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Abstract: Historical land cover (LC) maps are an essential instrument for studying long-term spatio-
temporal changes of the landscape. However, manual labelling on low-quality monochromatic
historical orthophotos for semantic segmentation (pixel-level classification) is particularly challenging
and time consuming. Therefore, this paper proposes a methodology for the automated extraction
of very-high-resolution (VHR) multi-class LC maps from historical orthophotos under the absence
of target-specific ground truth annotations. The methodology builds on recent evolutions in deep
learning, leveraging domain adaptation and transfer learning. First, an unpaired image-to-image
(I2I) translation between a source domain (recent RGB image of high quality, annotations available)
and the target domain (historical monochromatic image of low quality, no annotations available)
is learned using a conditional generative adversarial network (GAN). Second, a state-of-the-art
fully convolutional network (FCN) for semantic segmentation is pre-trained on a large annotated
RGB earth observation (EO) dataset that is converted to the target domain using the I2I function.
Third, the FCN is fine-tuned using self-annotated data on a recent RGB orthophoto of the study
area under consideration, after conversion using again the I2I function. The methodology is tested
on a new custom dataset: the ‘Sagalassos historical land cover dataset’, which consists of three
historical monochromatic orthophotos (1971, 1981, 1992) and one recent RGB orthophoto (2015) of
VHR (0.3–0.84 m GSD) all capturing the same greater area around Sagalassos archaeological site
(Turkey), and corresponding manually created annotations (2.7 km² per orthophoto) distinguishing
14 different LC classes. Furthermore, a comprehensive overview of open-source annotated EO
datasets for multiclass semantic segmentation is provided, based on which an appropriate pretraining
dataset can be selected. Results indicate that the proposed methodology is effective, increasing the
mean intersection over union by 27.2% when using domain adaptation, and by 13.0% when using
domain pretraining, and that transferring weights from a model pretrained on a dataset closer to the
target domain is preferred.

Keywords: earth observation; historical orthophotos; landuse/land cover mapping; multiclass semantic
segmentation; deep learning; fully convolutional networks; transfer learning; domain adaptation

1. Introduction
1.1. Historical Land Cover Mapping

Availability of and access to reliable landuse/land cover (LULC) maps is of paramount
importance to research and monitor natural or anthropogenic driven processes such as ur-
banization, de-/af- forestation, agro-economical system transformations, disease spreading,
disaster planning, hydraulic landscape engineering, and climate change [1]. However, the
process of LULC mapping in many cases persists to be a bottleneck as it often remains an
extremely labour and time-intensive human task. Moreover, as the state of the landscape
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continuously changes, LULC maps may already be outdated as soon as they are finalised.
Therefore, automating LULC mapping from earth observation (EO) images already has
received much attention in the past [2]; however, the domain started truly blossoming by
benefiting from the recent deep learning (DL) revolution, leading to rapid advances in
the analysis of primarily optical, multispectral, radar or multimodal EO data of very high
resolution (VHR, <1.0 m) or high resolution (HR, <5.0 m) [3].

However, very little research exists that considers evaluating deep learning mod-
els using historical EO imagery—i.e., archive aerial photography products—as a data
source [4–7]. Presumably because the processing of historical photos into LULC maps is
particularly challenging as, among others, (i) availability and accessibility of historical EO
photos is limited and often restricted to private databases, (ii) in many cases, photos still
need to be scanned and/or orthorectified before they can be employed in a digital mapping
system or GIS, (iii) meta-data may be lacking, (iv) only a single spectral channel is available
(monochromatic), (v) photos are often of degraded quality because of potential camera lens
marks, poor physical conservation conditions or dust on the scanner, causing image noise,
blur, distortions/displacements or artifacts, and (vi) large spectral differences between
and within images may be present, making similar objects have varying appearances.
Nonetheless, historical LULC maps are an essential instrument in studying long-term
spatio-temporal changes of the landscape [8]. Historical aerial photography supports the
analysis of landscape and ecological change, thus providing crucial insights for ecosystem
management and nature and landscape conservation [9–11], as well as for archaeological
prospection and heritage protection or curation [12–14]. Leveraging deep learning methods
to extract LULC information is proving to be the current way forward [15,16].

1.2. Semantic Segmentation

Converting airborne or spaceborne imagery into land cover maps, termed LULC
classification in the remote sensing (RS) community, is considered a semantic segmenta-
tion problem in the computer vision community, both meaning that each pixel in the
image is assigned to one of a number of predefined semantic classes. Generally, seman-
tic segmentation paradigms follow two steps: an initial feature extraction step based
on spectral and textural pixel-neighbourhood information, followed by a subsequent
(super-) pixel-wise classification step. In traditional methods, this feature vector is man-
ually designed using expert and case-specific knowledge. Well known examples are the
NDVI (spectral filter) and the grey level co-occurrence matrix (textural filter). Machine
learning classifiers such as Random Forest or Support Vector Machines can then be trained
to find classification rules or boundaries based on this feature vector. In addition, a common
strategy to increase robustness and decrease computation is to use a prior unsupervised
segmentation step to generate super-pixels over which the feature statistics are aggregated,
and which then serve as the elementary unit for classification, also termed ‘geographical
object-based image analysis’ (GEOBIA) in remote sensing jargon [17,18]. In contrast, deep
learning methods, and more specifically convolutional neural networks (CNN), jointly
learn the feature extraction and classification step, hence eliminating the need for manual
feature construction. Therefore, CNNs lend themselves perfectly for segmentation of multi-
/hyper-spectral and even multimodal imagery characteristic to EO data. For example,
some studies combined imagery of varying resolutions [19], while other works combined
data from different sensors [20–22], such as using a digital elevation model (DEM) as
additional input for their CNN [23,24]. Because CNNs can learn features at multiple spatial
resolutions and levels of abstraction, they are capable of recognising higher level semantics.
This is, for example, needed when a first tree should be classified as orchard, while a
second tree should be classified as forest. However, an open issue for CNNs remains to find
model architectures that perform well on both semantic class detection and fine-grained
class-delineation. In this light, several works have explored combining CNN and GEOBIA
strategies, for example by smoothing a CNN-derived LULC map with GEOBIA-generated
superpixels [25], by incorporating superpixel segmentation as optimality criteria into loss
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function [26], or by training a separate CNN for probabilistic boundary prediction and
conjointly inputting this into a second semantic segmentation CNN [27].

1.3. Fully Convolutional Networks

For semantic segmentation, especially fully convolutional networks (FCN)—a subclass
of CNNs without fully connected layers as first proposed by Shelhamer et al. [28]—are
showing state-of-the-art performance. FCNs differ from scene/patch-based CNNs in that
they make pixelwise predictions instead of classifying full patches of a larger image as a
single class, as such making them more efficient and suitable for VHR and HR imagery.
Designing FCN architectures for semantic segmentation is a highly active research field,
leading to an extensive model-zoo to choose from. Currently, only few widely embraced
FCN architectures exist that are specifically tailored for semantic segmentation tasks in the
EO-domain. Common practice so far remains to employ models which were proposed and
tested on natural image datasets. Nonetheless, these models usually transfer adequately to
the EO-domain, unless the aim is top-accuracy in a specific EO application. One current
methodology that is showing state-of-the-art results is taking the convolutional component
of a high-performing CNN classification model to serve as encoder and combining this
with a decoder module. The role of the encoder, also called backbone, is to extract mul-
tiple robust feature maps from the image data on different spatial scales. In short, this is
achieved by consecutively applying convolutional and downsample or context-increasing
operations, each time increasing the spatial extent and level of abstraction, while decreas-
ing the image resolution for computational feasibility. On the other hand, the decoder
is composed of convolutional and upsample operations to restore input resolution and
reconstruct a segmented image from the learned multi-scale features. A final convolutional
classification layer added at the end of the encoder–decoder model finally classifies each
pixel. For both the backbone and decoder, many variants and orders of their constituting
operational blocks exist. Furthermore, they are mostly complemented with additional
layers such as batch/instance-normalization, dropout, and different types of nonlinear acti-
vations. Well known backbones are, for example, ResNet [29], VGG [30], DenseNet [31] and
MobileNet [32], of which the first two are the most common in EO applications [3]. The
most used decoder architectures in EO are related to the UNet design [3]: a near symmetri-
cal encoder–decoder structure which uses skip-connections to concatenate certain layers of
the encoder to corresponding decoder layers [33]. Again, many variations exist in literature
such as UNet++ [34] or U²-Net [35]. For a detailed review and explanation of CNN models
used for semantic segmentation in EO, we refer to Hoeser and Kuenzer (2020) [36].

1.4. Earth Observation Datasets

Training deep learning models requires extensive amounts of training data. The
release of massive open-source annotated natural-image datasets such as ImageNet [37]
and COCO [38] have therefore impelled development of new technologies and applications,
but also partly steered the epistemic path of underlying research. Although nowadays EO
imagery is available by the petabyte, open-source annotated EO datasets remain scarce
compared to natural image datasets, hence hampering the symbiosis of deep learning
and EO, and impeding thorough domain-wide comparison of models and methodologies.
Furthermore, the majority of literature employing CNNs for EO applications makes use
of non-public custom datasets [3]. The datasets that are in fact publicly released—often
through an accompanying organised competition—remain scattered over the web and
abide by their own collection schemes, data formats and specific application domains,
although efforts for standardisation and centralisation are being made [39]. Nonetheless,
this ‘annotation-void’ is being filled up at an accelerating rate. Examples of better-known
open source EO datasets are, among others, BigEarthNet for scene classification [40], DOTA
for object detection [41], SpaceNet7 for (urban) change detection [42] and ISPRS Potsdam
and Vaihingen for semantic segmentation [43,44]. Furthermore, it is worth mentioning that



Remote Sens. 2022, 14, 5911 4 of 34

some works leverage OSM (Open Street Map) data as target ground-truth [45]. For a more
complete recent overview of datasets, the reader is referred to Long et al. [39].

Many of the open-source datasets consider either a single or only few target class(es),
which reflects in the topics most frequently investigated by researchers: building footprints,
road extraction, and car or ship detection are among the most studied applications, while
general LULC only accounts for a lesser fraction. More specifically, Hoeser et al. [3]
concluded that, out of 429 reviewed papers, only 13% focussed on general LULC, and
only 6% on multiclass LULC—arguably because multiclass LULC annotation training
masks are more costly to construct, and, during analysis and model-training, one needs
to cope with the regularly imbalanced nature of multiclass datasets. However, (temporal)
multiclass LULC maps are key in understanding more complex patterns and interrelations
between semantic classes, therefore better representing real-world applications. Hence,
next to historical EO data, multiclass LULC semantic segmentation is a second area of
research underrepresented in the geospatial computer vision domain. Table 1 provides a
comprehensive overview of open source annotated EO datasets for multiclass semantic
segmentation.

1.5. Transfer Learning

When dealing with potential scarcity of training data within deep learning applications,
transfer learning is an important concept to highlight. The idea of transfer learning is to pretrain
a deep learning model on a large dataset—often stemming from another domain—thereby
teaching the model basic feature extraction, and subsequently fine-tune on a smaller dataset
of the target domain. While transfer learning is an opportunity for better results, its success
depends on the performance of the original model on the pretrain dataset [46], the size and
generality of the pretrain dataset [47], and the domain distance between the target dataset and
the pretrain dataset [48]. A difference that is too large can result in smaller or even worse effects
than training from scratch. Thus far, transfer learning within the EO domain is not widely
adopted, and publicly available models pretrained on EO data are rare. The review of Hoeser
et al. [3] found that out of 429 papers “38% used a transfer learning approach, of which 63%
used the pre-trained weights of the ImageNet dataset”, making the “weights pre-trained on
ImageNet the most widely used for transfer learning approaches in Earth observation”. As
such, while there is much potential, the ImageNet of EO seems not yet established.

1.6. Unsupervised Domain Adaptation

Besides transfer learning, unsupervised domain adaptation (UDA) is gaining momen-
tum to overcome the bottleneck of data annotation [49]. In UDA, the goal is to train a model
for an unlabelled target domain by transferring knowledge from a related source domain
for which labelled data are easier to obtain. In the context of semantic segmentation, one
popular approach is to align the data distributions of source and target domains by per-
forming image-to-image (I2I) translation. While more classical techniques for I2I exist such
as histogram matching, the current focus is shifted to data driven DL approaches, mainly
based on adversarial learning [50–53]. By mapping annotated source images to target
images, a segmentation model can be trained for the unlabelled target domain [54,55]. This
model adaptation capability is especially useful in remote sensing applications, where domain
shifts are ubiquitous due to temporal, spatial and spectral acquisition variations, and is therefore
subject to a growing body of research [56–59]. However, to the best of our knowledge, only one
study has considered applying UDA using a dataset of historical panchromatic orthomosaics [4].
Moreover, no studies exist that combine domain adaptation and domain-specific pretraining for
multiclass LULC extraction from historical orthoimagery.
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Table 1. Open-source annotated earth observation datasets for multiclass semantic segmentation.

Release Name Scene Channels Resolution Annotations Labelled Area Classes

2013 ISPRS Potsdam 2D semantic
labelling contest [44]

Urban, city of Potsdam
(Germany)

RGB-IR + DSM (aerial
orthophotos) 0.05 m Manual 3.42 km² 6: impervious surfaces, building, low vegetation, tree, car,

clutter/background

2013 ISPRS Vaihingen 2D semantic
labelling contest [43]

Urban, city of Vaihingen
(Germany)

RG-NIR + DSM (aerial
orthophotos) 0.09 m Manual 1.36 km² 6: impervious surfaces, building, low vegetation, tree, car,

clutter/background

2015 2015 IEEE GRSS Data Fusion
Contest: Zeebruges [60]

Urban, harbour of
Zeebruges (Belgium)

RGB + DSM (+ LIDAR)
(aerial orthophotos) 0.05 m + 0.1 m Manual 1.75 km² 8: impervious surface, building, low vegetation, tree, car,

clutter, boat, water

2016 DSTL Satellite Imagery Feature
Detection Challenge [61] Urban + rural, unknown RGB + 16 (multispectral &

SWIR) (Worldview-3) 0.3 m + 1.24 m + 7.5 m Unknown 57 km² 10: buildings, manmade structures, road, track, trees, crops,
waterway, standing water, vehicle large, vehicle small

2017 2017 IEEE GRSS Data Fusion
Contest [62]

Urban + rural, local
climate zones in various

urban environments

9 (Sentinel-2) + 8 (Landsat)
+ OSM layers (building,
natural, roads, land-use

areas)

100 m Crowdsourcing ∼30,000 km²

17: compact high rise, compact midrise, compact low-rise,
open high-rise, open midrise, open low-rise, lightweight

low-rise, large low-rise, sparsely built, heavy industry, dense
trees, scattered trees, bush and scrub, low plants, bare rock or

paved, bare soil or sand, water

2018 2018 IEEE GRSS Data Fusion
Contest [63]

Urban, university of
Houston campus and its

neighborhood

RGB + DSM + 48
hyperspectral (+ Lidar)

(aerial)
0.05 m + 0.5 m + 1 m Manual, 0.5m

resolution labels 1.4 km²

20: healthy grass, stressed grass, artificial turf, evergreen trees,
deciduous trees, bare earth, water, residential buildings,

non-residential buildings, roads, sidewalks, crosswalks, major
thoroughfares, highways, railways, paved parking lots,

unpaved parking lots, cars, trains, stadium seats

2018 DLRSD [64] UC Merced images RGB Various (HR) Manual (2100
256,256 images) —

17: airplane, bare soil, buildings, cars, chaparral, court, dock,
field, grass, mobile home, pavement, sand, sea, ship, tanks,

trees, water

2018 DeepGlobe—Land Cover
Classification [65] Urban + rural, unknown RGB (Worldview-2/-3,

GeoEye-1) 0.5 m

Manual, minimum
20 × 20 m labels

(Anderson
Classification)

1716.9 km² 6: urban, agriculture, rangeland, forest, water, barren

2019 2019 IEEE GRSS Data Fusion
Contest [66]

Urban, Jacksonville
(Florida, USA) and Omaha

(Nebraska, USA)

panchromatic + 8 (VNIR) +
DSM (+ LIDAR)

(Wordlview-3, unrectified +
epipolar)

0.35 m + 1.3 m Manual 20 km² 5: buildings, elevated roads and bridges, high vegetation,
ground, water

2019 SkyScapes [67] Urban, greater area of
Munich (Germany)

RGB (aerial nadir-looking
images) 0.13 m Manual 5.69 km²

31: 19 categories urban infrastructure (low vegetation, paved
road, non-paved road, paved parking place, non-paved

parking place, bike-way, sidewalk, entrance/exit, danger area,
building, car, trailer, van, truck, large truck, bus, clutter,

impervious surface, tree) & 12 categories street lane markings
(dash-line, long-line, small dash-line, turn sign, plus sign,

other signs, crosswalk, stop-line, zebra zone, no parking zone,
parking zone, other lane-markings)

2019 Slovenia Land Cover
classification [68]

Urban + rural, part of
Slovenia

RGB, NIR, SWIR1, SWIR2
(Sentinel-2) 10 m

Manual, official
Slovenian land
cover classes

∼2.4 106 km² 10: artificial surface, bareland, cultivated land, forest,
grassland, shrubland, water, wetland
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Table 1. Cont.

Release Name Scene Channels Resolution Annotations Labelled Area Classes

2019 DroneDeploy Segmentation
Dataset [69] Urban, unknown RGB + DSM (drone

orthophotos) 0.1 m Manual <24 km² 6: building, clutter, vegetation, water, ground, car

2019 SEN12MS [70]

Rural, globally distributed
over all inhabited

continents during all
meteorological seasons

SAR (Sentinel-1) +
multispectral (Sentinel-2) 10 m

MODIS 500 m
resolution labels,

labels only 81% max
correct

∼3.6 106 km²

17: water, evergreen needleleaf forest, evergreen broadleaf
forest, deciduous needleleaf forest, deciduous broadleaf forest,

mixed forest, closed shrublands, open shrublands, woody
savannas, savannas, grasslands, permanent wetlands,

croplands, urban and built-up, cropland/natural vegetation
mosaic, snow and ice, barren or sparsely vegetated

2019 MiniFrance [71]

Urban + rural, imagery
over Nice and

Nantes/Saint Nazaire from
2012 to 2014 (France)

RGB (aerial orthophotos) 0.5 m
Urban Atlas 2012

(second hierarchical
level)

∼10,225 km²

15: urban fabric, transport units, mine/dump/construction,
artificial non-agricultural vegetated areas, arable land (annual

crops), permanent crops, pastures, complex and mixed
cultivation patterns, orchards at the fringe of urban classes,

forests, herbaceous vegetation associations, open spaces with
little or no vegetation, wetlands, water, clouds and shadows

2019 HRSCD [72] Rural, imagery over France
for 2006 and 2012 RGB (aerial orthophotos) 0.5 m

Urban Atlas 2006 and
2012 at first level +

binary change mask
∼7275 km² 5: artificial surfaces, agricultural areas, forests,

wetlands, water

2019 Chesapeake Land Cover [19] Urban + rural, Chesapeake
Bay (USA)

RGB-NIR (NAIP
2013/2014) + RGB-NIR
(NAIP 2011/2012) + 9

(Landsat 8 surface
reflectance leaf-on) + 9

(Landsat 8 surface
reflectance leaf-off)

1 m (upsampled for
Landsat)

HR LULC labels from
the Chesapeake

Conservancy (1 m) +
low-resolution LULC
labels from the USGS

NLCD 2011 database +
HR building footprint
masks from Microsoft

Bing

∼32,940 km²

6 (CC): water, tree canopy/forest, low vegetation/field, barren
land, impervious (other), impervious (road). 20 (USGS

NLCD): open water, perennial ice/snow, developed open
space, developed low intensity, developed medium intensity,

developed high intensity, barren land, deciduous forest,
evergreen forest, mixed forest, dwarf scrub, shrub/scrub,
grassland/herbaceous, sedge/herbaceous, lichens, moss,

pasture/hay, cultivated crops, woody wetlands, emergent
herbaceous wetlands

2019 iSAID [73] Urban, unknown RGB (Google Earth,
satellite JL-1, satellite GF-2) various (HR) Manual, 2806 images

with 655,451 instances —

15: plane, ship, storage tank, baseball diamond, tennis court,
basketball court, ground track field, harbor, bridge, large

vehicle, small vehicle, helicopter, roundabout, soccer ball field
and swimming pool

2020 WHDLD [74] Urban, city of Wuhan
(China) RGB 2 m Manual 1295 km² 6: building, road, pavement, vegetation, bare soil, water

2020 Landcover.ai [75] Urban + rural, imagery
over Poland RGB (aerial orthophotos) 0.25 m/0.5 m Manual 216.27 km² 3: Buildings, woodland, water

2020 LandCoverNet v1.0 [76] Rural, imagery over Africa
in 2018 multispectral (Sentinel-2) 10 m Manual 12,976 km²

7: water, natural bare ground, artificial bare ground, woody
vegetation, cultivated vegetation, (semi) natural vegetation,

permanent snow/ice

2020 Agriculture Vision Dataset
(CVPR 2020) [77]

Rural, farmlands across the
USA throughout 2019 RGB + NIR (aerial) 0.1 m/ 0.15 m/ 0.2 m Manual, 21,061 images

with 169,086 instances — 6: cloud shadow, double plant, planter skip, standing water,
waterway, weed cluster
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1.7. Research Scope and Contributions

In this paper, we hypothesise that, in the context of multiclass semantic segmenta-
tion of monochromatic historical orthophotos, leveraging transfer learning within the EO
domain is a path worth investigating, particularly because manually creating custom an-
notated multiclass LULC maps from historical photographs is extremely time intensive
and difficult from a human interpretability perspective. To the best of our knowledge,
only one work has proposed a large publicly-available annotated dataset for monochro-
matic historical photographs, i.e., the HistAerial dataset [6]. However, this dataset was
constructed in a patch-based fashion (single label per whole patch), making it unsuitable
for a more fine-grained mapping approach using FCNs. Therefore, this work explores
an alternative possibility: we introduce a new historical-like multiclass LULC dataset,
the Sagalassos historical land cover dataset, by using unsupervised domain adaptation (I2I
translation) techniques to convert a more recent higher quality labelled RGB orthophoto to
a monochromatic orthophoto with historical characteristics while maintaining the original
labels, thereby partly eliminating the need to annotate on lower quality historical imagery.
Concerning the I2I translation, a data-driven DL approach is used based on generative
adversarial networks (GAN), and more specifically CycleGAN [51]. We then use this ‘fake’
historical dataset to train a state-of-the-art encoder–decoder FCN for multiclass semantic
segmentation of the actual historical orthophoto. The problem of class imbalance is tackled
by incorporating a multiclass weighting scheme into the loss function using both pixelwise
and patchwise class weights. In addition, we investigate the added value of pretraining
the FCN using either ImageNet or the more comparable large open-source EO dataset
MiniFrance [71]. In summary, the main contributions of this work are the following:

1. We present a new small multi-temporal multiclass VHR annotated dataset: the
‘Sagalassos historical land cover dataset’, which covers both urban and rural scenes;

2. We propose and validate a novel methodology for obtaining LULC maps from his-
torical monochromatic orthophotos with limited or even no training data available,
based on FCNs and leveraging both domain pretraining and domain adaptation, i.e.,
‘spatio-temporal transfer learning’;

3. Using this methodology, we generate a first historical LULC map for the greater area
of the Sagalassos archaeological site (Turkey) in 1981.

The remainder of this work is structured as follows: First, we present our new
multi-temporal multiclass LULC Sagalassos dataset and briefly describe the open-source
MiniFrance dataset. Next, we describe our experiments related to transfer learning for
multiclass semantic segmentation of historical orthophotos. Lastly, we report and discuss
our main findings and results, and propose future work.

2. Datasets
2.1. Sagalassos Historical Land Cover Dataset

We here introduce the Sagalassos historical land cover dataset. The Sagalassos dataset
consists of three historical (1971, 1981, 1992) and one more recent (2015) georeferenced
orthophotos and corresponding manually labelled land cover patches. The orthophotos
cover the greater area around the Sagalassos archaeological site in the district of Ağla-
sun, located in the Mediterranean region of Turkey, around 100 km north of Antalya
(Figure 1 top-left). More specifically, the region under consideration is located between
37.59°N 30.49°E and 37.68°N 30.60°E and covers a total area of 124.1 km² (12.25× 10.13 km²)
(Figure 1, right). The region is rather mountainous, with altitudes varying between ca. 1014 m
and 2224 m asl. The landscape is mainly characterised by arable land in the valleys, which
varies largely in appearance depending on the irrigation and crop choices, and shrubland
and pastures/open area on the mountainsides. Furthermore, the town Ağlasun (centre), and
the three smaller villages Kiprit (Southwest), Yeşilbaşköy (West), and Yazır (East) are located
within the study area. Over the different years/orthophotos, land cover changes within the
region include, among others, de-/re-forestation, urban sprawl, hydraulic interventions, and
shifts in cultivation practices and crop choices.
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Figure 1. (top-left) The Sagalassos archaeological site located in the southwest of Turkey; (right) the
study area under consideration with indication of the sample locations; (bottom-left) example of an
annotated patch at the same geographical location on the 1981 and 2015 orthophoto.

The original orthophotos were provided by the government of Turkey (in 8 bit ECW format)
and came without any form of metadata. Their resolution varies between 10, 833× 13, 095 px²
(1992) and 30, 333× 36, 667 px² (2015), corresponding to a ground sampling distance (GSD)
between 0.84 m and 0.30 m, respectively (Table 2). While the 2015 orthophoto is a three-
channelled RGB image, the more historical orthophotos are only single channelled images,
which we assume to be panchromatic (PAN) in the visible spectrum. However, we have no
actual certainty on this. Furthermore, although the four orthophotos all capture the same
spatial area, they differ greatly in their digital number (DN) distribution (Figure 2). This
may be due to differences in light conditions, differences in time of the year, or differences
in the use of camera equipment at the time of acquisition. The latter strongly increases the
difficulty for both human and computer aided image interpretation.

Figure 2. Digital number distribution of the four orthophotos (after upsampling to the resolution of
the 2015 image).
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Table 2. Properties of the Sagalassos dataset.

Year Resolution [pixels] Channels GSD 1 [m]

2015 30, 333× 36, 667 RGB 0.30
1992 10, 833× 13, 095 PAN 2 0.84
1981 26, 765× 32, 353 PAN 0.34
1971 17, 080× 22, 000 PAN 0.50

1 Ground Sampling Distance; 2 Panchromatic.

The procedure to construct our manually annotated land cover training data can
be summarized as follows: First, we identified 14 mutually exclusive and exhaustive
LULC classes. The decision in classes was based on a visual survey of the imagery, terrain
knowledge, and requests for use in later research. An overview and description of all classes
is given in Table 3. Thereafter, all orthophotos were upsampled to match the resolution of
the 2015 image to ensure equal spatial coverage for an equal number of pixels. Images were
upsampled instead of downsampled to not lose any information of the 2015 image. Next, a
(vector) sample grid of 512× 512 px² (150× 150 m²) was overlaid on the study area (Figure 1,
bottom-left). A gridsize of 512² px² was chosen because it is the patch input size used in
our FCN semantic segmentation model. Subsequently, 100 sampling points were generated
using a latin hypercube sampling scheme to guarantee spatial coverage over the study
area while remaining statistically substantiated (patches Figure 1, right), and to account
for intraclass spectral variability caused by both intrinsic class-appearance variability and
spectral variability originating from the merging of multiple aerial photos with varying
spectral characteristics to obtain an orthophoto. All grid-plots intersected by a sampling
point where then fully manually annotated by drawing non-intersecting polygons and
assigning a class-id (Table 3) using the open-source software QGIS (Figure 1, left-bottom).
In addition, 15 extra self-chosen plots were selected and annotated to guarantee a minimal
coverage for all classes. The above was repeated for all years with the same plots to obtain a
dataset suitable for land cover change analysis. Lastly, the polygon layers (shapefile format)
were converted to 8-bit geotiff rasters with the same resolution and spatial extent as the
orthophotos. Examples of our dataset can be found in Supplementary Figure S1.

Labelling all 115 patches for a single orthophoto took around 3 days of manual
work. With a GSD of 0.3 m, the total annotated area for each orthophoto equals to
512 px² × 0.3m²/px² × 115 = 2.7 km², or only 2.2% of the total study area. The latter
again stresses the need for automation. The distribution of both the patch occurrence and
pixel occurrence for each of the 14 classes for the 2015 and 1981 annotated land cover
data are visualized in Figure 3. The strong class–imbalance, and the discrepancy between
the pixel-count and patch-count distribution is noteworthy. Furthermore, note that the
high patch-count of no info (class-id zero) happens (i) because of manual misalignment of
polygons, or (ii) because only pixels with their centres within the polygon are assigned the
polygon-class when rasterizing. As such, the pixel count of zero-valued pixels is low, but
as some pixels occur in each patch, their patch count can be high.

2.2. MiniFrance

Aside from our novel Sagalassos dataset, this research also utilizes the publicly avail-
able MiniFrance (MF) dataset [71]. The MF-dataset consists of VHR aerial orthophotos over
different cities and regions in France (provided by IGN France), and corresponding Urban
Atlas 2012 land cover labels at the second hierarchical level (Table 1). Because MF was
introduced to encourage semi-supervised learning strategies for land cover classification
and analysis, annotations are only available for a subset of the orthophotos. However,
this study only considers the subset which includes land cover annotations. Hence, when
referencing MiniFrance, we here refer to the labelled subset of the dataset.
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Table 3. Overview and description of the 14 identified land cover classes in the
Sagalassos dataset.

ID Class Description

0 No info No label information available; can be any of the 14 classes below.
1 Anava (Artificial non-agricultural vegetated area) Everything in the urban area which is not Transport,

Urban, Arable land or Forest
2 Arable land Everything looking like an agricultural parcel, which is not Orchard or Roses; if not clearly Hedge

the boarders are also arable land
3 Commercial Industry, storage areas, dumps, mines; buildings within industry are classified as Urban
4 Forest Strictly dense tree aggregation (non-shrubs); tree aggregations in urban area are also Forest
5 Hedge Tree/shrub rows in between agricultural parcels
6 Open area None of the other classes; pastures, rocky/mountain areas, wetlands
7 Orchard Parcel in agricultural area with trees with a pattern-like appearance; always Orchard unless

clearly Roses
8 Roses Parcel in agricultural area with a more row-like pattern then Orchard (and non-tree)
9 Shrubland Areas with intermittent open area and shrubs; everything that is not Forest; relatively broad class
10 Terrace Human made walls, mostly in steeper terrain and at the border of agricultural parcels; only

annotated when visible as terrace wall, annotated as Hedge/Forest when trees on top
11 Transport All roads (paved and non-paved) and parking space; road parts with overhanging trees are also

classified as Transport
12 Urban All buildings
13 Wadi Dry riverbeds
14 Water Open waters of all sizes

(a) (b) (c)

Figure 3. Distribution of both the pixel and patch count over the different land cover classes for (a)
the Sagalassos 2015, (b) the Sagalassos 1981 and (c) the MiniFrance annotation data.

In total, the MF-labelled subset consists of 409 RGB orthophotos (8-bit JPEG 2000
compressed tif format) of dimensions 10, 000× 10, 000 px² and 0.5 m GSD, corresponding
to an aerial coverage of roughly 10,225 km². The imagery covers both urban and rural
scenes over the counties Nice and Nantes/Saint Nazaire between 2012 and 2014. The land
cover labels are provided as rasterized Urban Atlas tiles with equal size and resolution as
the orthophotos. Each pixel is integer encoded as one of the 13 occurring classes: urban
fabric, transport units, mine/dump/construction, artificial non-agricultural vegetated
areas, arable land (annual crops), permanent crops, pastures, forests, herbaceous vegetation
associations, open spaces with little or no vegetation, wetlands, water, clouds and shadows.
The annotations have a minimum mapping unit (MMU) of 0.25 ha in urban area and 1 ha
in rural area [78]. Examples can be found in Supplementary Figure S2.
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For this study, we further clipped all 409 orthophotos to patches of 512× 512 px².
Clipping was carried out with a stride slightly smaller than 512, such that the boarder
of a patch at the edge of an orthophoto fell in line with the boarder of the orthophoto,
ensuring maximal use of the data while having minimal overlap. Furthermore, patches
were discarded if more than 1% of the patch was unlabeled. This led to a total of 117,832
image–annotation pairs. Figure 3c gives the resulting pixel and patch distribution over the
different classes for the MF-dataset.

3. Experiments
3.1. Spatio-Temporal Transfer Learning

As stated in the introduction, we investigate the added value of domain transfer
techniques for LULC mapping of historical EO imagery. To this end, we distinguish two
types of transfer learning: temporal and spatial. We here define temporal transfer learning
as the use of training data of the same study area but of a different moment in time. In this
case, the appearance of the imagery may vary due to differences in atmospheric conditions
or sensor equipment at the time of acquisition, or due to actual changes of LULC, but
the larger part of the spatial features/information remains similar. On the other hand, by
spatial transfer learning, we mean the use of training data of a different geographic location.
Of course, additional external training data can be both spatially and temporally distinct
from one’s own dataset.

To quantify the influence of these two types of transfer learning, we test different
training procedures of a multiclass FCN semantic segmentation model. The aim is to
obtain a land cover map from a first (monochromatic) historical orthophoto (HIST) with
annotations available for a second orthophoto of the same region but without annotations
available for the first orthophoto. Therefore, the experimental setup is the following:
the 115 image-annotation patches of the 2015 RGB orthophoto in the Sagalassos dataset
(SAG2015rgb) serve as training set, while the 115 patches of the 1981 historical orthophoto
(SAG1981hist) serve as test set. Data of 2015 are chosen for training because manual land
cover labelling is usually easier on a higher resolution RGB image than a lower resolution
greyscale image (Table 2). The 1981 data are chosen for testing since it seemed to have the
most challenging DN-distribution (Figure 2). The different steps in the training procedure
can now be summarized as: (i) perform or learn an I2I translation from SAG2015rgb to
SAG1981hist (i.e., temporal transfer learning), (ii) optionally pretrain the model using either
a classical computer vision dataset or a LULC-EO-dataset (i.e., spatial transfer learning),
and (iii) fine-tune or train the model using the RGB→ HIST mapped 2015 images and their
corresponding LULC-annotations (Figure 4).

3.1.1. Temporal Transfer Learning: Image to Image Translation

Performing the mapping from the SAG2015rgb to the SAG1981hist domain can be
considered as an I2I translation problem. In addition, it can also be classified as temporal
transfer learning since the geographical region under consideration is the same, but the
time of acquisition is different for the two orthophotos. Two approaches can be considered
here. First, the I2I translation can be performed manually. Usually, for RGB to greyscale
mapping, this is the standard option. However, in the case of historical orthophotos, this
mapping may not be straightforward because of potential spectral noise, blur, distortions,
camera lens marks, spatially depended brightness variations, or dust on the scanner when
digitizing the aerial images [4]. Moreover, for the Sagalassos historical orthophotos, we do
not have actual certainty regarding their spectral band(s). Therefore, a second approach is
to use a model capable of learning a mapping function between these two domains. Hereby,
two constraints apply to this model: (i) spatial information must be preserved throughout
translation, and (ii) no perfectly paired images are available for training due to potential
LULC changes between two images. In computer vision literature, most paradigms that
have recently been proposed to tackle the above task are based on conditional generative
adversarial networks (GAN) [79]. One such popular GAN architecture is the widely cited
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CycleGAN [51]. A more detailed description and implementation specifics of CycleGAN
are given in Section 3.2.1.

Figure 4. Training procedure for semantic segmentation of historical orthophotos partitioned into
different possible steps. Step 1: image-to-image translation using CycleGAN. X = RGB image domain
(Sagalassos 2015 or MiniFrance), Y = historical image domain (Sagalassos 1981), G, F = generators,
DY = discriminator. Step 2: Pretrain the semantic segmentation encoder–decoder model (blue) on
the large RGB—multiclass LULC dataset MiniFrance after manual conversion to greyscale or using
the mapping function G. Step 3: fine-tune on Sagalassos 2015 after conversion to ‘historical’ using
the mapping function G. The encoder–decoder outputs a probability map for each class, which are
subsequently converted into a final land cover map (examples are random and do not match the input).
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3.1.2. Spatial Transfer Learning: Pretraining

Pretraining CNNs on larger datasets, even datasets from a different domain than
the one considered, has in many cases been shown to increase model accuracy while
decreasing training time [47]. Therefore, we here experiment with using two different
datasets for pretraining our model and compare this versus using no pretraining: one
classical natural image dataset, namely ImageNet [37], and one large multiclass LULC-EO
dataset, namely MiniFrance. The MF-dataset was chosen because, out of all datasets listed
in Table 1, it shows the most similarities with our Sagalassos dataset, i.e., it is continuously
annotated (instead of one label per patch), multiclass with similar LUCL classes, has a
similar resolution, the same spectral bands (RGB), and comparable landscape characteristics,
e.g., urban, rural and mountainous regions. One main difference is that annotations are
of a much courser resolution in the MF-dataset than in the Sagalassos dataset. Moreover,
after visual inspection, labelling seems to be far from perfect for MF. Nonetheless, we
hypothesise that pretraining with MF will help the model to learn robust features and
higher-level semantics characteristic to EO-data. However, we still chose to fine-tune the
whole model with the aim to segment the semantic classes at a more fine-grained level.
Additionally, we also test the case of only fine-tuning the final classification layer of the
model. Furthermore, we explore the possibility of applying the I2I translation as explained
in the previous section to the MF dataset, to obtain a large mimicked historical EO dataset
with the characteristics of the 1981 Sagalassos orthophoto. For the latter, either the mapping
function learned between SAG2015rgb and SAG1981hist can be employed, or a separate
second mapping function between MFrgb and SAG1981hist can be learned.

3.2. Neural Network Models
3.2.1. Image to Image

This section briefly explains the concepts and implementation details of the I2I transla-
tion model CycleGAN, which we utilize in this study to learn a mapping function between
more recent RGB EO-imagery and historical monochromatic EO-imagery. Contrary to
I2I translations models that require paired observations for training such as pix2pix [80],
CycleGAN can learn a mapping function G : X → Y between two image domains X and Y
based only on an unpaired set of observations {Xi, Yi}N with size N. The aim is to optimize
this function such that images generated by G(X) are indistinguishable from the images of
Y, while at the same time learning a second inverse mapping function F : Y → X which
is optimized to enforce F(G(X)) = X (Figure 4). Similarly, the images Y can be cycled
such that F(Y) is indistinguishable from X and G(F(Y)) = Y. The above constraints can be
imposed on the generators G and F by using a combination of three losses:

Lgen = Ladv + λcLcycle + λcλiLidentity (1)

where Lgen is the adversarial loss, Lcycle the cycle-consistency loss [54], Lidentity the identity
loss, and λc and λi parameters to control the relative contribution of the cycle and identity
loss to the total loss, respectively. For the generator F, the losses are further defined as:

LgenF−cycle = Ex‖x− F(G(x))‖1 (2)

LgenF−identity = Ex‖x− F(x)‖1 (3)

which are estimated as the mean absolute error (MAE) between observations x and their
reconstruction and identity mapping, respectively, and

LgenF−adv = Ey‖1− DX(F(y))‖2 (4)

which is estimated as the mean squared error (MSE) of 1DX(F(y)). Here, DX is called the
discriminator for domain X, which is a separate CNN that takes as input a generated image
together with a true image (e.g., {F(y), x}) and outputs a (number of) value(s) between
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zero and one, where one represents full certainty of F(y) and x belonging to the same
domain, and zero the opposite. The two discriminators DX and DY are in turn optimized
with their own loss:

Ldisc =
1
2
(Lreal + L f ake) (5)

In case of the DX , this becomes:

LdiscX =
1
2
(Ex‖1− DX(x)‖2 +Ey‖DX(F(y))‖2) (6)

where Lreal is estimated as the MSE of one minus the discriminator output of a real example,
and L f ake is estimated as the MSE of the discriminator output of a fake example. The
definitions for LgenG and LdiscY are analogous. In other words, the discriminators try to
classify real examples as True, and fake examples as False, while the generators try to fool
the discriminator by generating fake examples indistinguishable from the true examples.
During training, the four losses are (LgenF, LgenG, LdiscX , LdiscY) are optimized conjointly
in a zero-sum game.

The CycleGAN model is implemented using Keras and Tensorflow based on AKNain
(2020) [81]. In summary, the architectures of the generators and discriminators are the following.
The generators are composed of two downsampling blocks, nine residual blocks, two upsample
blocks, and a final convolution layer with tanh activation. The different blocks use reflection
padding, instance normalization, and ReLU activation. On the other hand, the discriminators
are composed of three downsampling blocks with Leaky ReLU activation.

3.2.2. Semantic Segmentation

We here elaborate on the choices made regarding the multiclass semantic segmenta-
tion model. We follow the currently popular strategy of combining a strong performing
CNN classifier as an encoder together with a decoder. As such, the main model we use
for our experimental setup is a UNet-like architecture with an EfficientNetB5 backbone
(UNet-EffB5). The architecture is given in detail in Figure 5. EfficientNets are a family
of CNN models proposed by Tan et al. [82], which show state-of-the-art accuracy while
being considerably smaller and faster. The models are designed using neural architecture
search and subsequent upscaling using a compound coefficient, which uniformly scales
all network dimensions depth, width, and resolution. Its central building block is the
mobile inverted bottleneck MBConv with squeeze-and-excitation optimization (Figure 5b).
EfficientNet variants are available from a base model B0 (5.3 million parameters) up to
the largest model B7 (66 million parameters). In this study, we opted for EfficientNetB5
(30 million parameters), as a trade-off between model size and accuracy. The encoder
is connected with a decoder which uses transposed convolutions for upsampling and
skip connections to concatenate corresponding encoder layers according to the original
UNet [33]. The last decoder block is connected to a final classification convolution with
softmax activation, which produces K probability maps, with K the number of classes, of
equal dimensions as the input image. The final LULC-map in integer format can then be
derived by assigning to each pixel the class with the highest probability (= argmax). In
addition, we compare the UNet-EffB5 model above to two other state-of-the-art semantic
segmentation models: DeepLabV3+ with Xception backbone (output stride 16) [83] and
Feature Pyramid Network with EfficientNetB5 backbone (FPN-EffB5) [84]. In this com-
parison, the three models are all trained from scratch, i.e., they are not pretrained such as
in the experimental setup for transfer learning where only UNet-EffB5 is considered. For
UNet-EffB5 and FPN-EffB5, the model implementations of Yakubovskiy (2019) [85] were
used, for DeepLabV3+, the implementation based on Lu (2020) [86] was used. All models
were implemented with Keras (v2.4.0) and Tensorflow (v2.4.1).
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Figure 5. (a) Overview of the UNet fully convolutional network with EfficientNet-B5 backbone.
The horizontal values indicate the number of filters. The vertical values indicate the image height
and width (H = W). K equals the number of LULC classes. Detailed schematics are given for the
mobile inverted bottleneck with squeeze-and-excitation building block (MBConv) and the upsample
building block in pane (b,d), respectively. The filter kernel sizes k × k, and number of filters α and β

for the multiple MBConv blocks are specified in pane (c). BN = batch normalization, ReLU = rectified
linear unit, DwConv = depthwise 2D separable convolution (always with stride = 2).

3.3. Model Training and Evaluation
3.3.1. CycleGAN

The CycleGAN model was trained two times: a first time to learn the mapping
function SAG2015rgb ↔ SAG1981hist, and a second time to learn the mapping function
MFrgb ↔ SAG1981hist. In case of the former, the images of the 2015 and 1981 Sagalassos or-
thophotos were clipped to non-overlapping patches of 512× 512 px², totalling 4320 patches
for each year. Subsequently, the patches were resized to 256× 256 px² (for computational
reasons), and rescaled to the [−1, 1] domain. The 1981 monochromatic patches were copied
three times and concatenated to itself to match the three-channel shape of the 2015 RGB
patches. The pairs of {SAG2015rgb, SAG1981hist} patches were chosen to remain geograph-
ically aligned when fed into the model during training, to encourage I2I translation of
structures that remained the same over the two years. For the case MFrgb ↔ SAG1981hist,
the procedure was analogous, except that first a 10% random sample out of all patches
was taken, resulting in 11,785 patches. These patches were then randomly paired with
SAG1981hist patches.

In both cases, the model was trained for 50 epochs with the Adam optimizer, a
learning rate of 2 · 10−4 and momentum of 0.5, a batch size of 1, random normal kernel
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and gamma initialization with zero mean and 0.02 standard deviation, and cycle and
identity loss contribution of λc = 10 and λi = 0.5, respectively. Model weights were
saved every 5 epochs, and the result evaluated visually on 0.5% validation patches.
Training took approximately 13 h and 35 h using Google Colab Pro (Tesla V100, 16 GB),
respectively. For SAG2015rgb ↔ SAG1981hist, the model at epoch 50 was selected, while,
for MFrgb ↔ SAG1981hist, the model at epoch 10 was selected.

3.3.2. Segmentation Models

(a) Training loss: The different semantic segmentation models and configurations
were trained by minimizing a combination of the dice loss (=F1 loss) and categorical cross
entropy (CCE) loss. These losses are calculated as a certain distance between the class
probability maps predicted by the model and the one-hot encoded true annotations. The
soft dice loss for a certain class c is calculated as one minus twice the intersection over the
total sum:

Ldice,c = 1− 2 ∑N
i=1 ŷc,iyc,i + ε

∑N
i=1(ŷc,i)p + ∑N

i=1(yc,i)p + ε
(7)

With ŷc,i the predicted class probability for pixel i, yc,i, the binary ground truth, N the total
number of pixels, p an optional exponential coefficient, and ε a constant to prevent from
zero division. The latter two were set at p = 2 to stimulate a steeper loss decrease at higher
losses and ε = 1 to ensure stability during training, respectively. Contrary to the dice loss,
the CCE is calculated per-pixel and is given by:

LCCE,i = −
K

∑
c=1

wpix,c yi,c log ŷi,c (8)

with K the total number of classes and wpix,c the pixel-level class weights. These weights
are introduced to account for class-imbalance in the training set. The total loss Ltot can then
be calculated as a weighted average of Ldice,c and LCCE,i:

Ltot = α
1
N

N

∑
i=1
LCCE,i + (1− α)

K

∑
c=1

wpatch,cLdice,c (9)

where α is a hyperparameter determining the relative contribution of both losses to the total
loss. After a 1D grid-search using the 1971 Sagalassos data, we set α = 0.7 (Figure 6). The
1971 Sagalassos data was used because this was the only orthophoto for which annotation
data were available at the time. For all configurations, model training was repeated five
times, each time with a different 90–10 train–validation split as a trade-off between having
sufficient training data and being statistically representative. Train–validation splits were
only accepted if all classes were present in both sets. The soft IoU loss LIoU = 1− IoU
(see Equation 12) was also tested as an alternative for the dice loss but did not show an
improvement (Figure 6). Furthermore, the total loss was always calculated over the whole
batch, and only pixels for which a known ground truth existed were considered, i.e., the
class No info was not considered.

(b) Multiclass weighting: Observe that Ldice,c is calculated per class and subsequently
averaged, while LCCE,i is calculated per pixel and subsequently averaged. Therefore, in
contrast to the CCE, the dice loss is weighted with a second set of class-weights, which we
call here patch-level class weights wpatch,c. The usage of two distinct sets of class-weights
is supported by the existence of a discrepancy between the probability of pixel-wise class
occurrence, which is determined by the object size of the class, and the probability of patch-
wise class occurrence, which is determined by the dispersion of the class. This can clearly be
seen in Figure 3. We define both class-weight sets inversely proportional to the probability
of occurrence, i.e., wc ∼ 1/pc. If we denote the probability of a randomly selected pixel
belonging to a certain class as P(pix = c) = ppix,c, and assume the expected probability of
ppix,c for all classes to be uniform, i.e., E[ppix,c] = 1/K, then wpix,c is calculated as:
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wpix,c =
1

ppix,c/E[ppix,c]
=

1
ppix,cK

(10)

Figure 6. Mean intersection over union (mIoU) of the 1971 Sagalassos validation set for different loss
functions. The numbers on the x-axis represent a weighted average between the dice loss and CCE
loss (α in Equation (9)). The average over five runs (± stdev) is shown, except for mIoU loss with
only three runs.

In words, the pixelwise weight given to a class is the inverse of the observed class-
probability versus the expected class-probability. Hence, classes with ppix,c > 1/K are
down-weighted while classes with ppix,c < 1/K are up-weighted. On the other hand, the
patchwise class-weights are calculated as:

wpatch,c =
1

ppatch,c ∑c 1/ppatch,c
(11)

with ppatch,c = P(c ∈ patch) being the probability that a certain class occurs in a randomly
selected patch. In words, the patch-wise weight given to a class is the inverse of the
observed class-probability divided by a normalization factor such that the sum of the
weights is one. The rationale is again that classes with high occurrence are down-weighted
while classes with low occurrence are up-weighted. In both cases, the class probabilities
are estimated as the relative class frequencies, i.e., pc = fc/ ∑c fc (Figure 3).

(c) Evaluation metrics: The different experiments were evaluated using the common
class-wise mean Intersection over Union (IoU) metric, which for a certain class is calculated as:

IoUc =
∑N

i=1 ŷc,iyc,i + ε

∑N
i=1 ŷc,i + ∑N

i=1 yc,i −∑N
i=1 ŷc,iyc,i + ε

(12)

Here, in contrast to Equation (7), the model predictions ŷc,i are binary, i.e., they
are evaluated after the argmax operator. As such, this is equal to the definition
IoU = TP/(TP + FP + FN). The final mean IoU (mIoU) is then the average over the

different classes: mIoU =
1
K ∑c IoUc. Additionally, the mean true positive rate (mTPR) was

calculated as a second evaluation metric:

mTPR =
1
K ∑

c

TPc

TPc + FNc
(13)
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3.3.3. MiniFrance Pretraining

The UNet-EffB5 model was trained on the MF-dataset with three different input config-
urations: a first time with RGB input (MFrgb), a second time with greyscale input (MFgrey),
and a third time with historical input (MFhist). By historical input, we mean the RGB patches
that have been converted to historical-looking images using the mapping function learned by
CycleGAN and their corresponding original annotations. In all cases, the model was trained
on 90% of the data for 10 epochs with the Adam optimizer, a batch size of 2 (maximum that
fitted into RAM), a fixed learning rate of 0.0002, and an ImageNet pretrained encoder. The
other 10% of the data was used for validation. Apart from scaling images to the 0–1 domain,
no pre-processing was conducted. In the case of the greyscale and historical input, the images
were copied and concatenated three times to match the three-channel input of the model.
Each training run took around 46 h on a NVIDIA RTX 2080.

3.3.4. Sagalassos Training/Fine-Tuning

Different experiments were trained on the Sagalassos data: with or without pretraining
on ImageNet (only encoder), MFgrey or MFhist (full model); using manual RGB to greyscale
(historical-looking) mapping (SAG2015grey) or CycleGAN mapping (SAG2015hist) as input;
and using different FCN architectures. All configurations were trained for 100 epochs with
the Adam optimizer, a batch size of 4, and the following learning rate schedule:

lr = lr f in +
(

lrinit − lr f in

)(
1− epoch

epochmax

)p
(14)

With lrinit = 10−3, lr f in = 10−4, and p = 3. Furthermore, the original training dataset
was augmented by increasing image-context around the annotated patches, i.e., a context of
256 px around the patches was considered, after which patches of the same size (512× 512)
were clipped with a stride of 265 px. As such, one annotated patch results in nine patches
(of which one the original), where each of the four subpatches within the larger patch
is seen four times from four different angles (Figure 7). Discarding the patches at the
edge, this led to 1002 training examples. Additionally, patches were randomly flipped
horizontally and/or vertically. For the case of manual RGB→HIST mapping (SAG2015grey),
additional random brightness shifts and random noise were added to visually mimic the
characteristics of the SAG1981hist images. The models were trained on 7/8 of the data and
validated on the other 1/8. It was ensured that all classes were present in both the train
and validation set. Training was performed using Google Colab Pro (Tesla V100, 16 GB)
and took around 3.6 h.

Figure 7. Illustration of data augmentation by using additional image-context. One annotated patch
now becomes nine patches (numbers are located in the centre of a patch).



Remote Sens. 2022, 14, 5911 19 of 34

3.4. Inference and Post-Processing
3.4.1. Inference

After training, the model was deployed to derive a LULC map for the whole 1981
Sagalassos orthophoto. The most straightforward way to achieve this is by sliding a
window of 512 × 512 px² (= model input size) over the orthophoto with stride 512 px and
predicting the LULC for each patch. However, a drawback of this procedure is that the
edge-pixels of a patch have a considerable chance of being predicted differently than the
edge-pixels of an adjacent patch due to reduced context information at the edges, hence
resulting in an undesired raster-like effect over the predicted LULC map. To overcome
the latter, we use a stride smaller than the patch size during inference such that each
pixel is seen multiple times and predicted with different context. The predictions can
then be aggregated by, among others, averaging the probabilities or maintaining only the
prediction with the highest probability (remark that this aggregation occurs prior to the
argmax operator). However, there is a trade-off with the latter solution: when decreasing
the stride, the inference time will increase proportionally. For example, if we wish to predict
all pixels four times (stride = 256), inference time will take four times as long. Therefore, in
this study, we quantify the prediction accuracy gain when decreasing the inference-stride
and compare this to the inference time increase.

3.4.2. Post-Processing

As a final post-processing step, we also tested the effect of combining the LULC map
outputted by the FCN model with an unsupervised segmentation method. The rationale
is to segment the original orthophoto into superpixels, and subsequently assign to each
superpixel the most occurring class-id from the corresponding LULC map within the
superpixel. The aim of the latter is to ameliorate boundary delineation between semantic
objects and to establish a certain MMU. In this study, we opted for the popular simple linear
iterative clustering (SLIC) method [87] implemented by van der Walt et al. (2014) [88], which
in our case simply performs k-mean clustering in the 3D image intensity-location space,
making SLIC very efficient. The algorithm has two main parameters: the compactness,
which trades off colour-similarity and proximity, and the desired number of approximately
equally-sized superpixels. The two parameters were set at 0.05 and 1000, respectively. The
high number of centres ensured oversegmentation, such that the obtained super-pixels were
not larger than the semantic objects. Furthermore, for better efficiency, the segmentation
was run patch-wise instead of using the complete orthophoto as input. A patch size slightly
smaller than the inference patch size was used such that also superpixels were generated
which overlaid the inference-caused edge artifacts.

4. Results
4.1. Image to Image Translation

Example results of the I2I translation between SAG2015rgb and SAG1981hist using the
trained CycleGAN model are given in Figure 8. Translation and reconstruction are shown
in both directions. Similarly structured examples for the learned MFrgb↔ SAG1981hist map-
ping are given in Supplementary Figure S3. From visual inspection, the CycleGAN model
seems adequately capable of learning the RGB→ HIST mapping function. Furthermore,
the spatial/textural information is well preserved throughout RGB→ RGB reconstruction;
however, some colour information is lost as the model seems to have the tendency of
leaning towards colour shades with a high occurrence in the training set. For example,
observe the orange house roofs that did not make it through reconstruction (Figure 8).
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Figure 8. Validation examples of image-to-image translation between the Sagalassos 2015 and 1981
orthophoto domains using CycleGAN. Corresponding image patches are of the same geographical location.

Although the model with weights trained for 50 epochs was selected, an accept-
able translation was already learned after very few epochs. Moreover, in the case of
MFrgb ↔ SAG1981hist, training even became unstable after a higher number of epochs
(Supplementary Figure S4). This seems to indicate that having a training dataset which
includes some degree of approximately pairwise examples is still beneficial for train-
ing stability of CycleGAN. Nonetheless, the observation that the automated translation
step can be learned by relatively few epochs signifies that it still could prove valuable
in more time-constraint projects. In addition, while in this study, we learned a separate
mapping function for MFrgb ↔ SAG1981hist translation, the mapping function learned
on SAG2015rgb ↔ SAG1981hist could have also been used for this. Although this led to
rather similar translation but inferior reconstruction results (Supplementary Figure S5), it
would eliminate the need to train a second mapping function, thus also reducing computa-
tion time.

4.2. Transfer Learning

Table 4 summarizes the results of the different experiments related to transfer learning.
Several conclusions can be drawn. First, all configurations score considerably higher on
the validation than on the test set. The main reasons for this are that (i) parts of the
validation set were also present in the training set due to the data augmentation technique
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used (Section 3.3.4), thus probably leading to an overestimation, (ii) the validation and
test set were to a large extent labelled by different annotators, thus resulting in different
annotation choices, (iii) spatial features are present in the landscape of 1981 which are not
present in 2015, or (iv) there is an imperfect mapping between 2015 and 1981. Second,
the experiments demonstrate the added value of pretraining. Moreover, the added value
increases when using a dataset for pretraining closer to the desired image domain. More
specifically, Figure 9 shows that pretraining on the EO dataset MiniFrance results in higher
segmentation scores and faster convergence during training than pretraining on the natural
image dataset ImageNet, even though MiniFrance is far from perfectly annotated and the
models trained on MiniFrance do not necessarily exhibit maximal accuracy (Table 5). In
particular, the mIoU increases with 13.0% when comparing no pretraining with MFhist
pretraining, both with SAG15hist fine-tuning (Table 4). Third, using a learned mapping
function RGB → HIST gives a substantial gain compared to manually mimicking the
conversion. That is, the mIoU increases with 27.2% when comparing SAG15grey with
SAG15hist fine-tuning, both with ImageNet pretraining. Hence, the latter two conclusions
prove the added value of our proposed combination of spatial and temporal transfer
learning methodology. Lastly, the highest validation mIoU is attained when combining
initial pretraining on the CycleGAN mapped MiniFrance dataset (MFhist) with subsequent
fine-tuning of all layers on the CycleGAN mapped Sagalassos 2015 dataset (SAG15hist).
However, the highest test mIoU is attained when pretraining on MFgrey, or when only
fine-tuning the final classification/convolutional layer (f.c.). As such, a higher validation
score in this case does not per se correspond to a higher test score, as highlighted previously.

Table 4. Summary of the multiclass semantic segmentation results on the Sagalassos (SAG) 2015
validation set and 1981 test set. All experiments use the UNet-EffB5 architecture. ‘-grey’ means
manual RGB→ HIST conversion, ‘-hist’ (=historical) means learned mapping with CycleGAN.

Experiment 2015 Validation 1981 Test 2

Pre-Train Finetune mIoU mTPR mIoU mTPR

- SAG15hist 34.3 69.0 16.2 29.3
ImageNet SAG15grey 13.8 44.4 0.6 9.6
ImageNet SAG15hist 58.7 85.5 27.8 44.9

MiniFrancegrey SAG15hist 59.1 80.6 31.1 45.5
MiniFrancehist SAG15hist 65.0 86.9 29.2 42.3

MiniFrancehist
SAG15hist

f.c.1 60.0 85.4 31.1 46.1

1 final convolution; 2 test values were derived using relative inference stride ½.

Table 5. Summary of semantic segmentation results using UNet-EffB5 on the MiniFrance (MF)
validation set using RGB, greyscale or historical-like (CycleGAN translated) input.

Data Set
MF Validation

mIoU mTPR

MiniFrance-rgb 29.5 45.5
MiniFrance-grey 29.3 53.1
MiniFrance-hist 25.8 46.3
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Figure 9. Mean intersection over union (mIoU) of the 2015 validation set (CycleGAN translated)
during training when using no pretraining, ImageNet (IN) pretraining, MiniFrance (MF) greyscale
(-g) or historical-like (-h, CycleGAN translated) pretraining.

Table 6 further compares UNet-EffB5 versus the FPN-EffB5 and DeepLabV3+ archi-
tectures (all trained from scratch). UNet-EffB5 yields the highest scores on the validation
set but ranks last on the test set, thus seemingly having lower capacity to generalize from
the validation to the test set. Hence, for future research, it may be interesting to apply the
spatio-temporal transfer learning methodology using different CNN architectures.

Table 6. Summary of semantic segmentation results using UNet-EffB5 on the MiniFrance (MF)
validation set using RGB, greyscale or historical-like (CycleGAN translated) input.

Model
Parameters
[×106]

Inference Speed
[ km2·s−1 ]

2015 Validation 1981 Test 1

mIoU mTPR mIoU mTPR

UNet-
EffB5 41 0.28 34.3 69.0 16.2 29.3

FPN-
EffB5 32 0.27 27.0 58.2 16.7 43.1

DeeplabV3+ 54 0.28 31.8 64.6 17.2 40.6
1 test values were derived using relative inference stride ½.

4.3. Semantic Segmentation

The results presented here all build on the best performing model from the previous
section, i.e., initial MFhist pretraining and subsequent SAG2015hist fine-tuning of the final
classification layer (Table 4). Example results and the confusion matrix of the SAG2015hist
validation set are given in Supplementary Figures S6 and S7, respectively.

To obtain the final LULC map for the complete 1981 orthophoto, various inference
strides were tested as summarized in Table 7. Several observations can be made. First,
decreasing the inference stride does not seem to significantly impact the test mIoU; however,
visually it drastically improves the quality of the LULC map. Figure 10 shows that the raster-
like appearance of the LULC map caused by using no overlap fades when using overlap,
making the map much smoother across the patch edges. Second, assigning each pixel the
class with the highest average probability over the multiple overlapping predictions yields
a better segmentation score than assigning each pixel the class with the overall highest
probability. Third, using the additional SLIC super-pixel post processing step does not
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improve the segmentation score. Moreover, qualitatively it does not seem to be of much
added value for boundary delineation (Figure 10). Nonetheless, SLIC reduces noisiness of
the LULC map and can prove useful for establishing a certain MMU (Figure 10).

Figure 10. (A) Part of the Sagalassos 1981 orthophoto, with (B) corresponding predicted LULC
map using no overlap during inference, (C) using a relative stride of 1/4th of the patch size during
inference, and (D) combining the latter with SLIC post processing.

Table 7. Summary of semantic segmentation results on the Sagalassos 1981 test set for various
inference strides relative to the patch size with either average (avg) or maximum (max) aggregation,
and for the combination with SLIC post processing.

Inference Stride Aggregation Post Proc.
1981 Test

mIoU mTPR

1 - - 30.0 46.8
1/2 max - 30.7 45.9
1/2 avg - 31.1 46.1
1/3 avg - 31.1 46.1
1/4 avg - 31.1 46.1
1/4 avg SLIC 31.1 46.1

Hence, the final LULC map is derived by using the best performing model with 1/4
inference stride and SLIC post-processing, having a mIoU = 31.1%, mTPR = 46.1%, and
an overall accuracy of 69%. Mapping the entire study area when running inference with
no overlap took around 7.3 min, or approximately 0.28 km²· s−1 at 0.3 m GSD (Table 6).
Consequently, mapping with relative inference stride of 1/4 took about 2 h. The final entire
predicted 1981 LULC map is depicted in Figure 11.
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Figure 12 further provides the pixel-wise confusion matrix between the ground truth
and predicted LULC classes. Ideally, all diagonal elements in the confusion matrix ap-
proximate 100%, indicating that all pixels are correctly predicted as their true LULC class.
Deviation from this diagonal thus learns which classes are mutually confused and are under
or over predicted. Note, however, that it is not necessarily desired to reach exactly 100%
because the ground truth annotations will contain errors as well. Hence, a combination
with qualitative inspection of the LULC map is needed. It can be seen that the semantic
segmentation model strongly overfits on the class open area, moderately overfits on the
classes hedge and arable land, and slightly overfits on the classes transport and shrubland,
as their columnwise sum is larger than 100%. This is also reflected in Figure 13, which
shows some example predictions for the 1981 test set with corresponding ground truth.
Consequently, the other classes are underpredicted. More specifically, the model fully
misclassifies wadi and water mainly as open area (see for example top of Figure 11), and
further has difficulty with recognising—in descending order—roses, terrace, anava and
commercial. Except foranava, the latter classes all had the least training examples (Figure 3),
which we believe to be the principal cause for their lower class accuracies. We do not
consider it to be attributable to a poor handling of the class-imbalance in the training set, as
for example the class urban, which albeit also having few training examples, still shows a
high class TPR, likely because of its rather low intra-class variability. As such, we believe
the weighting scheme incorporated into the loss function to be effective, but it is the lack of
training examples for classes with high intraclass variability or low inter-class variability
that causes the low class-accuracies. Lastly, visual inspection of the LULC predictions fur-
ther learns that the model struggles with areas of very low contrast, especially on both ends
of the spectral spectrum, and with areas which are also difficult to discriminate through
human interpretation.

Figure 11. Predicted LULC map for the entire 1981 Sagalassos orthophoto based on the 2015 training
data (MiniFrance-hist pretrained + SAG2015-hist fine-tuned).
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Figure 12. Confusion matrix of the predicted vs. the true LULC classes for the Sagalassos 1981 test
set. Values are given as percentages over the true class.
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Figure 13. Example image patches of the Sagalassos 1981 test set with corresponding LULC ground
truth and prediction.
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5. Discussion

We further discuss our results and present an outlook on future research perspectives
and opportunities. Firstly, improvements could be made regarding the semantic segmen-
tation model through evaluation of other existing models in literature, either specifically
tailored to the EO problem at hand or transferred from another domain. For instance, some
works investigate the potential of graph-CNNs which seems promising for hierarchical
segmentations [89], while other studies intend to find architectures applicable in more
resource constraint settings [90]. In addition, a popular strategy is to obtain final predictions
through combination of an ensemble of high-performing segmentation models [91]. In ad-
dition, with increasing availability of multi-temporal EO data, a growing body of research
is dedicated to change detection for which specific DL paradigms have been developed
such multitask or convolutional siamese networks [72,92,93], which may be a promising
direction particularly for historical land cover mapping. Furthermore, a strategy to better
deal with multiclass problems could be to use separate optimized models for each target
LULC class and collect class-specific open-source data for pretraining, however, when deal-
ing with a high number of classes, this would be extremely demanding. Next, although this
work used a SLIC post-processing step, deep learning based semantic segmentation models
have arguably reached a state where they either incorporated the post-processing rationale
into the model structure (e.g., border refinement, conditional random fields, . . . ) or reached
state-of-the-art performances without needing the additional step, hence rendering post
processing obsolete.

While a lot of endeavour aims at improving DL architectures, significant performance
gains can also be achieved by leveraging transfer learning and domain adaptation, as
signified in this study. On the level of pretraining, the release of new large-scale open-
source HR or VHR EO datasets with accurate multiclass LULC annotations will likely
have the most substantial impact on driving research forward and closing the gap between
research and real-world applications. In this light, it may be interesting to investigate
the impact of the accuracy of ground truth LULC labels, by, for example, comparing
pretraining on the MiniFrance dataset with pretraining on the Chesapeake land cover
Dataset which has more reliable high-resolution labels (Table 1) [18]. On the level of domain
adaptation, we expect a significant increase in studies exploring I2I translation within the
EO domain. Improvements are possible in terms of DL models—chiefly GANs—or general
methodology. As an example, for the former, the recent contrastive-unpaired-translation
(CUT) model could substitute CycleGAN as it enables faster and more memory-efficient
training [94]. Methodology-wise, there is active work on considering GANs for semantic
segmentation—as semantic segmentation is in essence an I2I problem—thereby integrating
the workflow of domain adaptation and semantic segmentation [57,95]. Furthermore,
Tasar et al. [58] propose an interesting approach for multi-source domain adaptation by
data standardization.

Besides the model architecture and transfer learning methodology, remarks can be
made regarding the dataset construction. A difficult question to answer is ‘how much
training data are needed?’ One approach is to follow an ‘active learning’ scheme, by
alternating between training the model and manually annotating additional data there
where needed. Plotting the model accuracy versus the fraction/quantity of training data
can then inform when the accuracy reaches a plateau. It would be interesting to make such
a plot for each target class. Additionally, to reduce the problem complexity—if desired—the
number of classes could be decreased or the MMU could be increased to derive a less fine
grained but smoother LULC map. Next, although the Sagalassos dataset was constructed
at GSD = 0.3 m, patch size = 512 × 512 px² and 115 patches, alternatives are to work
with fewer patches but larger patch sizes. Therefore, exploring best practices in terms
of LULC sampling strategy and its effect on the FCN performance could prove valuable
research. Furthermore, it can be worthwhile to examine the effect of performing semantic
segmentation at a lower resolution (e.g., GSD = 1.0 m), causing the loss of fine-grained
information but in return increasing the geographic context and thus also decreasing



Remote Sens. 2022, 14, 5911 28 of 34

computational demand. Another potential alteration to the training data are to erode
the LULC annotation polygons to cope with the fact that manual annotations at class
borders are mostly imperfect. Furthermore, in addition to modifications regarding LULC
annotation creation, future work can explore the added value of including an open-source
DEM, which, for example, could help in distinguishing classes based on altitude (e.g.,
higher up the mountain is commonly open area while the valleys are commonly arable
land). Of course, if no historical DEM is available, the DEM should be assumed constant
throughout time. Lastly, the quality of the final LULC map may be improved by creating
some manual annotations for the historical orthophoto to be classified, in particular for the
classes with lower segmentation scores, and fine-tuning a second time.

Albeit the seemingly endless list of research opportunities, we first intend to apply our
proposed methodology to extract LULC maps for the remaining historical orthophotos in
the Sagalassos dataset (1971, 1992). Moreover, our methodology can be applied when new
historical images/orthophotos become available for which there are no annotation data.

6. Conclusions

This work introduces a novel methodology for automated extraction of multiclass
LULC maps from historical monochromatic orthophotos under the absence of direct ground
truth annotations. The methodology builds on recent evolutions in deep learning, leverag-
ing both domain adaptation and transfer learning, which—in the context of EO—we jointly
introduce as ‘spatio-temporal transfer learning’. In summary, it consists of three main
steps: (i) train an image-to-image translation network for domain adaptation, (ii) pretrain a
semantic segmentation model on a translated large public dataset using the I2I function,
and (iii) fine-tune using a small translated custom dataset using the I2I function.

The methodology is tested on a new custom dataset: the ‘Sagalassos historical land
cover dataset’, which consists of three historical orthophotos (1971, 1981, 1992) and one re-
cent RGB orthophoto (2015) of VHR (0.3 m GSD) all capturing the same greater area around
Sagalassos archaeological site (Turkey) and corresponding manually created annotation
(2.7 km² per orthophoto) distinguishing 14 challenging LULC classes. Although this study
considers the 2015 image with ground truth as training set and the 1981 image with ground
truth as test set, the Sagalassos dataset can be used for other future research on semantic
segmentation of historical EO or multi-temporal change detection paradigms. Furthermore,
this study provides a comprehensive overview of open source annotated EO datasets for
multiclass semantic segmentation. For our scope, the MiniFrance dataset proved the most
suitable for use as pretraining dataset. However, new large-scale open-source datasets with
higher quality labels may become available in the future.

The DL models used in this work are CycleGAN for I2I translation, and UNet with
EfficientNetB5 backbone for multiclass semantic segmentation. Both models proved suc-
cessful for their tasks. Nonetheless, in the future, they may be substituted by more domain
tailored models or less resource consuming models allowing for real-time applications.

Our results further indicate that the proposed methodology is effective, increasing
the mIoU by 27.2% when using the learned I2I mapping function compared to manual I2I
mapping, and by 13.0% when using domain pretraining compared to using no pretraining.
Additional improvement will probably be most efficiently obtained by increasing the
number of training examples for classes with low occurrence. Furthermore, transferring
weights from a model pretrained on a large dataset closer to the target domain is preferred.
As such, we believe that, in the near future, DL for EO will solely leverage transfer learning
from within the domain, as quantity, diversity and accessibility of EO-datasets will increase.
GAN-based I2I translation techniques can hereby effectively help in constructing datasets
for a target domain when the mapping function between a source domain (with annotations)
and target domain (without annotations) is not straightforward.

Post processing by casting a majority vote over superpixels generated by the unsuper-
vised SLIC algorithm proved useful to install a MMU and make slightly smoother maps;
however, it is not convincingly worth the additional computation. In contrast, decreasing
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the stride during inference to make aggregated predictions for the complete orthophoto
resulted in significantly higher quality and seems key for geographical continuity of the
LULC maps.

Using our methodology, we generated the first historical LULC map for the greater
area around the Sagalassos archaeological site for the year 1981. Analogously, we plan to
compute LULC maps for the 1971, 1992 and 2015 orthophotos, which will be instrumental
to support future studies focussing on long-term environmental and agro-social-economical
transformations in the Sagalassos region.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14235911/s1. Figure S1: Examples of the Sagalassos dataset;
Figure S2: Examples of the MiniFrance dataset (tile dimensions are 10,000 × 10,000 px²); Figure S3:
Validation examples of image-to-image translation between the MiniFrance (RGB) and Sagalassos
1981 historical orthophoto (panchromatic, PAN) domains using CycleGAN trained for 10 epochs;
Figure S4: Validation examples of image-to-image translation between the MiniFrance (RGB) and
Sagalassos 1981 historical orthophoto (panchromatic, PAN) domains using CycleGAN trained for
50 epochs; Figure S5: Examples of image-to-image translation between the MiniFrance (RGB) and
Sagalassos 1981 historical orthophoto (panchromatic, PAN) domains using the mapping function
learned between the Sagalassos 2015 and 1981 domains using CycleGAN; Figure S6: Example image
patches of the Sagalassos 2015 validation set (CycleGAN translated) with corresponding LULC
ground truth and prediction. The black regions in the ground truth are due to our data augmentation
technique (Section 3.3.4); Figure S7: Confusion matrix for the Sagalassos 2015 validation set using
the UNet-EffB5 architecture, MiniFrance-hist pretraining and SAG15-hist fin. conv. fine-tuning.
Values sum to 100% over the true label.; Figure S8: Confusion matrix for the MiniFrance-historical
(CycleGAN translated) dataset. Values sum to one over the true label. Nan-values are because these
two classes do not appear in the dataset despite being mentioned in the dataset description.
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Abbreviations
The following abbreviations are used in this manuscript:

CCE Categorical Cross Entropy
CNN Convolutional Neural Network
DL Deep Learning
DN Digital Number
EO Earth Observation
FCN Fully Convolutional Network
FPN Feature Pyramid Network
GAN Generative Adversarial Network
GEOBIA Geographical Object Based Image Analysis
GSD Ground Sampling Distance
HIST Historical-like monochromatic image
HR High Resolution
I2I Image-to-Image
LULC Land-Use/Land-Cover
MAE Mean Absolute Error
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mTPR mean True Positive Rate
MF MiniFrance
mIoU Mean Intersection over Union
MMU Minimum Mapping Unit
MSE Mean Squared Error
OA Overall Accuracy
PAN Panchromatic
ReLU Rectified Linear Unit
RGB Red, Green, Blue optical image
RS Remote Sensing
SAG Sagalassos
SLIC Simple Linear Iterative Clustering
UDA Unsupervised Domain Adaptation
UNet-EffB5 UNet with EfficientNet-B5 backbone
VHR Very High Resolution
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