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Abstract: Monitoring and management of grapevine water status (GWS) over the critical period
between flowering and veraison plays a significant role in producing grapes of premium quality.
Although unmanned aerial vehicles (UAVs) can provide efficient mapping across the entire vineyard,
most commercial UAV-based multispectral sensors do not contain a shortwave infrared band, which
makes the monitoring of GWS problematic. The goal of this study is to explore whether and
which of the ancillary variables (vegetation characteristics, temporal trends, weather conditions, and
soil/terrain data) may improve the accuracy of GWS estimation using multispectral UAV and provide
insights into the contribution, in terms of direction and intensity, for each variable contributing to
GWS variation. UAV-derived vegetation indices, slope, elevation, apparent electrical conductivity
(ECa), weekly or daily weather parameters, and day of the year (DOY) were tested and regressed
against stem water potential (Ψstem), measured by a pressure bomb, and used as a proxy for GWS
using three machine learning algorithms (elastic net, random forest regression, and support vector
regression). Shapley Additive exPlanations (SHAP) analysis was used to assess the relationship
between selected variables and Ψstem. The results indicate that the root mean square error (RMSE) of
the transformed chlorophyll absorption reflectance index-based model improved from 213 to 146 kPa
when DOY and elevation were included as ancillary inputs. RMSE of the excess green index-based
model improved from 221 to 138 kPa when DOY, elevation, slope, ECa, and daily average windspeed
were included as ancillary inputs. The support vector regression best described the relationship
between Ψstem and selected predictors. This study has provided proof of the concept for developing
GWS estimation models that potentially enhance the monitoring capacities of UAVs for GWS, as well
as providing individual GWS mapping at the vineyard scale. This may enable growers to improve
irrigation management, leading to controlled vegetative growth and optimized berry quality.

Keywords: multispectral UAV; day of the year; elevation; apparent electrical conductivity; slope;
weather parameter; elastic net; random forest regression; support vector regression

1. Introduction

Studies have demonstrated that grapevine water status (GWS) is a key factor in berry
composition, affecting both vegetative growth and fruit metabolism [1–3]. The berry com-
position determines the quality at harvest. During the important phenological stages,
bloom, and veraison [4], GWS is ideally under controlled water deficit to benefit berry
development. This management practice suppresses competition for photosynthetic re-
sources from vegetative growth [5]. In addition, this husbandry promotes the accumulation
of sugar and anthocyanins [6] and prevents oxidative damage to canopies resulting from
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severe water stress [7]. The fluctuating hydration status in vines varies across vineyards
even under a homogeneous irrigation scheme [8], and this subsequently leads to variability
in vine growth and berry development [9–11]. To minimize the variation in grape quality
across vineyards, it is important to monitor the temporal and spatial variability of GWS
while carrying out corresponding practices to keep water status within an optimal range.

Measuring electromagnetic reflectance from plants has become popular because it is
associated with physiological status, phenological stage, and other intrinsic variables of
the plants [12]. In combination with the use of an unmanned aerial vehicle (UAV), it can
provide high spatial resolution images that help further derive vegetation indices (VI) for
the whole vineyard in an efficient manner. However, the shortwave infrared band (SWIR,
1–2.5 µm), which has been reported to have an important relationship with foliar water
content [13], is not included in most of the commercial and low-cost (lower than USD 5000)
UAV-based multispectral sensors [14]. Indices such as water balance index-2 using bands at
0.538 and 1.5 µm are able to identify water stress in grapevines with promising performance
(coefficient of determination (R2) of 0.89) [15]. The inaccessibility of SWIR data has confined
the VIs to visible and near-infrared (VNIR) bands, which provide a less satisfying estimation
of plant water content [16]. Arevalo-Ramirez et al. [17] found that the SWIR band can be
reconstructed from the reflectance of the VNIR band using two machine learning models.
Janal et al. [18] tackled the issue from a hardware perspective by developing a multispectral
imaging system for UAVs that covers 0.4–1.7 µm of the spectrum. Kandylakis et al. [19]
collected spectral data from integrated UAV-based multispectral/SWIR sensors ranging
between 0.53–1.7 µm and designed a processing pipeline to execute data analysis for
estimating GWS.

Another way to compensate for the missing SWIR band is to utilize the integrated
response of plant water status to soil moisture availability, atmospheric demand, plant
characteristics, and cultivation practices [20]. A study supports the view that cultivar
is the main driver of GWS under well-watered conditions, while vegetative expression
and soil type become more dominant as water deficit increases [21]. Weather variables
are other important driving factors characterizing the variation of plant water status [22].
These drivers induce hydraulic and metabolic signals that trigger water consumption by
crops, along with a range of physiological responses to water deficit, consequently shaping
the spatial and temporal variation of GWS in vineyards. Grapevine hydration status is
often substituted by predawn leaf water potential (Ψpd), midday stem water potential
(Ψstem), midday leaf water potential (Ψleaf), and stomatal conductance. Several studies
have been implemented to simulate and explore the relationship between measured GWS
and ancillary information composed of vegetative, soil/terrain, temporal, and weather
variables [23–28].

To model the relationship between GWS and ancillary information, machine learning
techniques offer an attractive alternative due to their ability to model both linear and non-
linear systems [29]. These tools are capable of capturing the most informative relationships
between inputs and outputs, providing predictions based on a set of data variables having
a similar distribution to the training set. To further understand the relationship between
inputs and outputs, the prediction capabilities as well as the contribution each input makes
to the prediction are of interest. That is, it is important to identify the correlation, as well as
the causation, between predictors and response variables. Manipulation may occur when
trained models possess logical causation. Preprocessing can be carried out on the input
dataset to reduce repetitive information and dependence between predictor variables. In
this way, a reasonable causation can be captured while the prediction capacities of the
machine learning algorithm may be improved. Interpretability tools, such as Shapley
Additive exPlanations (SHAP) [30], are able to provide directionality of the relationships
and uncover synergistic effects between multiple variables [31]. When paired with SHAP,
machine learning models become more capable as SHAP offers deeper insights into the
trained models whose results are usually limited to incomplete interpretation, such as
feature importance or variable weight [32].
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As vineyard management is strongly linked to the hydration state of vines, an under-
standing of GWS dynamics and its dominant drivers could be indispensable for viticulture
management. The primary goal of this study is to investigate whether the incorporation
of ancillary information (weather, temporal, and soil/terrain variables) can enhance the
GWS monitoring capacity of UAV-based multispectral sensors without a SWIR band in the
production context. The secondary goal is to provide insights into the relationship between
GWS and vegetation, weather, temporal, and soil/terrain variables over the flowering-to-
veraison period. To the authors’ knowledge, this is the first study where GWS monitoring
models have been developed in a temperate climate zone in the Southern Hemisphere using
ancillary predictors from weather, temporal, and soil/terrain aspects and using SHAP for
relationship interpretation. The procedures undertaken were (i) exploring which vegetation
indices derived from multispectral imagery are strongly correlated with variation of GWS,
with those identified serving as the core input in later modeling, as well as (ii) modeling
changes in GWS based on VIs, temporal, soil/terrain, and weather variables. The ma-
chine learning model with the best predictive performance and logical causal relationships
will then be presented and assessed, (iii) understanding which combination of ancillary
variables should be selected in the best performing model, with their contribution and
relationship with GWS evaluated using SHAP analysis.

2. Materials and Methods
2.1. The Context of the Study Vineyards and Study Periods

The study’s vineyards are located at Martinborough in the Greater Wellington Region
in New Zealand (NZ) (Figure 1). The study sites comprise two commercial vineyards
owned by Palliser Estate and are named Wharekauhau and Pencarrow. Our study areas
within these two vineyards are 6.6 and 6.7 ha, respectively. A S-map online (https://
smap.landcareresearch.co.nz/, accessed on 1 April 2022), developed by Landcare Research,
was used to provide a basic soil summary (mapped at about 1:50,000) to support the
study. There are mainly two types (Glas_8a.2: 60% and Barr_22a.1: 40%) and three types
(Barr_22a.1: 50%, Glas_8a.2: 40%, and Waka_26a.1: 10%) of soils across Wharekauhau
and Pencarrow, respectively. Glas_8a.2 and Barr_22a.1 have dominant silt texture in their
topsoil and subsoil, with gravelly layers from less than 0.45 m to more than 1 m. They
are both described as well-drained, with Glas_8a.2 having moderate soil water holding
capacity and Barr_22a having high capacity. Waka_26a.1 has silt and clay texture in its
topsoil and subsoil, with a gravel content of less than 3% and plant rooting depth extending
beyond 1 m. It is described as imperfectly drained and highly vulnerable to water logging,
having moderate soil water holding capacity.

Pinot noir was chosen as the target cultivar in this study due to its requirement for
relatively precise irrigation management. The Pinot Noir vines in both vineyards were
planted in 1998–2000 and trained with two-cane vertical shoot positioning. Inter- and
intra-row planting space is 2.2 × 1.7 m for Wharekauhau and 2.2 × 1.8 m for Pencarrow.
The annual growth cycle of grapevine in NZ comprises budburst, shoot growth, flowering
(September–November), fruit set, and veraison (December–February), followed by berry
development and harvesting (March–May). Cultivation practices, such as shoot thinning,
bud rubbing, and leaf plucking, are regularly conducted from October to December during
the growing season. Between flowering and veraison (termed as the critical period in
the following sections), the management of GWS is the most critical determinant in final
berry quality.

The trials undertaken in this study took place over two growing seasons. The measure-
ment dates avoided rainy days and matched the most critical period for GWS management.
The study periods are between 27 November 2020 and 1 February 2021 for the first growing
season and between 29 November 2021 and 21 January 2022 for the second growing season
(Figure 2).

https://smap.landcareresearch.co.nz/
https://smap.landcareresearch.co.nz/
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Figure 1. Location of study vineyards.
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Figure 2. Total daily rainfall recorded by an on-site weather station. Reference evapotranspiration
was computed by HARVEST.com (http://harvest.com/, accessed on 1 April 2022) based on the
recordings obtained from the weather station. The dates for UAV images and GWS data acquisition
were 27 November 2020, 4 December 2020, 14 January 2021, 22 January 2021, 1 February 2021,
29 November 2021, 9 December 2021, 11 January 2022, and 21 January 2022. Irrigation was applied
on 23, 25, 27, and 29 January 2021 in the first growing season. The green dash line separates the first
and the second growing season.

2.2. Response Variable-Stem Water Potential

Stem water potential (Ψstem) was chosen as a proxy for GWS and has been expressed
as a comprehensive indicator for early water deficit in vines during the day [33]. On
each measurement date, several healthy vines were sampled in grids to assess variability

http://harvest.com/
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across each vineyard (Figure 3) using two mature and fully expanded leaves from the
middle part of each sampled canopy. The mature and fully expanded leaves are more
representative of the status of canopies. A pressure chamber (model: 610, MPS, Albany, NY,
USA) was employed between the hours of 13:00 and 15:30 to assess Ψstem (kPa). Prior to
measurement, the sampled leaves were covered with sealable plastic bags for around 1 h.
The higher the Ψstem reading, the more dehydrated the vine. These two measurements
(per sampled vine) were averaged to represent the vine’s canopy water status. A total of
85 and 63 separate canopies were surveyed in the first and the second growing season,
respectively, and each of their trunk locations was recorded using a global navigation
satellite system (GNSS) with real-time kinematic (RTK) correction (model: GPS1200+, Leica
Geosystems AG., Heerbrugg, Switzerland).
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Figure 3. The sampling locations over two study periods. Left is the Wharekauhau, and right is the
Pencarrow vineyards. Orange points represent the observations acquired in the 2020–2021 season,
and yellow points represent the observations acquired in the 2021–2022 season.

2.3. Predictor Variable-Vegetation Parameters

Aerial images were obtained between 11:00 and 13:00 under sunny conditions to
minimize the influence of sun angle and shadow and to ensure comparability on the
same date that Ψstem data were measured. The reflectance, with a spatial resolution of
0.043 m, was recorded by DJI Phantom 4 multispectral UAV (DJI, Shenzhen, China) with
six built-in sensors in the blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red
edge (730 ± 16 nm), and near-infrared (840 ± 26 nm) regions. The DJI Phantom 4 has an
integrated sunlight sensor which records irradiance during the flight in the same bands
captured by the multispectral sensor for reflectance computing. With this information,
UAV images can be normalized, thus allowing for comparison between images taken under
different illumination conditions. Photogrammetric processing was applied to the aerial
data using Pix4Dmapper (Pix4D SA, Lausanne, Switzerland) to generate digital surface
models (DSM), digital terrain models (DTM), and reflectance maps. Settings were designed
as follows: key point image was set as full, point cloud densification was set as 1/2 (optimal),
and three for image scale, point density, and minimum number of matches, respectively.
Classify point cloud was ticked. Noise filtering and surface smoothing using sharp type
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were applied. DSMs were produced using an inverse distance weighting algorithm. To
increase image spatial accuracy, several ground control points were recorded by GNSS-RTK
in each vineyard, and image alignment was subsequently performed in ArcGIS Pro 2.9
(ESRI, Redlands, CA, USA).

The vineyards feature discontinuous vegetation surfaces, so it was necessary to sepa-
rate canopy pixels from grass and soil pixels to obtain pure information about grapevines.
As there is a height difference between grapevine canopies and the surrounding landscape,
canopy height was acquired by subtracting DTM from DSM, then creating a binary image
with a threshold of 0.9 m to exclude background pixels. For each grapevine, the canopy
cordon was set at about 0.8 m from the trunk. Only the vegetation component within
0.5 m distance from the trunk was considered for computing vegetation variables in this
study since the shoots of adjacent grapevines are often overlapping and intertwined. The
acquisition of specific canopy pixels was carried out by overlapping the buffer zones (using
recorded trunk location as the center of a circle with a radius of 0.5 m) with the binary
raster of canopy height (Figure 4). Subsequently, 18 vegetation indices for each sampled
grapevine, chosen according to frequency of usage in viticulture [34], and shown in Table 1,
were calculated based on the mean values of pure canopy pixels using “zonal statistic as
table” in ArcGIS Pro.
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Figure 4. The procedure of getting pure pixels for sampled canopies. (A): The subset of an aerial
image comprising grapevines and floor vegetation. The buffer zone, the yellow circle, was created
according to the recorded location (the orange point) of the sampled grapevine. (B): Binary raster
of canopy height was generated by subtracting the digital terrain model from the digital surface
model. (C): Pure grapevine pixels (pink region) were acquired by overlapping the buffer zone with
the binary raster.

Table 1. List of vegetation indices used in this study.

Vegetation Index Acronym Formula References

Transformed Chlorophyll
Absorption Reflectance Index TCARI 3 × ((Red edge − Red) − 0.2 ×

(Red edge − Green) × (Red edge/ Red)) [35]

Excess Green Index ExG 2 × Green − Red − Blue [36]
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Table 1. Cont.

Vegetation Index Acronym Formula References

Ratio between Transformed
Chlorophyll Absorption
Reflectance Index and

Optimized Soil Adjusted
Vegetation Index

TCARI/OSAVI - [35]

Normalized Difference Red
Edge Index NDRE (NIR − Red edge)/(NIR + Red edge) [37]

Green Normalized
Difference Vegetation Index GNDVI (NIR − Green)/(NIR + Green) [38]

Red Edge Chlorophyll Index CL red edge (NIR/ Red edge) − 1 [39]

Modified Triangular
Vegetation Index MTVI1 1.2 × (1.2 × (NIR − Green) − 2.5 ×

(Red − Green)) [40]

Enhanced Vegetation Index EVI 2.5 × (NIR − Red)/ (NIR + 6 × Red −
7.5 × Blue + 1) [41]

Difference Vegetation Index DVI NIR − Red [42]

Modified Soil Adjusted
Vegetation Index MSAVI (2 × NIR + 1 − ((2 × NIR + 1)2 − 8 ×

(NIR − Red))1/2)/2
[43]

Simple Ratio SR NIR/Red [44]

Normalized Difference
Vegetation Index NDVI (NIR − Red)/(NIR + Red) [45]

Optimized Soil Adjusted
Vegetation Index OSAVI (NIR − RED)/(NIR + Red + 0.16) [46]

Normalized Difference
Green/Red Index NGRDI (Green − Red)/(Green + Red) [42]

Red:Green Ratio R/G index Red/Green [47]

Visible Atmospherically
Resistant Index VARI (Green − Red)/(Green + Red − Blue) [48]

Modified Chlorophyll
Absorption Ratio Index MCARI ((Red edge − Red) − 0.2 × (Red edge −

Green)) × (Red edge/ Red) [49]

Canopy volume - - [50]

2.4. Predictor Variable-Soil and Terrain Information

An EM38-MK2 is an electromagnetic induction (EMI)-based sensor (Geonics Ltd.,
Mississauga, ON, Canada). The return reading (apparent electrical conductivity (ECa))
is considered a function of soil solid types, soil solution, and soil water content [51].
Spatial patterns of ECa values have been found to be relatively temporally stable between
measurement dates [52]. Recommended practice is to undertake measurements when
soils are near field capacity and ECa-based soil variability is at a maximum [53]. In this
study, the EM38-MK2 was operated in the vertical dipole mode, with the instrument taking
integrated ECa measurements at about 1.5 m depth. An EMI survey was undertaken on
27 May 2021 by towing the EM38-MK2 at the back of an all-terrain vehicle (less than 0.2 m
between EM38-MK2 and the all-terrain vehicle) with a Trimble Yuma tablet incorporating
an onboard GPS receiver (model: Yuma, Trimble), accurate to 2–4 m, to geo-reference all
point data from the ECa (mS/m) survey. The vineyards’ infrastructure was confirmed
with the grower to ensure there was no interference from buried metal components and
perched water tables. ECa points were measured approximately every 3–10 m along
transects and 10 m apart, and values less than 0 mS/m were removed before interpolation.
The geostatistical interpolation method, empirical bayesian kriging (EBK), was used to
transform point data onto a continuous surface raster with 1 m resolution in ArcGIS Pro.
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Elevation (m) and slope (degree) information of the location of each sampled canopy
was obtained from the ‘Wellington LiDAR 1m DEM (2013–2014)’ layer provided by the
Land Information New Zealand data service (https://data.linz.govt.nz/, accessed on
1 April 2022). This digital elevation model (1 m resolution) was generated by aerial LiDAR
captured between 2013 and 2014 for the Greater Wellington region. For each grapevine, the
mean values of ECa, elevation, and slope within 0.5 m distance of the trunk were computed
using “zonal statistic as table” in ArcGIS Pro.

2.5. Predictor Variable-Meteorological and Temporal Data

Weather data were recorded by an on-site weather station (175.4741, −41.2247 WGS84)
established by HARVEST.com (http://harvest.com/, accessed on 1 April 2022). The target
variables include air temperature (◦C), relative humidity (%), rainfall (mm), wind speed
(km/h), and irradiance (W/m2). These variables were used to compute mean temperature,
mean relative humidity, total rainfall, mean wind speed, and total irradiance based on
weekly and daily intervals before each measurement date. It was assumed that climatic
conditions were homogeneous across the two vineyards.

2.6. Hierarchical Clustering

One of the goals of this study was to identify causal relationships that may enable
growers to utilize or modify GWS according to tailored quality standards. Accordingly,
the models developed in this study were required to not only have predictive capabilities,
but also logical causality. Initially, all predictor variables were used for regression against
Ψstem without clustering preprocessing, so that most of the causal relationships were not
intuitive. Subsequent hierarchical clustering was employed to generate groups of highly
correlated variables and to produce input datasets with less repetitive information. As a
result, the model still exhibits similar prediction results using fewer predictors, and all
causal relationships are reasonable and intuitive.

The hierarchical clustering for variables was carried out as an exploratory data anal-
ysis [54]. Hierarchical clustering was chosen in this study because it can provide a clear
overview of the input datasets in terms of grouping while incorporating expert domain
knowledge without the need to pre-specify cluster numbers. This is an important step
because repetitive information among variables decreases the precision of machine learning
modeling and complicates the interpretation of results. In this study, the similarity between
clusters was based on correlation distance, which means that variables which are more
positively correlated, based on Pearson correlation, will first merge as one cluster, until all
variables are combined into one [55]. The criterion used to determine the distance between
two clusters, also called linkage, was set to “complete”, referring to the largest dissimilarity
between observations in clusters. Hierarchical clustering, regression modeling, and SHAP
analysis were implemented with Python 3.9.

2.7. Regression Modeling

On the basis of the clusters generated by hierarchical clustering, combinations of
predictor variables were formed by picking one variable from each cluster or not picking
any variable from any cluster. All possible combinations, 576 in total, were investigated
along with three types of machine learning models for performance comparison. Instead of
using conventional variable selection methods such as filtering (e.g., Pearson correlation)
or wrapper (e.g., recursive feature elimination), all combinations were evaluated, since
the behavior of one variable is influenced by the presence of others. Thus, significant
variables would not be removed due to weak correlation with the response variable or
having less importance in some of the input datasets. The total samples (n = 148) were split
into training (n = 103) and test (n = 45) sets using a 70/30 ratio. This split was carried out
and stratified according to the date of measurement to ensure that both training and test
sets had corresponding percentages of samples for each date. All predictor variables were
standardized to have mean values equivalent to 0 and a standard deviation of 1.

https://data.linz.govt.nz/
http://harvest.com/
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Elastic net (EN), random forest regression (RFR), and support vector regression (SVR)
were applied to estimate Ψstem based on climatic, soil/terrain, temporal, and vegetation
variables. As the performance of regression models is influenced by their hyperparam-
eters, it was necessary to tune the hyperparameters beforehand to prevent overfitting.
This enabled the regression algorithms to exploit their potential. Grid searching on the
training set with 10-fold cross-validation was used to search for the best combination of
hyperparameters. A list of tuned hyperparameters and their ranges for each algorithm is
displayed in Table 2. The test dataset was set aside during hyperparameter tuning and
model training. These hyperparameters were then used on the test set for evaluation of the
model’s generalization performance. To compare the performance of regression models
and thus choose the optimal one for further analysis, root mean square error (RMSE) and
ratio of performance to interquartile range (RPIQ) values were computed by applying the
trained models with the optimized hyperparameters on the test set. Generally, a model
with good prediction performance would have larger values of RPIQ and smaller values
of RMSE.

Table 2. The tuned hyperparameters and their ranges for each regression model.

Regression Model Hyperparameter Range

Elastic net
Constant that multiplies the

penalty terms 0.01, 0.1, 1, 10, 100

Mixing parameter 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9

Random forest regression

The number of variables to be
considered for the best split “auto”, “sqrt”, “log2”

The maximum depth
of the tree 2

The number of trees
in the forest 100

Support vector regression

The used kernel type “linear”, “poly”, “rbf”
Kernel coefficient “scale”, “auto”

Regularization parameter 0.01, 0.1, 1, 10, 100
The width of the epsilon-tube 0.1, 0.5, 0.9

Notes: “Auto” refers to the total number of variables, “sqrt” refers to the square root of the total number of
variables, “log2” refers to the binary logarithm of the total number of variables, “poly” refers to polynomial,
“rbf” refers to radial basis function, “scale” refers to the use of 1/(total number of the variable × variance
of the variables) as the kernel coefficient, and “auto” refers to the use of 1/(total number of variable) as the
kernel coefficient.

2.8. Shapley Additive Explanations Analysis

The optimal model then underwent SHAP, based on game theory, to explore the
relationships and quantify the contribution (SHAP values) of each input according to
its average contribution to the model output [30]. In this study, SHAP values based on
KernelExplainer were computed for all samples since support vector regression performed
the best at modeling and was used in the SHAP analysis. Summary plots for the whole
dataset were generated to show important features and the directionality of their impact.

3. Results
3.1. Variation in Stem Water Potential

Both vineyards were visited nine times over two growing seasons, from flowering in
late November to veraison in late January. This period is the most critical one before harvest
in terms of the effects of GWS on berry quality. Figure 5 displays the variability in Ψstem
collected from 148 canopies at two vineyards and the distribution of the measurements
on each date. The maximum and minimum observation of Ψstem is 1344 and 293 kPa,
respectively. Irrigation was only applied at the end of the study periods in the first growing
season (Figure 2). Overall, there is an increasing trend of dehydration in GWS with time in
both growing seasons, which indicates the impact of water deficit gradually accumulating
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in the canopies. The only exception is an increase in hydration state on 9 December
2021 compared to the previous measurement due to rainfall events a few days before
sampling (i.e., 38.8 mm on 6 December 2021 and 11 mm on 7 December 2021). The height
of the box and the difference between the upper quartile and lower quartile represent
the spatial variation of GWS on one date across each vineyard. Figure 5 demonstrates
that it is inappropriate to make irrigation decisions during this period based on single
or average measurements collected in the vineyard. This difference became larger as the
survey proceeded, which implies spatial variation becomes more obvious when canopies
are more dehydrated.
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Pencarrow (n = 86) and Wharekauhau (n = 62) vineyard. X symbols refer to the average values on the
survey dates. Lines in the boxes refer to median values on the survey dates.

3.2. Determination of the Best Descriptor of Vegetation Index for Variation in Grapevine
Water Status

According to the goal stated in the introduction section, 18 vegetation indices (VIs)
frequently used in viticulture were computed using five bands (i.e., blue, green, red, red
edge, and near-infrared) provided by the UAV-based multispectral sensors. VIs were
compared with the corresponding Ψstem values recorded in the field surveys to assess
their correlation, in terms of R2 and RMSE, and to check whether changes in Ψstem can
be reasonably assessed using drone-based imagery. Amongst all the indices, TCARI had
the best linear correlation with variation in GWS, with a R2 of 0.35 and a RMSE of 213 kPa
(Table 3). This was followed by ExG, with a R2 of 0.3 and a RMSE of 221 kPa. Since TCARI
is derived from green, red, and red edge bands, this suggests that TCARI is a promising
candidate to help characterize the spatial variation of Ψstem when multispectral sensors
are employed. The promising performance of ExG implies that, when only RGB sensors
are available, ExG may serve as a spectral indicator for Ψstem. Subsequently, these two
indices were used as the core input for separate modeling, with weather, soil/terrain, and
temporal variables used to explore the advantage of adding these ancillary variables when
regressing against Ψstem.

Table 3. R2 and RMSE based on a linear regression between GWS and each vegetation index. The
vegetation indices are ranked in descending order of R2. R2 is coefficient of determination, and RMSE
is root mean square error.

Vegetation Index R2 RMSE (kPa)

TCARI 0.35 213

ExG 0.30 221
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Table 3. Cont.

Vegetation Index R2 RMSE (kPa)

NDRE 0.25 228

TCARI/OSAVI 0.24 231

GNDVI 0.24 231

CL red edge 0.24 231

Canopy volume 0.19 237

MTVI1 0.16 243

EVI 0.13 247

DVI 0.12 248

MSAVI 0.10 251

SR 0.08 254

NDVI 0.04 258

OSAVI 0.03 260

NGRDI 0.02 262

R/G index 0.02 262

VARI 0.009 263

MCARI 0.0002 264

3.3. Selection of Predictor Variables as Inputs for Modeling Using Hierarchical Clustering

Hierarchical clustering, using correlation distance for distinguishing similarity, was
employed to cluster the predictors that were statistically redundant to one another. Later,
the model could use any variable from a cluster to form the input dataset. In Figure 6, each
leaf of the dendrogram represents one of the 15 predictor variables. The vertical axis indi-
cates how similar the variables are. The earlier (closer to the leaves) that merging between
variables occurs, the more positively correlated those variables are. When variables merge
close to the top of the dendrogram, the information they contain is nearly independent of
each other. The number of clusters was determined by incorporating domain knowledge.
As weather variables are intercorrelated and have an impact on plant physiology leading to
changes in spectral features (i.e., VIs), it is reasonable to put them into clusters. However,
the relationship between soil/terrain variables and short-term weather effects or VIs would
be considered weak, so the cut-off line was set at 0.75 for both TCARI and ExG-based
models, resulting in eight clusters marked with different colors. The summary for ancillary
variables used in this study was listed in Table 4.

Table 4. A summary for all the ancillary variables used to regress against changes in grapevine
water status.

Predictor Abbreviation or Short Name of Predictor Type

Day of the year DOY Temporal
Apparent electrical conductivity ECa Soil/terrain

Elevation - Soil/terrain
Slope - Soil/terrain

Mean relative humidity RHmean Weather
Total rainfall Rtotal Weather

Total irradiance IRtotal Weather
Mean wind speed WSmean Weather
Mean temperature Tmean Weather
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Figure 6. Hierarchical clustering dendrogram of predictor variables: RHmean is mean relative
humidity; Rtotal is total rainfall; DOY is day of the year; IRtotal is total irradiance; WSmean is mean
wind speed; Tmean is mean temperature; ECa is apparent electrical conductivity. The initial letter
(w or d) refers to the temporal scale as weekly or daily, respectively, before the measurement of
stem water potential. (Left): predictor variables that use TCARI as a core input. (Right): predictor
variables that use ExG as a core input.

3.4. Regression of Grapevine Water Status Based on Core and Ancillary Variables

To test the potential usage of including the ancillary variables, core variables (i.e.,
TCARI or ExG) and different combinations of the ancillary variables composed the inputs
for regression against Ψstem using EN, RFR, or SVR. The core variable must always be
a modeling component. Ancillary variables were formed by one variable per cluster
generated by hierarchical clustering, while the joining of variables from each cluster was
optional. The total number of combinations tested was 576 (8 clusters: 3 × 2 × 3 × 4 × 1 ×
2 × 2 × 2).

Compared to regression using VI only, there is a significant improvement in RMSE
when including ancillary variables as inputs (Table 3, the first rows in Tables 5 and 6). RMSE
is improved from 213 to 146 kPa for the TCARI-based model, while RMSE is improved from
221 to 138 kPa for the ExG-based model. In both models, SVR, a non-linear algorithm, was
chosen to be the best descriptor for the relationship between Ψstem and the predictors. The
scatter plots for both TCARI-based and ExG-based SVR models are presented in Figure 7.

From the second to the seventh rows in Tables 5 and 6, the modeling performance is
presented to further assess the importance of ancillary variables in terms of their type (tem-
poral, soil/terrain, and weather). According to the types of inputs used, only the machine
learning model with the best predictive performance among the three machine learning
models, in terms of RMSE on the test set, is presented. For both TCARI-based and ExG-
based models, those used soil/terrain and temporal variables as inputs to capture the most
variance. In terms of one type of ancillary predictor, models using terrain/soil variables as
inputs have the worst performance for both TCARI-based and ExG-based models.

Table 5. Regression modeling using TCARI as core input along with different types of ancillary
variables. RMSE is root mean square error, and RPIQ is ratio of performance to interquartile range.

Variable Composition Machine Learning Algorithm RMSE of the
Train Set (kPa)

RPIQ of the
Train Set

RMSE of the
Test Set (kPa)

RPIQ of the
Test Set

TCARI + full set of predictors Support vector regression 139 3.02 146 2.60
TCARI + soil/terrain + weather Random forest regression 159 2.64 163 2.33
TCARI + soil/terrain + temporal Support vector regression 139 3.02 146 2.60

TCARI + weather + temporal Random forest regression 149 2.81 153 2.48
TCARI + soil/terrain Random forest regression 165 2.54 172 2.21

TCARI + temporal Random forest regression 149 2.81 150 2.53
TCARI + weather Random forest regression 158 2.65 163 2.33
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Table 6. Regression modeling using ExG as core input along with different types of ancillary variables.
RMSE is root mean square error, and RPIQ is ratio of performance to interquartile range.

Variable Composition Machine Learning Algorithm RMSE of the
Train Set (kPa)

RPIQ of the
Train Set

RMSE of the
Test Set (kPa)

RPIQ of the
Test Set

ExG + full set of predictors Support vector regression 134 3.14 138 2.75

ExG + soil/terrain + weather Random forest regression 139 3.02 142 2.66

ExG + soil/terrain + temporal Support vector regression 135 3.10 141 2.69

ExG + weather +
temporal Support vector regression 138 3.03 143 2.65

ExG + soil/terrain Random forest regression 196 2.14 214 1.77

ExG + temporal Random forest regression 128 3.27 159 2.39

ExG + weather Random forest regression 138 3.04 144 2.64
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Figure 7. Scatter plots between predicted stem water potential and observed water potential for
TCARI-based training set (upper left), TCARI-based test set (upper right), ExG-based training set
(lower left), and ExG-based test set (lower right) using support vector regression based on the full
set of predictors.

In terms of selected machine learning algorithms, both RFR and SVR are good de-
scriptors to capture the variance of Ψstem when regressed against two types of ancillary
variables (the second to fourth rows in Tables 5 and 6). RFR performs the best, shown
by the fifth to seventh rows in Tables 5 and 6, for models based on one type of ancillary
predictor, and the results of both SVR and EN are not presented because only the models
with the best performance, in terms of RMSE on the test set, are displayed based on the
types of inputs used.

3.5. Interpreting Models Using Shapley Additive exPlanations Analysis

To explore the impact of each predictor variable on modeling output and variation in
Ψstem, SHAP was deployed to support the interpretability of machine learning models.
The SHAP values indicate the contribution of the variable towards model prediction. For
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Tables 5 and 6, the causal effects between Ψstem and predictor variables were assessed using
SHAP, and only those models with reasonable relationships were selected and presented.

Only models based on full types of predictors in Tables 5 and 6 were analyzed and
presented using SHAP analysis. In the summary plots of Figures 8 and 9, every point
from each predictor refers to an observation. A wider spread of points along the axis of
SHAP values indicates the variable has more influence on the output, thus being of more
importance. The color of the points denotes the value of the variable for the observation,
where red and blue colors refer to the high and low variable values, respectively. The
summary plot shows how each variable influences the model prediction. For example, a
red point with a negative SHAP value indicates that a higher value of the variable will
have a negative contribution to the Ψstem value, the canopy becoming more hydrated. The
bar plots of Figures 8 and 9 provide an overview of variable importance for each model.
Both TCARI and ExG exhibit higher values when the grapevines are more hydrated. For
the ExG-based model, it shows that higher wind speed leads grapevines to become more
hydrated. The potential reasons underlying these relationships will be discussed in the
next section.
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Figure 8. (Left): summary plot for regression modeling using TCARI and selected ancillary variables
as inputs. (Right): bar plot for the predictor variables according to SHAP values received. Variables
are ranked from top to bottom in descending order of average SHAP value, where DOY is day of the
year; TCARI is transformed chlorophyll absorption reflectance index.
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Figure 9. (Left): summary plot for regression modeling using ExG and selected ancillary variables as
inputs. (Right): bar plot for the predictor variables according to SHAP values received. Variables
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of the year; ExG is excess green index; w_WSmean is weekly mean wind speed; ECa is apparent
electrical conductivity.

4. Discussion
4.1. Vegetation Indices and Stem Water Potential

Under water deficit, plants employ several adaptive strategies at leaf level, such as
changes in leaf pigments and canopy structure, resulting in leaf curls and abscission [56–58].
These pigment and structural changes cause variation in multispectral reflectance, includ-
ing the blue, green, red, red edge, and near-infrared (NIR) bands. Multispectral reflectance
detects water status indirectly via reflectance changes in response to physiological and
morphological variability as a consequence of water stress [59]. The blue band is character-
ized by the absorption of chlorophyll and carotenoids, which can be used as an indicator
of the resistance of plants to stress, such as water deficit [60,61]. The energy in the green
band is associated with the absorption by anthocyanins and reflection by chlorophyll [62].
The red band has been reported to be associated with the concentration of chlorophyll [63].
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The reflectance and position of the red edge band, a transition region between red and
NIR bands, has been proven to be sensitive to chlorophyll content in leaves [64,65]. The
variation level of leaf water content alters cell turgidity and changes cell structure, which
subsequently influences the absorption and reflection in the NIR band [66]. When crops
experience water deficit, leaf chlorophyll content usually reduces, leading to a decrease
in green reflection and an increase in blue and red reflection [67]. In addition, there is
an increase in the concentration of de-epoxidized components of xanthophyll [56], while
the alteration of canopy geometry results in a decrease in NIR reflection [68]. These basic
characteristics lay the foundation for the use of vegetation indices (VIs) acquired from
multispectral drones to monitor crop hydration status, as most of the current UAV systems
do not include shortwave infrared bands [69].

Most of the variability of GWS in this study lies in non-stressed (Ψstem ≤ 800 kPa) and
moderately stressed (800 kPa ≤ Ψstem ≤ 1200 kPa) ranges, while only three observations
belong to the severely stressed range (Ψstem ≥ 1200 kPa) [23]. Using single multispectral VI,
the capability of capturing the variance in GWS is poor, though the correlation is significant,
with the best performance by TCARI, having an R2 of 0.35 (Table 3). This unsatisfactory
result is similar to that reported by Romero et al. [70], in which the best performance of
all VIs was an R2 of 0.42. A possible explanation for this may be related to the sensitivity
of canopy structure and leaf pigments to various levels of water stress for different crop
species [63]. For example, chlorophyll is affected after severe dehydration treatment or after
an extended period of water deficit [71], so VIs associated with chlorophyll variation may
not be sensitive enough to detect mild water stress or short-term dehydration. Moreover, a
study has shown that differences in spectral resolution could influence values of VIs, such
as NDVI [72], which can compromise the relationship between spectral indices and the
variable of interest.

According to Zhang et al. [73], multispectral VIs related to water deficit can be classi-
fied as chlorophyll and structural VIs based on their sensitivity to changes in physiological
or morphological characteristics. Chlorophyll VIs are derived from blue, green, red, or red
edge bands, so they are more sensitive to changes in chlorophyll concentration. TCARI,
ExG, and TCARI/OSAVI belong to this category. Structural VIs are computed based on
spectral bands, including NIR, so they are both influenced by chlorophyll and leaf scat-
tering caused by changes in plant structure and involve the use of GNDVI, NDRE, and
NDVI. It is interesting to note that chlorophyll VIs are very good at capturing the variance
of Ψstem (Table 3). This implies that the water stress level of the grapevine used in this
study, Pinot Noir, is described better via observation of chlorophyll-related VIs compared
to structure-related VIs. Research carried out at Pinot Noir vineyards in New Zealand
over two growing seasons [74] stated that dehydration treatment did not have an overall
effect on the reduction of leaf area and that this effect started becoming evident from
veraison onwards. They highlighted the usefulness of using chlorophyll content in water
stress studies, which supports our results. The top five VIs (TCARI, ExG, TCARI/OSAVI,
GNDVI, NDRE, and one frequently used VI, NDVI), in terms of its R2, are the focus for the
following discussion.

Among the chlorophyll VIs, TCARI (R2 = 0.35) explains more variance in GWS than ExG
(R2 = 0.3) does in terms of their correlation coefficients, followed by TCARI/OSAVI (R2 = 0.24).
TCARI is a VI, which is sensitive to chlorophyll concentration, while TCARI/OSAVI has
been proposed to minimize the effects posed by soil reflectance and changes in leaf area
index (LAI) [35]. The better performance of TCARI compared to the modified index
(TCARI/OSAVI) may indicate that the LAI of grapevines was relatively stable and high,
thus swamping any noise from the soil background during the study period. This finding is
supported by the study of Baluja et al. [75], in which TCARI (R2 = 0.45) and TCARI/OSAVI
(R2 = 0.58) were significantly correlated with the Ψstem of rain-fed Tempranillo grapevines
in Spain. TCARI yields a better correlation with Ψstem than ExG, probably due to the
inclusion of the red edge band. This behavior was also observed at Petite Sirah and Cabernet
Sauvignon vineyards in California, USA [28]. ExG is a VI highlighting a green band to
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separate vegetation from the background, and thus is sensitive to canopy greenness [36].
A good correlation between ExG and GWS was also found to be evident for grapevines
faced with different irrigation treatments at a Vermentino vineyard in Italy [76]. The good
performance of ExG suggests that it has the potential of detecting GWS using just RGB
sensors instead of multispectral sensors. This may increase the applicability of UAV-based
imagery because RGB cameras do not require an extra filter and post-processing work to
generate NIR readings, thus reducing the cost of sensors [77].

Both GNDVI and NDRE have been reported to be sensitive to variations in chloro-
phyll concentration [38,78]. Due to the modification of chlorophyll content under water
stress, GNDVI was observed to be able to differentiate Cabernet Sauvignon grapevines
between the moderate and severe classes of water deficit [79]. A good correlation between
GNDVI and Ψstem was recorded by Baluja et al. [75] and Poblete et al. for Carménère
grapevines planted in Chile [59], in which R2 was 0.58 and 0.31, respectively. NDRE was
observed to outperform other multispectral indices when correlated with leaf water po-
tential, with a Pearson correlation coefficient of −0.27 [28]. NDVI is the most used VI in
agriculture, as it is related to plant biomass, vigor, and health. In viticulture, the growth
of shoots is inhibited after experiencing water deficit [80], and that development state,
quantified by pruning weight and LAI, has been shown to be strongly related to NDVI [81].
Acevedo-Opazo et al. [23] have observed a significant difference in pre-dawn leaf water
potential between high and low NDVI zones for seven cultivars grown in France. However,
in this study, the correlation between NDVI and Ψstem is weak (R2 = 0.04). The poor
performance of NDVI is supported by Romero et al. [70], whose research indicated that the
red and NIR bands could be used as long-term predictors of water deficit as correlation im-
proved over the season. Another explanation is the saturation effect of NDVI values, which
usually happens when applied to very dense canopies. In the research of Junges et al. [82],
a lower standard deviation of 0.01 was calculated when NDVI was measured close to 0.8 for
Cabernet Sauvignon grapevines planted in Brazil. This value is similar to this study’s NDVI
recordings (average = 0.74; maximum = 0.82; standard deviation = 0.06).

4.2. Important Ancillary Variables: Day of the Year, Elevation, Electrical Conductivity, and
Wind Speed

Inspired by the concept of a soil-plant-atmosphere continuum for water movement in
nature [83], various ancillary estimators (other than VIs) have been used to help describe
the dynamics of GWS (Table 4). Plant water status during the day is a consequence of
water uptake (mainly dependent on characteristics of the root system and soil moisture),
as well as transpiration (mainly dependent on a number of atmospheric variables and
stomatal conductance) [84]. In this study, it was assumed that Ψstem was more strongly
associated with soil water status and weather conditions. This assumption was made
because the cultivar effect has been removed, as only Pinot Noir with similar canopy ages
were examined. In addition, daylight is assumed to be the main driver to stomatal opening
in this study. As the temperature is mild and rainfall is moderate in Martinborough,
the occurrence of additional processes such as stomatal closure induced by abscisic acid
resulting from soil water deficit may be reduced. Moreover, Pinot Noir is considered to be
a near-anisohydric cultivar, so its control on stomata is less responsive to decreases in soil
moisture [85].

The selected core VIs (TCARI and ExG) exhibiting chlorophyll variability are the
variables representing the mid-term impact imposed by water deficit, as the chlorophyll
content changes in accordance with the level of dehydration during the growing period. It
is assumed that the predictive capacities for Ψstem can be significantly improved when
complementing VIs with comparable long-term and short-term variables. Soil/terrain
variables represent long-term effects, as they consistently affect GWS over years [86]. The
temporal variable is relatively mid- to short-term because it reflects the time trend along
the growing season. Weekly or daily weather variables are short term. The complementary
effects among different types of variables are reflected in Tables 5 and 6. When using two
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types of ancillary predictors, the composition of predictors (VI, soil/terrain, and temporal
variables) captures the most variance in Ψstem in both TCARI-based and ExG-based models.
When using solely one type of ancillary predictor, the combination of VI and temporal or
weather variables produces models with the best performance, similar to the performance
of the models using two types of ancillary predictors. This indicates that using variables
with mid- to short-term effects may be sufficient to describe the variation of Ψstem in this
study. TCARI and ExG-based models had the worst performance when combined with
soil/terrain variables, while the ExG-based model performed worse than the TCARI-based
model. This may be because the ExG captures relatively mid to long-term effects of water
stress on chlorophyll content, while TCARI captures relatively short to mid-term effects.
This supports the result when using a full set of ancillary predictors (Figures 8 and 9).
The best performing TCARI-based model does not select any weather variables, and the
ExG-based model selects one weather variable as an input.

The summary plots in Figures 8 and 9 provide insights into the relationships between
Ψstem and the selected ancillary variables (DOY), elevation, ECa, and weekly mean wind
speed). DOY represents seasonality along the growing season. DOY positively contributes
to the dehydration of the grapevine (Figures 8 and 9). Irrigation was only applied at the
end of the study periods in the first growing season, with heavy precipitation concentrated
around flowering and fruit set and subsequent gentle (<10 mm) rainfall (Figure 2). As
a result, there is a downward trend of Ψstem (increasing hydration) from late Novem-
ber to late January (Figure 5) in accordance with the increase in DOY. In the study of
Suter et al. [27], DOY explained a great part of the variability in the Ψstem of three cultivars
grown in France.

SHAP summary plots show that grapevines are more hydrated when they stand on
more elevated ground. It is contrary to the concept in which water accumulation happens in
the lower parts of fields so that crops would stay at high hydration levels. When evaluating
terrain information of observations at both vineyards, Pencarrow, ranging between 44–46 m
elevation, is higher than Wharekauhau, ranging between 36–38 m. The recorded elevation
of observations from Wharekauhau is significantly lower than that of observations from
Pencarrow (p-value of Mann-Whitney U test is lower than 0.05). One explanation is that the
higher landscape terraces, older than 15K years, are likely to have a covering of loess. Loess
is a well-sorted quartzo-feldspathic material of silt to clay-sized particles, and it is picked
up by wind from nearby aggrading braided riverbeds present during historic global cold
cycles. This fine loess will increase the water holding capacity of the soils developing on
these higher and older terraces. Loess deposition will not be present on lower terraces with
an age younger than 15K years, where the soils are much more likely to be developing from
alluvial deposits from consecutive flooding events over the last 15K years. These deposits
have a potentially wider range of textures from silt to sand and coarse sand. The soils
developing from them are likely to be better drained. The soil properties were reported to
affect soil water holding capacity, further leading to spatial differences in GWS across the
fields [26]. Thus, Pencarrow, sited on the higher terrace, may have the ability to hold more
water than Wharekauhau due to differences in particle composition, enabling grapevines
to be more hydrated.

ECa was selected as an important predictor for the ExG-based model. ECa has been
demonstrated to be related to spatial changes in GWS (R2 = 0.56) due to its association
with differences in soil water availability [87]. The contribution of EC to Ψstem (Figure 9)
does not follow a regular pattern. Higher clay content usually leads to higher ECa because
clay particles can adsorb more water [88]. However, the ECa survey in this study was
taken during a wet period, and soil ECa recorded in this kind of period was influenced
by both soil moisture content and clay content [89]. Therefore, the relationship between
ECa and Ψstem is not straightforward. Other sources of variation include the spatial
sensitivity of the EM38 instrument [90], the size of the root ball of each canopy, and the
physical properties of the soils hosting the functional roots. These factors will determine
how precisely ECa values represent the soil properties influencing each grapevine.



Remote Sens. 2022, 14, 5918 18 of 23

Of the weather variables, only weekly mean wind speed (mean = 1.5 m/s, standard de-
viation = 0.6 m/s, and maximum = 3 m/s) was selected by the ExG-based model (Figure 9).
Crop transpiration is influenced by weather through the effects on the driving force, includ-
ing vapor pressure deficit (VPD) and the resistance, including stomatal resistance (rs) and
boundary layer resistance (rb). VPD is a function of temperature, which depends on solar
radiation and relative humidity. Solar radiation, temperature, and wind speed impact rs
and rb, with wind speed dominating [91]. In the summary plots (Figures 8 and 9), it is inter-
esting to note that there is a general trend of negative response of grapevine dehydration
to windspeed, as blue points positively contribute to Ψstem. This is contradictory to the
general understanding in which water stress is induced by both increasing evapotranspira-
tion demands and decreasing boundary layers, both resulting from high wind speed [92].
These results are supported by several studies that have observed grapevines reducing
transpiration, via partial closure of stomata, to prevent water loss. Two studies measured
this phenomenon when wind speeds are higher than 3.6 m/s for six cultivars grown in
pots [93] and 4 m/s for two cultivars planted in Western Australia [94]. An additional
reason could be more efficient convective cooling, resulting from a thinner boundary layer
or high humidity of the air circulating around leaves, removing heat from the irradiated leaf
surface, rather than relying on evaporative cooling [95]. Temperature, irradiance, humidity,
and rainfall are widely accepted as important weather factors influencing the variation in
Ψstem. The reason those variables were not selected in our models was due to the length
of the study window. In this study, the two months between flowering to veraison were
selected due to their significance to GWS monitoring. This may not be sufficient to sample
broader variability in these weather variables.

4.3. Regression Modeling

The relationship between Ψstem and soil/terrain, temporal, and weather variables
is complex, so machine learning algorithms, including EN, RFR, and SVR, were utilized
to describe the relationship. As R2 is an inadequate measure for nonlinear models [96],
it was not used in evaluating modeling performance. According to the results listed in
Tables 5 and 6, the relationship seems to be non-linear, since EN is a linear regression
model with penalty terms and does not outperform RFR or SVR when using any set of
predictors. When modeling is based on all types of predictors, SVR has the best performance
in both TCARI-based and ExG-based models. When based on two types of predictors,
either SVR or RFR is selected as the best descriptor. When only one type of predictor is
used in regression, RFR outperforms the other algorithms. It appears SVR is capable of
handling more variables, especially when soil/terrain and temporal variables are included
in simulating changes in Ψstem. One explanation is that this dataset may be limited (n
= 148) and have appreciable noise. However, SVR has been reported to be less sensitive
to sampling variation for a small sample size because the selection of support vectors
depends on only a small subset of observations [55,97]. Moreover, the close values between
RMSE for training and test sets show the overfitting issue in our models was addressed
well. This indicates that the range of the regularized hyperparameters (the maximum
depth of the tree for RFR, regularization parameter, and width of the epsilon-tube for
SVR) are set correctly for the study. Interpretation of the results supports using SVR for
remote monitoring of Pinot Noir Ψstem if the regression is based on terrain/soil, temporal,
and weather variables, but more machine learning algorithms need to be investigated to
optimize the estimation performance.

4.4. Limitations and Future Work

By combining UAV-based multispectral imagery with ancillary variables, the approach
presented in this study demonstrates the potential usefulness of using UAVs to estimate
GWS at canopy scale across the vineyard when the locations of perennial grapevines in a
vineyard are precisely marked. However, this study uses an empirical approach, so it does
not fully describe the relationships between soil/terrain, weather, spectral information,
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and grapevine water status. As summarized by Adams et al. [98], empirical approaches are
highly dependent on the range and the quality of inputs and can yield significant bias when
used to extrapolate identified relationships beyond observed variability. The methodology
demonstrated in this study could serve as a useful tool under the following conditions:
the training datasets incorporate a rich variation in high-quality values of predictors
corresponding to a range of sites, environmental conditions, grapevine cultivars, growing
stages, canopy ages, and management practices. Machine learning modeling is undertaken
with extensive calibration. Additional variables, such as soil moisture, can be investigated
for their usefulness as ancillary variables. To enhance the modeling performance and
transferability, it will be necessary to enlarge the input datasets. This is a time-consuming
process, involving the collection of a large number of Ψstem measurements by pressure
bomb within the two hours of midday. This will require considerable manpower and
calibrated pressure bombs. Once these conditions are met, the model developed in this
study may be applied to other vineyards, cultivars, or, perhaps, regional scale analysis.

5. Conclusions

This study explores the potential of combining UAV-based vegetation indices (VIs)
and various ancillary data (soil/terrain, temporal, and weather variables) for the estimation
of stem water potential (Ψstem), used as a proxy for grapevine water status (GWS). It
uses machine learning algorithms and SHAP analysis, based on observations collected
in two Pinot Noir vineyards in New Zealand, over two growing seasons. The results
demonstrate the potential and the techniques associated with developing a useful tool for
GWS monitoring by taking advantage of the complementary effects between vegetation,
soil/terrain, weather, and temporal variables. SHAP analysis facilitates the interpretability
of the GWS model, which could be useful for GWS manipulation. A broader range of
predictor values is needed to train and calibrate the models for enhancing the transferability
of GWS models to other vineyards. In addition, it is recommended that new machine
learning algorithms be investigated to optimize the performance of Ψstem estimation. For
viticulturists and growers, the tool developed in this study could enable precise scheduling
of irrigation for quality management from canopy to sub-block scale in response to the
types of irrigation equipment available.
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