipitation (Pre), snow cover
(Snow C), and soil water (Soil W) on NDVI at different elevation gradients and time scales.

Growing Season
(Elevation < 300 m: Apr~Oct,
Elevation > 300 m: May~Sep)

Year Growing Season NDVI with Tmp,
Snow C, Soil W, and Winter Pre

Total Direct Indirect Total Direct Indirect Total Direct Indirect

Elevation
<300 m

Tmp −0.44 0.09 −0.52 −0.37 0.23 −0.59 −0.44 −0.10 −0.33
Pre 0.35 0.17 0.18 0.49 0.36 0.13 0.41 0.22 0.19

Snow C 0.30 0.15 0.15 0.44 0.31 0.13 0.30 0.16 0.14
Soil W 0.64 0.64 0.00 0.45 0.45 0.00 0.58 0.58 0.00

Elevation
>300 m

Tmp −0.08 0.24 −0.32 0.02 0.07 −0.06 −0.08 0.12 −0.20
Pre 0.69 0.41 0.28 0.67 0.50 0.18 0.51 0.26 0.25

Snow C −0.30 −0.34 0.04 −0.18 −0.41 0.24 −0.42 −0.41 0.01
Soil W 0.63 0.63 0.00 0.50 0.50 0.00 0.73 0.73 0.00

For elevations higher than 300 m, the hypothesized pathways explain 61% of the
variation in the NDVI (R2 = 0.61). Soil water still contributes the most in terms of direct
effects (PC = 0.63), followed by precipitation (PC = 0.41), snow cover (PC = −0.34), and
temperature (PC = 0.24). In terms of the total effect, the results are divergent. Precipitation
is the most impacted factor (PC = 0.69), with an indirect effect on the NDVI (PC = 0.28) by
affecting the soil water (PC = 0.45). The snow cover at high elevations negatively affects
the NDVI as a PC of −0.34. The effect of temperature on the NDVI is more complex.
The temperature has the smallest direct effect (PC = 0.24) on the NDVI but contributes
the largest indirect effect (PC = −0.32) among the four factors. Temperature indirectly
affects NDVI through precipitation (PC = −0.37), snow cover (PC = −0.70), and soil water
(PC = −0.44). That is, warming leads to less snow cover, and the increased runoff from
melting snow promote vegetation growth. Conversely, the warming-induced decrease in
soil water is detrimental to vegetation growth (Figure 5b and Table 2).

In summary, vegetation in both western and eastern ACA are more sensitive to water
resources (e.g., precipitation and soil water) than temperature. Soil water significantly
impacts vegetation at elevations lower than 300 m in terms of the direct and total effects.
At elevations higher than 300 m, soil water still has the greatest direct effect on vegetation,
while precipitation has the greatest total effect. Furthermore, the direct effect of temperature
on vegetation is positive, but the indirect effect is negative, resulting in a smaller total effect
of temperature after the direct and indirect effects are canceled out.
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3.5. Lagging Response of Growing Season Vegetation to Winter Precipitation

By comparing the total effects at the annual and growing season scales, we found that
precipitation had a greater effect on NDVI than soil water at elevations lower than 300 m at
annual scale (Table 2). The asymmetric results on the annual and growing season scales
imply that last year’s winter precipitation influences next year’s growing season vegetation.
Here, winter precipitation refers to the pre-growing season precipitation (December of
the previous year to next April for eastern ACA, and December of the previous year
to next March for western ACA). Previous studies have shown that the eastern ACA
is dominated by summer precipitation, and the western ACA is dominated by winter
precipitation (including areas lower than 300 m in this study) [63,64]. Meanwhile, as
shown in Figure 5, precipitation indirectly affects vegetation via soil water. Therefore, the
connection between winter precipitation and growing season vegetation in the western
ACA cannot be neglected.

First, there is a significant correlation between the winter precipitation to growing
season NDVI (Figure 6a) and soil water (Figure 6b) in western ACA. In addition, we
conducted SEM analyses of winter precipitation with the growing season NDVI, and
the results are reported in Table 2 (replacing growing season precipitation with winter
precipitation only, leaving other growing season factors unchanged). The results show
that winter precipitation has a greater effect (PC = 0.41) on the growing season NDVI than
growing season precipitation (PC = 0.35) at elevations lower than 300 m. Meanwhile, the
total effect of soil water on the growing season NDVI (PC = 0.73) also increased significantly
compared to the annual scale (PC = 0.50), which was caused by winter precipitation.
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These findings support the hypothesis at the beginning of this subsection, which
states that vegetation is more vulnerable to winter precipitation at elevations lower than
300 m than growing season precipitation. Growing season vegetation has a lag response on
winter precipitation [5], and winter precipitation affects growing season vegetation via the
growing season soil water.

4. Discussion

Our study identifies an elevation divergence in growing season vegetation trends in
ACA, which is also observed in the figures of Burrell et al.’s study [65]. This study by
Burrell et al. takes a global outlook without focusing on ACA or identifying and isolating
the specific climate elements that affect the region. We further discovered that precipitation
has the greatest total effect on vegetation greening at higher elevations, while soil water
has the greatest effect on browning at lower elevations. These findings provide the basis
for a further understanding of the vegetation in ACA. Nevertheless, the characteristics of
the divergence in different vegetation types, as well as other factors affecting vegetation at
different altitude gradations, still need to be discussed.

4.1. SEM Results of Different Vegetation Types

Table 1 shows that vegetation types explain a large percentage of residuals in addition
to elevation gradients. Therefore, in this section, we discuss the direct and indirect factors
of the NDVI according to the different vegetation types. In particular, we discuss the effect
of soil water at different layers on vegetation.

On the one hand, the effects of the four factors on vegetation are different for various
vegetation types. Bare land is the predominant kind of land cover in areas lower than
300 m, followed by open vegetation, waterbodies, shrubs, grasslands, cropland, and
forests (Figure 7a). Even though bare land is often considered devoid of vegetation, we
nevertheless consider it since some discontinuous and sparse vegetation exists that was
previously neglected [60,66]. The results of SEM analysis exhibit that the NDVI on bare
land is mainly dominated by soil water in terms of total effect and direct effect (PC = 0.66)
(Figure 7c), which is the same conclusion as in Section 3.4. In areas higher than 300 m,
grasslands dominate the area (Figure 7a). Since precipitation is the most important impact
factor for grasslands (Figure 7d), the result also proves that precipitation strongly affects
vegetation in the high elevation gradient.
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Figure 7. Area of different vegetation types at different elevation gradients: (a) total effects of
precipitation, the first layer of soil water, the second layer of soil water, and the total of the two layers
of soil water on vegetation. (b) The “soil_water_l1” is the first layer of soil water, “soil_water_l2” is
the second layer of soil water, and “soil_water_l1+l2” is the sum of the two layers. SEM results for
bare land (c) and grassland (d). Gray arrows represent positive correlations, blue arrows represent
negative correlations, and thicker arrows represent larger PC.

On the other hand, soil water at different levels, especially near the surface, affects
the vegetation because the depth of the root is different for various vegetation types. By
comparing the total effects of precipitation, the first layer of soil water, the second layer of
soil water, and the total of the two layers of soil water on vegetation (Figure 7b), we found
that the total effect of soil water in the second layer was more significant in bare land. This
is because, in arid bare land, sparse vegetation needs to root deep underground to find the
water to sustain it.

4.2. Other Effects on Vegetation in the Low-Elevation Gradient

Precipitation is considered the main limiting factor for vegetation in arid zones in
most previous studies [67,68]. However, our study shows that soil water is the domi-
nant factor at low altitudes in ACA. Nevertheless, these findings do not contradict the
previously mentioned before because both growing season precipitation (PC = 0.28) and
winter precipitation (PC = 0.33) significantly directly affect growing season soil water at
elevations lower than 300 m (Table 3, Figure 6). Meanwhile, Moore et al. also proved that
the restoration of soil water deficits during the summer dry season occurs with a time lag
from the winter precipitation of last year [69], which explains the decrease in soil water
in this area. Additionally, the temperature has a large negative total effect on soil water
(Table 3), so a large increase in temperature in western ACA (Figure 4a) will reduce soil
water and thus affect vegetation growth.
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Table 3. The total, direct and indirect effects of temperature (Tmp), precipitation (Pre), Winter
precipitation (Winter Pre), and snow cover (Snow C) on soil water (Soil W) at elevations lower than
300 m.

Total Effect Direct Effect Indirect Effect

Tmp −0.53 −0.24 −0.29
Pre 0.28 0.28 0

Winnter Pre 0.33 0.33 0
Snow C 0.23 0.23 0.00

In summary, reduced precipitation and significant temperature increases restrained
vegetation growth at elevations lower than 300m by limiting soil water.

4.3. Other Factors Affecting Vegetation in the High-Elevation Gradient

Snow cover changes are known to affect vegetation [35,70,71], but the SEM results
show a small PC of snow cover on the NDVI (Figure 5). This could be because some
intermediate variables (runoff, permafrost, soil water, etc.) between snow cover and
vegetation are difficult to quantify in the model. As the highest elevation in ACA, some
areas of Tianshan are covered by permanent glaciers and year-round snow, and many rivers
originate from Tianshan [72]. Therefore, with global warming, the impact of changes in
glaciers and snow cover on vegetation in the study area is not negligible. First, warming
results in shrinking glaciers and snow cover, such as Urumqi Glacier No. 1 [29], leading to
an increase in runoff [72]. For example, the runoff from the Urumqi River in eastern ACA
has increased significantly since the 1980s [73]. The increase in runoff provides sufficient
water for vegetation growth. At the same time, the presence of a highly relevant element
to these elements, permafrost, also allows for the development of various vegetation
types. In summary, warming-induced shrinkage of glaciers and a reduction in snow
cover thus causes an increase in runoff and soil water which has a positive effect on
vegetation greening.

The specific physical mechanisms and eco-hydrological processes involved still need
investigation, even though this study examined the elements influencing vegetation change
in ACA from simple to complicated factors. Furthermore, it is also essential to investigate
how vegetation will evolve due to prolonged global warming.

5. Conclusions

This paper analyzes the antiphase trends of vegetation and meteorological variables
in ACA. We quantified the direct and indirect factors affecting vegetation using NDVI
data from remote sensing observation and reanalysis data of meteorological variables. The
conclusions are as follows:

(1) Growing season NDVI in ACA experienced greening at a rate of 0.0002 yr−1 from 1982
to 2015. In addition, an antiphase trend was observed with a boundary at an elevation
of 300 m. Specifically, the eastern part of ACA is greening (elevations higher than
300 m), while the western part of ACA is browning (elevations lower than 300 m).

(2) Based on the results of LMM, vegetation is mainly influenced by precipitation and
soil water, and differences in elevation and vegetation types explain most residuals.

(3) The results of SEM show that soil water plays a leading role in vegetation dynamics at
an elevation lower than 300 m, while the area higher than 300 m is mainly influenced
by precipitation. The temperature has an indirect effect on vegetation by affecting
precipitation and soil water.

(4) Growing season vegetation has a lagging response to winter precipitation in areas
with an elevation lower than 300 m.
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