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Abstract: Light use efficiency (LUE) models have been widely used to estimate terrestrial gross
primary production (GPP). However, the estimation of GPP still has large uncertainties owing to an
insufficient understanding of the complex relationship between water availability and photosynthesis.
The plant water stress index (PWSI), which is based on canopy temperature, is very sensitive to
the plant stomatal opening and has been regarded as a good indicator for monitoring plant water
status at the regional scale. In this study, we selected a cork oak plantation in northern China with
an obvious seasonal drought as the research object. Using the ground-observed data, we evaluated
the applicability of the LUE models with typical water stress scalars (MOD17, MODTEM, EC-LUE,
ECM-LUE, SM-LUE, GLO-PEM, and Wang) in a GPP simulation of the cork oak plantation and
explored whether the model’s accuracy can be improved by applying PWSI to modify the above
models. The results showed that among the seven LUE models, the water stress scalar had a greater
impact on the model’s performance than the temperature stress scalar. On sunny days, the daily GPP
simulated by the seven LUE models was poorly matched with the measured GPP, and all models
explained only 23–52% of the GPP variation in the cork oak plantation. The modified LUE models
can significantly improve the prediction accuracy of the GPP and explain 49–65% of the variation in
the daily GPP. On cloudy days, the performance of the modified LUE models did not improve, and
the evaporative fraction was more suitable for defining the water stress scalar in the LUE models. The
ECM-LUE and the modified GLO-PEM based on PWSI had optimal model structures for simulating
the GPP of the cork oak plantation under cloudy and sunny days, respectively. This study provides a
reference for the accurate prediction of GPP in terrestrial ecosystems in the future.

Keywords: crop water stress index; light use efficiency model; gross primary production; water stress
scalar; weather condition

1. Introduction

Forests comprise the main part of terrestrial ecosystems and play an important role
in the terrestrial carbon cycle and in global climate change [1]. Gross primary production
(GPP) is defined as the total amount of carbon dioxide (CO2) absorbed by plants through
photosynthesis [2]. Accurate estimation of forest GPP is of great significance for evaluating
the health status of ecosystems, understanding the carbon cycle mechanisms of terrestrial
ecosystems, and revealing the response of terrestrial ecosystems to climate change [3,4].
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The light use efficiency (LUE) model have been widely used to estimate GPP from
local to global scales because of its theoretical soundness and practical convenience [5–7].
LUE models estimate GPP by multiplying the energy absorbed by plants by the actual LUE,
which converts energy to the amount of carbon fixed during photosynthesis [8]. Currently,
researchers have developed more than 20 LUE models [7]. Although these models have
been developed based on the LUE logic, they have different model structures; that is, differ-
ent quantification methods have been used for the fraction of incident photosynthetically
active radiation absorbed by vegetation canopies (FPAR), water stress scalars (Ws), and
temperature stress scalars (Ts), and different methods have been used to integrate multiple
environmental stress scalars [9,10].

The usage of different quantification methods of the water stress scalar is the main
reason for the performance divergence in LUE models [9,11]. Currently, the water stress
indicators commonly used to define the water stress scalar in the LUE model include
(classification based on the three interfaces along the soil–plant–atmosphere continuum):
(1) atmospheric drought indicators (e.g., vapor pressure deficit (VPD)), (2) soil moisture
indicators (e.g., soil water content (SWC)), and (3) plant moisture indicators (e.g., evap-
orative fraction (EF)) [7,12]. However, it has been reported that on a monthly scale, the
above representative water stress indicators can only explain 20%, 6%, and 36% of the LUE
variation when combining eight biomes [11]. Moreover, many studies have found that the
performance of LUE models can be significantly degraded by a drought event in different
ecosystem types due to the fact that the existing water stress indicators do not accurately
indicate the complex relationship between water availability and actual LUE [9,13–15].
These studies suggest that a reliable water limitation equation should be developed to
improve the accuracy of the LUE models. The plant water stress index (PWSI), based on
canopy temperature, has long been regarded as a sensitive indicator for characterizing plant
water status on a regional scale [16–19]. The principle of PWSI is that canopy temperature
increases with stomatal closure and the transpiration rate decreases in response to water
deficit in plants. PWSI can accurately detect the water status of crops, grasslands, and
forests [20–22]. Meanwhile, PWSI is closely related to CO2 flux in wheat and maize [23];
Tong et al. [24] also found that PWSI can explain 88% of the variation in net ecosystem
productivity in warm-temperate mixed plantations on sunny days. With the development
of thermal infrared remote sensing technology, PWSI has been successfully applied to ana-
lyze the temporal and spatial distribution of plant water status on a scale from ecosystems
(unmanned aerial vehicle platforms) to regions (satellite platforms) [25–27]. However, no
study has evaluated the performance of GPP simulation using the LUE model, in which
the water stress scalar is defined by the PWSI.

Weather conditions have a significant impact on the performance of the LUE model.
Yuan et al. [9] pointed out that the LUE model underestimated GPP on cloudy days,
because the effect of diffuse radiation on LUE was not considered. Many studies have
also found that an increase in the proportion of diffuse radiation on cloudy days enhances
photosynthesis in plants, resulting in differences in the maximum light use efficiency
(LUEmax) under different weather conditions [28,29]. In addition, under cloudy conditions,
the application of some stress indicators based on remote sensing (such as the Land Surface
Water Index (LSWI)) is limited owing to cloud contamination [30,31], which will change
the structure of the optimal LUE model. However, few studies have considered weather
factors when simulating GPP using the LUE model.

Cork oak (Quercus variabilis) is the main tree species for afforestation and the main con-
structive tree species for degraded habitats in northern China. This tree not only maintains
a stable ecosystem structure but also performs remarkable water and soil conservation
functions, and the proportion of cork oak in China’s water and soil conservation projects
can reach 80% [32]. Because of wide spread in China, the cork oak plantation also plays an
important role in carbon sinks [29]. However, most of them are located in lithoid moun-
tain regions with thin and barren soils. Seasonal drought is the most important factor
affecting forest growth in this region; especially in spring and early autumn, plantations
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often suffer from moderate or severe water stress [24], which increases the uncertainty
in estimating GPP based on the LUE models. Under the change in global warming, it is
expected that rainfall in northern China will decrease, and the frequency, duration, and
extent of drought will increase. Therefore, it is necessary to determine an optimal structure
of the LUE model for cork oak plantations to accurately estimate changes in GPP. The
specific research objectives were (1) to assess the importance of water and temperature
stress scalars in LUE models in the cork oak plantation; (2) to evaluate the performance
of seven LUE models with typical water stress scalars in simulating the GPP of cork oak
plantations under different weather conditions; and (3) to evaluate the performance of
seven LUE models modified by PWSI under different weather conditions.

2. Materials and Methods
2.1. Study Area

This study was conducted at Henan Xiaolangdi Earth Critical Zone National Research
Station (35◦01′N, 112◦28′E, elevation: 410 m) (Figure 1). The station is located in a lithoid
hilly area of North China, adjacent to the south of Taihang Mountain, and has a warm-
temperate continental monsoon climate. The annual mean temperature is 13.40 ◦C, and
the annual rainfall is 641.70 mm (the statistical data is from 1990 to 2020). The amount of
rainfall in the summer accounts for 68% of that in the entire year. In this region, drought
events frequently occur in late spring and early autumn [24]. The parent soil material
is composed of limestone. The soil is mainly brown loam, and the deepest soil layer is
approximately 40 cm deep.
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Figure 1. The location of the experimental site. This picture is from Liu et al. [33].

The main tree species in the plantation area (7210 ha) were cork oak (Quercus variabilis),
arborvitae (Platycladus orientalis), and locust (Robinia pseudoacacia), with cork oaks account-
ing for more than 80% of the forest area. The plantation forest was 48 years old, and the
average canopy height was 10 m. The growing season for the plantation is April–October,
and the canopy of the plantation remains closed in May–September (canopy closure period)
each year. To prevent the thermal infrared camera from measuring tree trunk temperature
rather than the desired canopy temperature, the required observations in this study were
completed in June–September 2020, May–September 2021, and May–June 2022.

2.2. Measurements

An open-path eddy covariance system (EC) was installed on a flux tower platform
at a height of 36 m to measure the latent heat flux (LE), sensible heat flux (H), and net
ecosystem exchange (NEE) of the cork oak plantation. The entire system consisted of a
three-dimensional sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA)
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and an open-path infrared CO2/H2O analyzer (LI-7500, Li-Cor Inc., Lincoln, NE, USA).
Raw data were collected at 10 Hz and recorded using a data logger (CR1000, Campbell
Scientific Inc., Logan, UT, USA).

A calibrated thermal infrared camera (FLIR A310F, FLIR Inc., Wilsonville, OR, USA)
was used to automatically collect thermal infrared images of the cork oak plantation. The
camera was equipped with an FLIR IR 18 mm lens (field of view: 25.00◦ × 18.80◦) for
image capture. The pixel resolution of the camera was 320 × 240 pixels, and each pixel
corresponded to an effective temperature reading. An uncooled microbolometer was used
in the camera to detect longwave radiation in the range of 7.50–13.00 µm. The accuracy
was reported as ±4 ◦C or ±4% of the reading. To prevent the canopy-reflected sunlight
from entering the thermal infrared camera, the camera was installed on the tower platform
15 m above the canopy and faced southeast with a sensor zenith angle of 45◦. The thermal
infrared images of the cork oak plantation were automatically collected every half hour.
Detailed information on canopy temperature extraction from thermal infrared imagery
and the measurement accuracy of canopy temperature in this plantation can be found in
Liu et al. [33].

The meteorological gradient observation system included a seven-layer air temper-
ature (Ta), relative humidity (RH) sensor (HMP155, Vaisala Inc., Vantaa, Finland), and
anemometer (WindSonic, Gill Inc., Lymington, UK), which were installed at heights of
5, 8, 11, 14, 18, 26, and 32 m, respectively (in order to reduce the impact of the vertical
temperature gradient on canopy-air temperature differences, the average air temperature
measured at 8 m and 11 m was selected for this study). A net radiometer (CNR1, Kipp
& Zonen B.V., Delft, Netherlands) was installed at a height of 17 m. Soil moisture probes
(EC-5, METER Group Inc., Pullman, WA, USA) were installed at soil depths of 5, 10, and
20 cm (soil depth was only 20 cm in most areas of the plantation). The soil heat flux plates
were placed 5 cm below the surface at four points around the flux tower (HFT-3, Campbell
Scientific Inc., Logan, UT, USA). These instruments were connected to a datalogger (CR1000,
Campbell Scientific Inc., Logan, UT, USA), and the mean data were stored at 10 min in-
tervals. Photosynthetically active radiation (PAR) connected to a separate data logger
(CR1000, Campbell Scientific Inc., Logan, UT, USA) was collected at 10 min intervals using
a PAR sensor (LI190SB, Li-Cor Inc., Lincoln, NE, USA) at a standard meteorological station,
750 m from the tower. In addition, four linear light quantum sensors (RR-9753, RainRoot
Inc., Beijing, China) were used to measure the reflected PAR (PARre) and transmitted PAR
(PARtr) of the canopy, and the mean data were stored at 10 min intervals in the data logger
(RR1016, RainRoot Inc., Beijing, China).

In order to calibrate the soil moisture probe, the ring knife sampling and drying
method was used to measure the soil moisture at depths of 5, 10, and 20 cm in sixteen plots
around the flux tower. The observation interval was 10 days, and an additional observation
was added after the rain [34].

A plant canopy analyzer (LAI-2200C, Li-Cor Inc., Lincoln, NE, USA) was used to
measure the leaf area index (LAI) once a month (measurements were conducted in the
middle of each month). The normalized difference vegetation index (NDVI) was measured
using a high-resolution spectrometer (QE65Pro, Ocean Optics Inc., Dunedin, FL, USA),
which was installed on the tower platform at a height of 10 m above the canopy. The
spectrometer had a spectral range of 650–805 nm.

2.3. Data Processing
2.3.1. Fluxes Data

The NEE, H, and LE data with 30 min time intervals were calculated from the raw
data using Eddypro (7.0.7, Li-Cor Inc., Lincoln, NE, USA) software. The calculated fluxes
data were quality controlled by deleting the data with a quality flag of “2”. Abnormal flux
data resulting from instrument malfunction, unfavorable meteorological conditions, and
values of more than three times the variance with the average were deleted. Moreover,
NEE data were deleted when friction velocity was lower than the threshold (0.22 m s−1),
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which was calculated using the REddyProc R package based on the moving point test
method (https://cran.rstudio.com/web/packages/REddyProc/index.html (accessed on
9 March 2022)). Both gap filling and NEE partitioning were conducted using the REddyProc
R package, and GPP was calculated through NEE partitioning.

2.3.2. Clearness Index

The clearness index (CI) was defined as the ratio of the radiation received on the
ground (Sr) to the extraterrestrial solar radiation at a plane parallel to the Earth’s surface
(Se) [35]:

CI =
Sr

Se
(1)

Se = Ssc × [1 + 0.033× cos(360td/365)]× sin ε (2)

sin ε = sin ϕ× sin δ + cos ϕ× cos δ× cos ω (3)

where Ssc is the solar constant (1370 W m−2), ε is the solar elevation angle, and td is the day
of the year; ϕ is the local latitude, δ is the declination of the sun, and ω is the hour angle.
When the daily mean CI was greater than 0.50, the day was defined as sunny; otherwise,
the day was defined as cloudy [36].

2.3.3. PWSI

The PWSI was calculated as follows [17]:

PWSI =
dT − dTll

dTul − dTll
(4)

where dT is the measured temperature difference between the canopy and the air (◦C),
dTll is the lower boundary representing non-water-stressed conditions (◦C), and dTul is the
upper boundary representing non-transpiring conditions (◦C). Theoretically, the numerical
value of the PWSI varies from zero to one, representing the water status from well-watered
to non-transpiring conditions.

dTll and dTul were calculated as follows [17]:

dTll =
ra(Rn − G)

ρcp
×

γ
(

1 + rcp
ra

)
∆ + γ

(
1 + rcp

ra

) − VPD

∆ + γ
(

1 + rcp
ra

) (5)

dTul =
raRn

ρcp
(6)

where Rn is the net radiation (W m−2), G is the soil heat flux (W m−2), ra is the aerodynamic
resistance (s m−1), ρ is the air density (kg m−3), cp is the heat capacity of air (1013 J kg−1

◦C−1), ∆ is the slope of the saturation vapor pressure–temperature relation (kPa ◦C−1), γ is
the psychrometric constant (kPa ◦C−1), VPD is the vapor pressure deficit (kPa), and rcp is
the canopy resistance at potential evapotranspiration (s m−1).

The rcp and ra were calculated as follows [24,37]:

rcp =
rmin
LAIe

(7)

ra = 4.72×
{

ln
[
(z− d)

z0

]}2
/(1 + 0.54u) (8)

LAIe =

{
LAI (LAI ≤ 2)

2 + LAI−2
3 (LAI > 2)

(9)

https://cran.rstudio.com/web/packages/REddyProc/index.html
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where rmin is the minimum leaf stomatal resistance (90 s m−1), LAIe is the effective LAI, z is
the reference height (m), d is the zero-plane displacement height (m) (d = 0.66 h), h is the tree
height (m), z0 is the roughness length (m) (z0 = 0.075 h), and u is the wind speed (m s−1).

2.3.4. LUEmax

In the photosynthetic light-response curve, the initial quantum efficiency is the initial
slope of the plant light-response curve, which is also the maximum light use efficiency of
the plant. Therefore, in this study, the Ye model was used to simulate the photosynthesis
light-response curve of the cork oak plantation to determine LUEmax [38]:

GPP = α× 1− β× APAR
1 + r× APAR

× APAR (10)

APAR = PAR− PARre − PARtr (11)

where GPP is the gross primary production (ug C m−2 s−1), α is the initial quantum
efficiency, β and r are the coefficients of correction, APAR is the photosynthetically active
radiation absorbed by the canopy (W m−2), PAR is the incident photosynthetically active
radiation (W m−2), PARre is the photosynthetically active radiation reflected by the canopy
(W m−2), and PARtr is the transmitted photosynthetically active radiation (W m−2).

2.3.5. LUE Models

The calculation of LUE models is based on the classical LUE logic [8]:

GPP = PAR× FPAR× LUEmax ×Ws× Ts (12)

where FPAR is the fraction of incident photosynthetically active radiation absorbed by the
canopy, LUEmax is the potential LUE without environmental stress (g C MJ−1), and Ws and
Ts are the water stress scalar and the temperature stress scalar, respectively.

To compare the performance of different water stress indicators in defining the wa-
ter availability on photosynthesis limitation, we selected 4 models with typical water
stress scalars, including: a Moderate Resolution Imaging Spectroradiometer GPP product
(MOD17) (using VPD-based atmospheric drought indicator), an Eddy Covariance-Light
Use Efficiency model (EC-LUE) (using EF-based plant moisture indicator), a Global Produc-
tion Efficiency model (GLO-PEM) (using specific humidity deficit (SHD)-based atmospheric
drought indicator multiplied by the soil moisture indicator), and the Wang model (using
the atmospheric drought, soil moisture, and plant moisture indicators). Then, the SM-LUE
model was developed to test the performance of the SWC-based soil moisture indicator.
In addition, since MOD17 only considers the limitation of cold temperature on plant pho-
tosynthesis and ignores the effect of high temperature on plant photosynthesis [10,38],
we used the temperature stress scalar in the EC-LUE model to replace the temperature
stress scalar in the MOD17 model and established the MODTEM model to better compare
the performance of water availability on photosynthesis limitation defined by VPD-based
atmospheric drought indicator. Finally, this study used the multiplication method to inte-
grate the environmental stress scalars in the EC-LUE model and established the ECM-LUE
model to better compare the performance of water availability on photosynthesis limitation
defined by the EF-based plant moisture indicator. The specific calculation methods of each
model are shown in Table 1.
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Table 1. The inputs of each LUE model.

Model Name Light Absorption (APAR =
FPAR*PAR) Water Scalar (Ws) Temperature Scalar (Ts) Reference

MOD17 FPAR = 1 − exp(−k*LAI)

Ws = 0 (VPD ≥ VPDmax), or
(VPDmax − VPD)/(VPDmax −

VPDmin) (VPDmin < VPD <
VPDmax), or

1 (VPD ≤ VPDmin)

Ts = 0 (Tamin ≤ Tamin_min), or
(Tamin − Tamin_min)/(Tamin_max −

Tamin_min) (Tamin_min < Tamin <
Tamin_max), or

1 (Tamin ≥ Tamin_max)

[5]

EC-LUE FPAR = a*NDVI − b Ws = EF = LE/(H + LE)
Ts = ((Ta − Tmin)*(Ta −

Tmax))/((Ta − Tmin)*(Ta − Tmax) −
(Ta − Topt)2)

[6]

SM-LUE FPAR = a*NDVI − b

Ws = 0 (SWC ≤ SWCmin), or (SWC
− SWCmin)/(SWCmax − SWCmin)
(SWCmin < SWC < SWCmax), or

1 (SWC ≥ SWCmax)

Ts = ((Ta − Tmin)*(Ta −
Tmax))/((Ta − Tmin)*(Ta − Tmax) −

(Ta − Topt)2)
This study

GLO-PEM FPAR = a*NDVI − b

Ws = Ws1*Ws2
Ws1 = 1 − 0.05SHD (0 < SHD <

15), or 0.25 (SHD > 15)
Ws2 = 1 − exp(0.4219*(∆SWC −

210.6347))

Ts = ((Ta − Tmin)*(Ta −
Tmax))/((Ta − Tmin)*(Ta − Tmax) −

(Ta − Topt)2)
[7,39]

Wang

APAR = (PAR − PARs)*fg
PARs =

PAR*exp(−k*LAI/cos(SZA))
fg = fAPAR/fIPAR

Ws = Ws1*Ws2*Ws3
Ws1 = 1/(1 + VPD/1.5)

Ws2 = (SWC − SWCmin)/(SWCmax
− SWCmin)

Ws3 = fAPAR/max(fAPAR)

Ts = 1.1814/((1 + exp(0.2*(Topt −
10 − Ta))*(1 + exp(0.3*(Ta − Topt −

10)))
[40]

ECM-LUE FPAR = a*NDVI − b Ws = EF = LE/(H + LE)
Ts = ((Ta − Tmin)*(Ta −

Tmax))/((Ta − Tmin)*(Ta − Tmax) −
(Ta − Topt)2)

This study

MODTEM FPAR = 1 − exp(−k*LAI)

Ws = 0 (VPD ≥ VPDmax), or
(VPDmax − VPD)/(VPDmax −

VPDmin) (VPDmin < VPD <
VPDmax), or

1 (VPD ≤ VPDmin)

Ts = ((Ta − Tmin)*(Ta −
Tmax))/((Ta − Tmin)*(Ta − Tmax) −

(Ta − Topt)2)
This study

FPAR is the fraction of incident photosynthetically active radiation absorbed by the canopy (W m−2), APAR is
the photosynthetically active radiation absorbed by the canopy (W m−2), PAR is the incident photosynthetically
active radiation (W m−2), PARs is the PAR absorbed by the soil (W m−2), LAI is the leaf area index, k is the light
extinction coefficient, SZA is the sun zenith angle, fg is the green canopy fraction, fAPAR is the fraction of PAR
absorbed by green vegetation cover, fIPAR is the fraction of PAR intercepted by the total vegetation cover, a and b
are the coefficients, NDVI is the normalized difference vegetation index, EF is the evaporative fraction, LE is the
latent heat flux (W m−2), H is the sensible heat flux (W m−2), SHD is the specific humidity deficit (g kg−1). VPD is
the vapor pressure deficit (kPa), VPDmax is the daylight average VPD when the actual LUE equals 0 (kPa), VPDmin
is the daylight average VPD when the actual LUE equals LUEmax (kPa), SWC is the soil water content, ∆SWC is
the difference between saturated water content and actual water content in the top 1 m of soil (mm), SWCmax is
the soil water content at field capacity, SWCmin is the soil water content at the wilting point, Tamin is the daily
minimum temperature (◦C), Tamin_min is the daily Tamin when the actual LUE equals 0 (◦C), and Tamin_max is the
daily Tamin when the actual LUE equals LUEmax (◦C), Ta is the air temperature (◦C). Tmin, Tmax, and Topt are the
minimum, maximum, and optimum air temperatures for photosynthetic activity, respectively (◦C).

2.4. Parameter Determination

In this study, the data from days without stress (SWC > 19% [41]; 20 ◦C < Ta < 30 ◦C [42])
during the canopy closure period were used to establish the photosynthesis light-response
curves of cork oak plantations under cloudy and sunny conditions, respectively, and the
LUEmax of the cork oak plantation on cloudy and sunny days was determined as 1.5056 and
1.2367 g C MJ−1, respectively (Figure 2). Through the measured data, we determined that
the extinction coefficient of the cork oak plantation was 0.5052, and the slope and intercept
of the FPAR and NDVI fitting curve were 1.2018 and −0.2583, respectively (Figure 3).
SWCmax is the soil water content at field capacity, SWCmin is the soil water content at the
wilting point, and the values were 0.32 and 0.08 m3 m−3 in the cork oak plantation [24].
Tmin, Tmax, and Topt are the minimum, maximum, and optimum air temperatures for
photosynthetic activity, respectively (◦C). Tmin was set to 0 [6,10]. Topt was set as the
long-term mean temperature for the growing season over the past decade, based on the
concept that plants grow efficiently at the prevailing temperature [43,44], and the value
was 24.30 ◦C. Tmax was calculated as Topt + (Topt − Tmin) [10]. VPDmax is the daylight
average VPD when the actual LUE equals 0 (kPa), and VPDmin is the daylight average
VPD when the actual LUE equals LUEmax (kPa). VPDmax and VPDmin were determined
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through the optimization of the model parameters using the nonlinear regression procedure
in the R programming language (data from June−September 2020 and May−June 2021),
and the values were 3.50 and 0.52 kPa, respectively. In addition, we set the temperature
stress scalar in MOD17 model as 1, because this model only considers the limitation of
cold temperatures on plant photosynthesis [10,45], and there is no cold temperature stress
during the canopy closure period (May−September).

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

2.4. Parameter Determination 

In this study, the data from days without stress (SWC > 19% [41]; 20 °C < Ta < 30 °C 

[42]) during the canopy closure period were used to establish the photosynthesis light-

response curves of cork oak plantations under cloudy and sunny conditions, respectively, 

and the LUEmax of the cork oak plantation on cloudy and sunny days was determined as 

1.5056 and 1.2367 g C MJ−1, respectively (Figure 2). Through the measured data, we deter-

mined that the extinction coefficient of the cork oak plantation was 0.5052, and the slope 

and intercept of the FPAR and NDVI fitting curve were 1.2018 and −0.2583, respectively 

(Figure 3). SWCmax is the soil water content at field capacity, SWCmin is the soil water con-

tent at the wilting point, and the values were 0.32 and 0.08 m3 m−3 in the cork oak planta-

tion [24]. Tmin, Tmax, and Topt are the minimum, maximum, and optimum air temperatures 

for photosynthetic activity, respectively (°C). Tmin was set to 0 [6,10]. Topt was set as the 

long-term mean temperature for the growing season over the past decade, based on the 

concept that plants grow efficiently at the prevailing temperature [43,44], and the value 

was 24.30°C. Tmax was calculated as Topt + (Topt − Tmin) [10]. VPDmax is the daylight average 

VPD when the actual LUE equals 0 (kPa), and VPDmin is the daylight average VPD when 

the actual LUE equals LUEmax (kPa). VPDmax and VPDmin were determined through the 

optimization of the model parameters using the nonlinear regression procedure in the R 

programming language (data from June−September 2020 and May−June 2021), and the 

values were 3.50 and 0.52 kPa, respectively. In addition, we set the temperature stress 

scalar in MOD17 model as 1, because this model only considers the limitation of cold tem-

peratures on plant photosynthesis [10,45], and there is no cold temperature stress during 

the canopy closure period (May−September). 

 

Figure 2. Photosynthesis light-response curve of cork oak plantation on sunny (a) and cloudy (b) 

days. The bule line is the slope curve of the utilization of the light energy. The red line is the fitting 

curve. 

 

Figure 3. The relationship between the fraction of incident photosynthetically active radiation ab-

sorbed by vegetation canopies (FPAR) and the leaf area index (LAI) (a) and the normalized differ-

ence vegetation index (NDVI) (b). The red line is the fitting curve. 

  

Figure 2. Photosynthesis light-response curve of cork oak plantation on sunny (a) and cloudy (b) days.
The bule line is the slope curve of the utilization of the light energy. The red line is the fitting curve.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

2.4. Parameter Determination 

In this study, the data from days without stress (SWC > 19% [41]; 20 °C < Ta < 30 °C 

[42]) during the canopy closure period were used to establish the photosynthesis light-

response curves of cork oak plantations under cloudy and sunny conditions, respectively, 

and the LUEmax of the cork oak plantation on cloudy and sunny days was determined as 

1.5056 and 1.2367 g C MJ−1, respectively (Figure 2). Through the measured data, we deter-

mined that the extinction coefficient of the cork oak plantation was 0.5052, and the slope 

and intercept of the FPAR and NDVI fitting curve were 1.2018 and −0.2583, respectively 

(Figure 3). SWCmax is the soil water content at field capacity, SWCmin is the soil water con-

tent at the wilting point, and the values were 0.32 and 0.08 m3 m−3 in the cork oak planta-

tion [24]. Tmin, Tmax, and Topt are the minimum, maximum, and optimum air temperatures 

for photosynthetic activity, respectively (°C). Tmin was set to 0 [6,10]. Topt was set as the 

long-term mean temperature for the growing season over the past decade, based on the 

concept that plants grow efficiently at the prevailing temperature [43,44], and the value 

was 24.30°C. Tmax was calculated as Topt + (Topt − Tmin) [10]. VPDmax is the daylight average 

VPD when the actual LUE equals 0 (kPa), and VPDmin is the daylight average VPD when 

the actual LUE equals LUEmax (kPa). VPDmax and VPDmin were determined through the 

optimization of the model parameters using the nonlinear regression procedure in the R 

programming language (data from June−September 2020 and May−June 2021), and the 

values were 3.50 and 0.52 kPa, respectively. In addition, we set the temperature stress 

scalar in MOD17 model as 1, because this model only considers the limitation of cold tem-

peratures on plant photosynthesis [10,45], and there is no cold temperature stress during 

the canopy closure period (May−September). 

 

Figure 2. Photosynthesis light-response curve of cork oak plantation on sunny (a) and cloudy (b) 

days. The bule line is the slope curve of the utilization of the light energy. The red line is the fitting 

curve. 

 

Figure 3. The relationship between the fraction of incident photosynthetically active radiation ab-

sorbed by vegetation canopies (FPAR) and the leaf area index (LAI) (a) and the normalized differ-

ence vegetation index (NDVI) (b). The red line is the fitting curve. 

  

Figure 3. The relationship between the fraction of incident photosynthetically active radiation
absorbed by vegetation canopies (FPAR) and the leaf area index (LAI) (a) and the normalized
difference vegetation index (NDVI) (b). The red line is the fitting curve.

2.5. Model Performance Assessment

The coefficient of determination (R2), root mean square error (RMSE), and index of
agreement (IA) were used to assess the performance of the different LUE models. The
model performance is optimum for an RMSE close to 0 and for an R2 and IA close to 1.

R2 =

 ∑n
i=1(oi − o)(pi − p)√

∑n
i=1(oi − o)2

√
∑n

i=1(pi − p)2

2

(13)

RMSE =

√
1
n ∑n

i=1(oi − pi)
2 (14)

IA = 1− ∑n
i=1(Pi −Oi)

2

∑n
i=1
(∣∣(Pi −O

)∣∣+ ∣∣(Oi −O
)∣∣)2 (15)

where pi and oi represent a pair of estimated and measured values, and p and o denote the
mean estimated and measured values, respectively.
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3. Results
3.1. The Dynamic of GPP and Biophysical Factors during the Period of Canopy Closure

Because of the small size and small number of leaves in the leaf-expansion stage,
the thermal infrared camera mainly measured the temperature of the trunk rather than
the canopy. We conducted our study during the period of canopy closure. The seasonal
patterns of biophysical factors and the monthly GPP are shown in Figure 4. During the two
canopy closure periods, the GPP of the cork oak plantation varied between 88.17–152.60 g C
m−2 month−1 and peaked in May due to its high PAR. The PWSI and VPD were higher, and
the SWC and EF were lower in May and June 2021 and 2022, meaning that the plantation
suffered severe water stress in spring, which can also be seen from the FPAR, LAI, and
NDVI dynamic. Spring drought can lead to a decrease in photosynthesis, limiting canopy
development and thereby also limiting LAI, FPAR, NDVI, and GPP in 2021 and 2022. The
same phenomenon also occurred in September 2020 (autumn drought), which resulted in a
higher PAR and lower GPP in September 2020 than in September 2021. The variations in
monthly turbulent heat flux (H + LE) and available energy (Rn − G) were consistent with
PAR. The monthly Ta was varied from 21.04 ◦C to 30.62 ◦C.
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Figure 4. Seasonal variations of monthly gross primary productivity (GPP) (a), monthly photosyn-
thetically active radiation (PAR) (b), monthly mean fraction of PAR absorbed by the canopy (FPAR)
(c), leaf area index (LAI) (d), normalized difference vegetation index (NDVI) (e), turbulent heat
flux (H + LE) and available energy (Rn – G) (f), soil water content (SWC) (g), vapor pressure deficit
(VPD) (h), air temperature (Ta) (i), plant water stress index (PWSI) (j), and evaporative fraction (EF)
(k) during the period of canopy closure in 2020–2022.
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3.2. Analysis of Model Structure

On sunny days, among the seven LUE models, the ratio of GPP that was simulated
only by considering the water stress scalar in models (GPPwat) (i.e., PAR× FPAR× LUEmax
×Ws) to the potential GPP (PGPP) (i.e., PAR × FPAR × LUEmax) varied from 0.19 to 0.56,
with an average value of 0.43; on cloudy days, the ratio varied from 0.29 to 0.77, with
an average value of 0.61 (Figure 5a). In addition, the ratio of GPP that was simulated by
only considered the temperature stress scalar in the seven LUE models (GPPtem) (i.e., PAR
× FPAR × LUEmax × Ts) to PGPP varied from 0.66 to 1.00 on sunny days and 0.81 to
1.00 on cloudy days, and the average value was 0.80 and 0.88, respectively (Figure 5b).
The differences between GPPwat/PGPP and GPPtem/PGPP illustrate the contribution of
environmental regulation scalars to the differences in the GPP simulations. The results
further suggest that, in this study area, the differences in performance between LUE models
were due more to the response of the models to water stress compared with the response of
the models to temperature stress.
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Figure 5. The ratio of gross primary production (GPP) that was simulated by considering only
water (GPPwat, (a)) or temperature (GPPtem, (b)) stress scalars in light use efficiency (LUE) models to
estimate potential GPP (PGPP).

3.3. Accuracy Evaluation of Original Model

The performance of the original models was evaluated using data from June–September
2020 and May–June 2021. On sunny days, the daily GPP simulated by the seven LUE mod-
els was poorly matched with the measured GPP, with the RMSE and IA ranging from
1.4302 to 3.3002 g C m−2 day−1 and 0.4702 to 0.7871, respectively. Further, all models only
explained 23–52% of the daily GPP variation in the cork oak plantation (Figure 6). Among
the seven models, the GLO-PEM performed relatively well, with an R2 of 0.5192, RMSE
of 1.4302 g C m−2 day−1, and IA of 0.7577 (Figures 6k and A1, Appendix A). The MOD17
and MODTEM models had relatively high explanatory powers for daily GPP variations,
followed by the GLO-PEM. However, when the environmental stress was severe (GPP val-
ues were low), some simulated values of the MOD17 and MODTEM models were smaller
than the measured values, resulting in scattered points in the figure. Compared with the
MOD17 model, the performance of the MODTEM model was better (Figures 6a,c and A1).
This is because the actual LUE in the MOD17 model was only regulated by the water
stress scalar, whereas it was regulated by both water and temperature stress scalars in the
MODTEM model. The difference between the EC-LUE and ECM-LUE models was in the
integration method of the environmental stress factors; the former adopts the minimum
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method based on Liebig’s law, and the latter adopts the multiplication method. However,
among the seven models, these two models were weaker in explaining daily GPP varia-
tions, reaching 23% and 34%, respectively, and the points in the figure were scattered. The
simulated values of the EC-LUE and ECM-LUE models were higher than the measured
values, reaching 36% and 14%, respectively. Particularly under severe stress conditions,
the degree of deviation was significant, resulting in poor accuracy. The performance of
the ECM-LUE model was better than that of the EC-LUE model (Figures 6e,g and A1).
The accuracy of the SM-LUE model followed that of the MODTEM model; however, the
explanatory power for daily GPP variations was only higher than that of the EC-LUE and
ECM-LUE models (Figures 6i and A1). The explanatory power of the Wang model for daily
GPP variations was relatively high, but the model accuracy was the lowest. The estimated
GPP value was 70% lower than the measured value, which was related to the existence of
many environmental constraints in the model (Figures 6m and A1).
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Figure 6. Comparison of daily gross primary production (GPP) simulated by MOD17 (a,b), MODTEM
(c,d), EC-LUE (e,f), ECM-LUE (g,h), SM-LUE (i,j), GLO-PEM (k,l), and Wang (m,n) models versus
observed GPP on sunny days and cloudy days. Solid dots represent cloudy days, and the open circle
dots represent sunny days. Data from June–September 2020 and May–June 2021. The red line is the
fitting curve.
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On cloudy days, except for the SM-LUE and Wang models, the performance of the
other models for daily GPP simulations was relatively good. All models explained 16–52%
of the daily GPP variation, with the RMSE and IA ranging from 1.1284 to 2.7853 g C m−2

day−1 and 0.4564 to 0.8292, respectively (Figure 6). The MOD17 and MODTEM models
provide a high explanatory power for daily GPP variations. However, the simulated values
of the two models were higher than the measured values, reaching 28% and 21%, respec-
tively, and the performance of the MODTEM model was superior to that of the MOD17
model (Figures 6b,d and A1). The EC-LUE, ECM-LUE, and GLO-PEM models performed
relatively well, and the accuracy of the three models was relatively high compared to the
other models. Furthermore, the ECM-LUE model with the multiplicative method outper-
formed the EC-LUE model (Figure 6f,h,l, and Figure A1), which was the same pattern as
that in the results on sunny days. Among the seven models, the ECM-LUE model had the
best simulation effect on the measured GPP, and the R2, IA, and RMSE were 0.4906, 0.8292,
1.1689 g C m−2 day−1, respectively.

3.4. Accuracy Evaluation of Modified Model Based on PWSI

The performance of the modified LUE model was evaluated using data from June–
September 2020 and May–June 2021. On sunny days, after using the PWSI to modify the
water stress scalar in the original model, the performance of the seven LUE models was sig-
nificantly improved, with RMSE and IA ranging from 1.1084 to 1.7488 g C m−2 day−1 and
0.7510 to 0.8816, respectively, and there was less scatter in the figure. All models explained
49–65% of the daily GPP variation in the cork oak plantation. This shows that on sunny
days, the PWSI can better indicate the limiting effect of water stress on plant photosynthesis
than traditional drought indicators. Except for the MOD17, EC-LUE, and Wang models, the
fitting curve of the simulated values and measured values for the other models after modi-
fication by the PWSI was very close to the 1:1 line (Figures 7 and A2). For the MOD17 and
EC-LUE model structures, because only one stress factor was considered to affect the actual
LUE, the simulated values of the two models were still higher than the measured values
even when PWSI was modified (Figures 7a,e and A2). However, because of many limiting
factors in the model structure, the simulated value of the modified Wang model was lower
than the measured value (Figures 7m and A2). In addition, the modified ECM-LUE model
performed better than the modified EC-LUE model Figures 7e,g and A2). Among the seven
models, the model structures with the best performance were the modified ECM-LUE, SM-
LUE, and GLO-PEM models based on PWSI (the three models had the same structure after
modification), and the R2, IA, and RMSE were 0.6511, 0.8816, 1.1084 g C m−2 day−1, re-
spectively. This was also the optimal LUE model structure suitable for cork oak plantations
on sunny days.

On cloudy days, except for the SM-LUE and Wang models, the performance of the
models decreased after replacing the water stress scalar in the original model with PWSI,
and the explanatory powers of all models for daily GPP variations was only 38–40%
(Figure 7). Therefore, the unmodified ECM-LUE model has an optimal structure suitable
for cork oak plantations on cloudy days.

In conclusion, the optimal LUE model structure suitable for estimating the GPP of
cork oak plantations in northern China can be defined as follows:

GPP =

{
PAR× FPARNDVI × LUEmax ×Ws_PWSI × Ts_EC−LUE, (CI > 0.5, LUEmax = 1.2367)

PAR× FPARNDVI × LUEmax ×Ws_EF × Ts_EC−LUE, (CI < 0.5, LUEmax = 1.5056)
(16)
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Figure 7. Comparison of daily gross primary production (GPP) simulated by MOD17pwsi (a,b),
MODTEMpwsi (c,d), EC-LUEpwsi (e,f), ECM-LUEpwsi (g,h), SM-LUEpwsi (i,j), GLO-PEMpwsi (k,l),
and Wangpwsi (m,n) models versus observed GPP on cloudy days. The subscript plant water stress
index (PWSI) indicates that PWSI was used to modify the water stress scalar in the LUE model. Solid
dots represent cloudy days, and the open circle dots represent sunny days. Data from June–September
2020 and May–June 2021. The red line is the fitting curve.

3.5. Accuracy Verification of the LUE Model with Optimal Structure

We checked the performance of the LUE model with optimal structure (the com-
bination of the ECM-LUE model on cloudy days and the modified GLO-PEM model
based on PWSI on sunny days) using data from July–September 2021 and May–June 2022
(Figures 8 and A3). The optimal structure model can predict the magnitudes and seasonal
variations of the measured GPP well in the cork oak plantation, with the R2, IA, and
RMSE being 0.6726, 0.8925, 1.0309 g C m−2 day−1, respectively, and the fitting curve of
the simulated values and measured values was very close to the 1:1 line. However, the
performance of the seven original models was worse than the optimal structure model,
with the RMSE and IA ranging from 1.2128 to 2.6834 g C m−2 day−1 and 0.4786 to 0.8432,
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respectively, and these models explained 13–57% of the daily GPP variation in the cork oak
plantation. Moreover, the performance of all models in validation data was similar to that
in evaluation data.
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Figure 8. Comparison of daily gross primary production (GPP) simulated by MOD17 (a), MODTEM
(b), EC-LUE (c), ECM-LUE (d), SM-LUE (e), GLO-PEM (f), Wang (g), and ECM-LUE+GLO-PEMpwsi
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model on cloudy days and the GLO-PEMpwsi model on sunny days. Solid dots represent cloudy days,
and the open circle dots represent sunny days. The subscript plant water stress index (PWSI) indicates
that PWSI was used to modify the water stress scalar in the LUE model. Data from July–September
2021 and May–June 2022. The red line is the fitting curve.

4. Discussion

The LUEmax and FPAR are important parameters in the LUE model. We found
that the LUEmax was 1.5056 g C MJ−1 on cloudy days and 1.2367 g C MJ−1 on sunny
days, and the fitted equations of FPAR and LAI, NDVI were: FPAR = 1 − e−0.5052*LAI,
FPAR = 1.2018*NDVI − 0.2583 (Figure 2 andFigure 3). Running and Zhao [46] stated in
the user guide of the MOD17 product that the LUEmax for a deciduous broad-leaf forest
was 1.1165 g C MJ−1. He et al. [47] considered that the extinction coefficient of multiple
vegetation types could be set to 0.50, and Sims et al. [48] found that the slope and intercept
of the fitted curve of FPAR and NDVI for deciduous broad-leaf forests were 1.24 and
−0.168, respectively. Further, Tong et al. [29] pointed out that as the CI decreases, the LUE
gradually increases. These results are in agreement with ours. At present, some studies
suggest that LUEmax varies with the model structure, resulting in a large difference in
LUEmax for the same species in different LUE models. For example, in the Wang model,
the LUEmax was set to 2.97 g C MJ−1 [40], and in the Carbon Fix model (C-Fix), it was only
1.10 g C MJ−1 [49]. Through model parameter optimization, Zheng et al. [10] found that
the variation range of LUEmax in different model structures of the same grassland site was
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0.70–1.94 g C MJ−1. However, LUEmax is a characteristic parameter of plants, which is
related to the plant species and leaf nitrogen content, among other factors [50]. The initial
quantum efficiency is an important parameter to characterize the maximum light energy
conversion efficiency in photosynthesis; when determining this parameter, photosynthesis
is mainly limited by light intensity. Therefore, in the present study, LUEmax was determined
using the photosynthesis light-response curve of the plantation. The same method was
adopted by Zhang et al. [13].

Model structural differences are considered the most important source of uncertainty
in estimating GPP based on LUE models [9,10]. Different quantification methods for
FPAR, Ws, and Ts have been used in LUE models to estimate regional and even global
GPP [5,14]. In this study, the daily GPP simulated by the seven LUE models on sunny days
was poorly matched with the measured GPP, and all models explained only 23–52% of
the daily GPP variation in the cork oak plantation (Figure 6). Yuan et al. [9] also found
that the Carnegie–Ames–Stanford approach (CASA), C-Fix, Carbon Flux (CFlux), EC-LUE,
MOD17, Vegetation Photosynthesis model (VPM), and Vegetation Photosynthesis and
Respiration model (VPRM) could only explain 41–57% of the GPP variation of different
types of vegetation. Keenan et al. [51] compared 17 models against observations from 36
North American flux towers and showed that none of the models consistently reproduced
the variability of the GPP measure from eddy covariance. These models performed poorly
in terms of the magnitude and temporal variations of GPP [52]. This indicates that the LUE
model still has a significant uncertainty.

Comparing the differences between GPPwat/PGPP and GPPtem/PGPP, we found that
the water stress scalar had a greater impact on the performance of the LUE model in our
study area, whereas the temperature stress scalar had a relatively small effect (Figure 5).
This finding is consistent with the results of Churkina et al. [53] and Bassow and Bazzaz [54].
In our study area, due to the influence of the monsoon climate, the seasonal distribution
of precipitation is uneven; the mean precipitation in summer accounts for 68% of the
entire year [55]. Continuous rainy days reduced the impact of high temperatures on
the productivity of plantations. Furthermore, the soil layer of this site is thin, and the
soil layer contains high rock fractions [24]. The thin soil layer limits the water-holding
capacity, resulting in drought events easily occurring in spring and autumn with less
precipitation. Yuan et al. [9] and Zhang et al. [12] also argued that different methods of
quantification of water stress scalars was the main source of the performance divergence
of the LUE models in multiple study regions around the world. However, defining the
limiting function of water availability in plant photosynthesis has long been a serious
challenge [6,9]. Gao et al. [15] pointed out that different LUE models do not accurately
represent the complex relationship between water availability and LUE, resulting in large
errors in the LUE model. This is consistent with the results of our study (Figures 6 and 7).
Currently, indicators commonly used to quantify the limitation of water availability for
plant photosynthesis include atmospheric drought indicators, soil moisture indicators, and
plant moisture indicators [7], yet there are contrasting opinions regarding which one is
optimal [56,57].

Soil water couples the water vapor demand of the atmosphere with the water supply
from the soil to the leaves via roots. Soil moisture indicators are always used in the
Terrestrial Carbon Flux model (TCF) and the Physiological Principles in Predicting Growth
model (3-PG). Some studies have reported that water stress scalars based on soil moisture
indicators better explain LUE variations in grasslands than in forests and shrubs [11,58].
This is because woody plants have a higher water availability through deep roots and store
more water in stems [58–60], thereby reducing the sensitivity of LUE to changes in shallow
soil moisture. This was also the main reason for the poor performance of the SM-LUE
model in this study on both cloudy and sunny days (Figure 6i,j, and Figure 8e). Since
the study area is a lithoid mountain region, the soil layer thickness in most areas is only
20 cm, and plant roots will grow in the rock cracks. The water stress scalar defined by soil
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moisture indicates that it cannot accurately indicate the limitation of water availability
for photosynthesis.

Atmospheric drought indicators, such as VPD and SHD, represent the impact of atmo-
spheric dryness on stomatal conductance and thus on plant transpiration and photosynthe-
sis. Such indicators are often used in the MOD17 and GLO-PEM models. Tong et al. [24]
found that atmospheric drought is the main factor causing plant water stress in cork oak
plantations. Yuan et al. [61] also reported that VPD and LUE were significantly nega-
tively correlated in sub-humid areas and that the correlation was stronger in humid areas.
These results are consistent with our findings. The LUE models established based on
the atmospheric drought indicator had a relatively high explanatory power of GPP vari-
ation, especially on cloudy days, reaching 52%. However, the GPP values simulated by
the MOD17 and MODTEM models were generally larger than the measured GPP values
on cloudy days (Figures 6a–d and 8a,b), which is consistent with the results of Ma and
Yuan [62]. This is because the water stress scalar defined by VPD indicates that the degree
of water stress on photosynthesis limitation is relatively weak on cloudy days (Figure 5).
Another disadvantage of the water stress scalar defined by VPD is that photosynthesis
is considered to be completely stopped during periods of high VPD [63]. However, soil
moisture and other environmental conditions might still be favorable for maintaining
photosynthetic activity at a certain level even if the atmosphere is very dry; that is, when
the VPD is high, the limiting effect of water stress on photosynthesis may not reach the
expected degree [61]. This is the main reason that some simulated values of the MOD17 and
MODTEM models were smaller than the measured values when the stress was severe (GPP
value is low) on sunny days, and it is the reason for scattered points in the figure Figures
6a,c and 8a,b). In contrast, the VPD was low on cloudy days, and the above phenomena
were not obvious. Tong et al. [24] pointed out that photosynthesis is co-regulated by the
soil moisture and atmospheric evaporation demand. Mu et al. [64] reported that VPD may
decouple soil water dynamics owing to its oversensitivity to temperature, especially in
summer monsoon regions.

Pei et al. [7] pointed out that plant moisture indicators are preferred in the LUE models.
Zhang et al. [11] found that plant moisture indicators were more sensitive to changes in
LUE than soil and atmospheric drought indicators. The principle of EF, which indicates
water status, is that the decreasing amounts of energy partitioned to evaporate water
suggest a stronger moisture limitation. However, our study found that the LUE model
constructed based on EF had a poor performance on sunny days but a good performance
on cloudy days (Figure 6e,g,f,h and Figure 8c,d). This may be related to the inaccurate
measurements of ecosystem energy. The degree of energy closure of the ecosystem was not
fixed. For example, Zanotelli et al. [65] found that the degree of energy closure of apple
orchards varies between 0.42 and 0.75 in a year. This means that there are biases between
the turbulent heat flux and the available energy of the ecosystem. In this study, the energy
closure was 0.69 on sunny days, which was similar to the results of Tong et al. [66]. In
contrast, on cloudy days, the energy closure was 0.82. In addition, the R2 between the
available energy and turbulent heat flux on sunny days was lower than that on cloudy days
(Figure A4). This means that the energy error was large on sunny days, resulting in poor
performance of EF in indicating water status and low accuracy of the EC-LUE and ECM-
LUE models. Moreover, as the available energy increases, the difference between turbulent
heat flux and the available energy increases, which increases the EF. This may be the
main reason for the higher simulation values of the EC-LUE and ECM-LUE models when
environmental stress on sunny days was severe. Xu et al. [67] also found that the EC-LUE
model overestimated the GPP of moso bamboo forests under drought conditions and that
EF could not characterize the effect of drought on GPP well. Because we could not obtain
ground-observed short-wave infrared (SWIR) data, we did not verify the performance
of the LUE model constructed based on LSWI. However, previous studies have shown
that LSWI is sensitive to leaf water content rather than canopy water content [68], and the
regional GPP is limited more by the water condition at the canopy level [69]. Moreover, the
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LSWI cannot reflect atmospheric water stress because of the weak effects of atmospheric
water vapor on the near infrared (NIR) and SWIR bands [70].

Stomatal conductance has long been considered the most sensitive response of plants
to water deficit [71], as a result of co-regulation by soil and atmospheric drought, and
it controls the exchange of water and air between plants and the external environment.
However, it is difficult to directly observe plant canopy conductance on a regional scale.
An important consequence of stomatal closure under water stress is a decrease in heat
dissipation, which leads to an increase in canopy temperature [72]. Therefore, canopy
temperature is highly sensitive to changes in plant water status [21]. This study found
that on sunny days, after using PWSI to modify the water stress scalar in the LUE models,
the accuracy of simulating GPP in all models was significantly improved, as were the
explanatory powers for the GPP variations. In most models, the fitting curves of the
simulated and measured values are very close to the 1:1 line (Figures 7 and 8). This verifies
that the quantification method of the water stress scalar is the main error source of the
seven LUE models, and the traditional water stress indicators cannot accurately indicate
the limitation of water stress on photosynthesis. PWSI, which contains both soil and
atmospheric drought information, had the best performance in indicating the limitation of
water stress on photosynthesis. This result is consistent with the findings of Tong et al. [24]
and Li et al. [23]. However, on cloudy days, the radiant energy reaching the ground will
change drastically because of cloud cover, which will affect the energy balance of the canopy,
cause the canopy temperature to change rapidly, and reduce the performance of PWSI in
indicating the water status of plants. Therefore, on cloudy days, the LUE models modified
based on the PWSI exhibited poor performance (Figure 7). Gardner et al. [73] pointed out
that it is not suitable to observe the canopy temperature for plant water status detection
when the solar radiation changes rapidly. According to the PWSI and EF behaviors,
the performance of water stress indicators varied significantly under different weather
conditions, especially the optical indicators based on remote sensing. These indicators are
always considered superior to atmospheric and soil moisture indicators; however, frequent
cloud contamination limits their application in LUE models [7,30,31]. Therefore, weather
factors must be considered when improving the performance of LUE models.

Most LUE models include two or three environmental stress factors, such as MOD17,
which considers water and temperature stress factors based on VPD and Ta, and the GLO-
PEM model based on SWC, SHD, and Ta. In terms of integrating environmental stress
factors, most LUE models use the multiplication method to integrate environmental stress
factors (such as MOD17, GLO-PEM, and VPM models). However, some studies have
shown that the minimum method based on Liebig’s law introduced into the model is
also useful (e.g., EC-LUE and 3-PG models) [7]. Our study found that the performance
of the ECM-LUE model was better than that of the EC-LUE model on cloudy days, and
the performance of the ECM-LUE model modified by PWSI was better than that of the
EC-LUE model modified by PWSI on sunny days (Figures 6–8). However, Zhang et al. [12]
found that the minimum method was better than the multiplication method for integrating
multiple environmental stress factors in the VPM and EC-LUE models. They pointed out
that, in the growing season, the LUE mainly depends on water conditions rather than
temperature conditions, resulting in the minimum method working well. However, the
occurrence of drought stress is often accompanied by high-temperature stress, and the
co-effects of water and temperature stress can significantly reduce the photosynthetic
efficiency of plants compared to single-factor stress [74–76]. The minimum approach based
on Liebig’s law only considers one of the environmental stresses, which underestimates
the impact of environmental stress on LUE, resulting in an overestimation of GPP by the
LUE model. This is the main reason that the simulated values of the modified MOD17
and EC-LUE models were higher than the measured values in our study (Figure 7a,e and
Figure 8a,c). Another point that should be noted is that the water stress scalar (EF) in the
EC-LUE model does not vary from 0 to 1, which may be the that why the EC-LUE model
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with the minimum method to integrate multiple environmental stress factors also performs
well in some studies [6,12].

In this study, the performance of the water stress scalar defined by PWSI and the
modified model based on PWSI was tested at the site scale based on ground-observed
data. Unfortunately, because a thermal infrared camera is not standard equipment for
flux networks, the test of the performance of the PWSI was limited by the extent of space,
which is the same limitation as that in the study by Biudes et al. [14]. Considering the
relationship between canopy temperature and ecosystem moisture and energy status,
canopy temperature is a key indicator for characteristics of plant health status, and we
suggest that this device should be used as a standard device for flux networks in the
future. Furthermore, the performance of the water stress scalar defined by PWSI and the
modified LUE model based on PWSI should be verified at more sites with different types
of vegetation and explored for applications at the satellite scale in the future.

5. Conclusions

We evaluated the applicability of seven LUE models with typical water stress scalars
for GPP simulation of a cork oak plantation in northern China and explored whether using
PWSI to modify the above models could improve model performance. Compared to the
temperature stress scalar, the water stress scalar has a significant impact on the performance
of the LUE model. On sunny days, PWSI was more suitable than traditional water stress
indicators for indicating the relationship between water limitation and photosynthesis.
After using PWSI to modify the water stress scalar, the performance of all LUE models was
improved. However, on cloudy days, the performance of the modified LUE models did
not improve, and the EF was more suitable for indicating the limitation of water stress on
photosynthesis. The modified GLO-PEM and ECM-LUE models had the optimal model
structure for GPP simulation of cork oak plantations in northern China on sunny and
cloudy days, respectively. This study provides a reference for simulating forest GPP in
other regions.

Author Contributions: Conceptualization, L.L., J.Z. and X.G.; Methodology, L.L., H.H., B.C. and
Y.B.; Software, L.L., X.C. and Y.Z.; Validation, L.L.; Writing—original draft preparation, L.L. and
X.G.; Writing—review and editing, J.Z., X.G. and J.C.; Visualization, L.L., X.G. and J.Z.; Supervision:
J.Z. and X.G.; Funding acquisition, J.Z. and X.G. L.L. and X.G. contributed equally to this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was sponsored by the National Key Research and Development Project (grant
no. 2020YFA0608101) and the National Nonprofit Institute Research Grant of the Chinese Academy
of Forestry (CAFYBB2022SY001, CAFYBB2018ZA001, CAFZC2017M005).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the fact that the data needs to be
used in much future work.

Acknowledgments: We thank Wang Qian from the Henan Agricultural University for advising. We
thank Guangguang Li from Nanshan Forest Farm, Jiyuan City for contributing to field measurements.
We also appreciate the editors and three anonymous reviewers for their constructive suggestions and
comments that improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 5905 19 of 24

Appendix A
Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure A1. Seasonal variations of gross primary production (GPP) simulated by MOD17 and 

MODTEM (a), EC-LUE and ECM-LUE (b), SM-LUE and Wang (c), GLO-PEM (d), and ECM-

LUE+GLO-PEMpwsi (e) models and observed GPP. ECM-LUE+GLO-PEMpwsi means the combination 

of ECM-LUE model on cloudy days and the GLO-PEMpwsi model on sunny days. The subscript plant 

water stress index (PWSI) indicates that PWSI was used to modify the water stress scalar in the LUE 

model. Solid dots represent cloudy days, and the open circle dots represent sunny days. Data from 

June−September 2020 and May−June 2021. 

Figure A1. Seasonal variations of gross primary production (GPP) simulated by MOD17 and MOD-
TEM (a), EC-LUE and ECM-LUE (b), SM-LUE and Wang (c), GLO-PEM (d), and ECM-LUE+GLO-
PEMpwsi (e) models and observed GPP. ECM-LUE+GLO-PEMpwsi means the combination of ECM-
LUE model on cloudy days and the GLO-PEMpwsi model on sunny days. The subscript plant water
stress index (PWSI) indicates that PWSI was used to modify the water stress scalar in the LUE
model. Solid dots represent cloudy days, and the open circle dots represent sunny days. Data from
June–September 2020 and May–June 2021.
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Figure A2. Seasonal variations of gross primary production (GPP) simulated by MOD17pwsi and
MODTEMpwsi (a), EC-LUEpwsi and ECM-LUEpwsi (b), SM-LUEpwsi and Wangpwsi (c), GLO-PEMpwsi

(d), and ECM-LUE+GLO-PEMpwsi (e) models and observed GPP. ECM-LUE+GLO-PEMpwsi means
the combination of ECM-LUE model on cloudy days and the GLO-PEMpwsi model on sunny days.
The subscript plant water stress index (PWSI) indicates that PWSI was used to modify the water
stress scalar in the LUE model. Solid dots represent cloudy days, and the open circle dots represent
sunny days. Data from June–September 2020 and May–June 2021.
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Figure A3. Seasonal variations of gross primary production (GPP) simulated by MOD17 and MOD-
TEM (a), EC-LUE and ECM-LUE (b), SM-LUE and Wang (c), GLO-PEM (d), and ECM-LUE+GLO-
PEMpwsi (e) models and observed GPP. ECM-LUE+GLO-PEMpwsi means the combination of ECM-
LUE model on cloudy days and the GLO-PEMpwsi model on sunny days. The subscript plant water
stress index (PWSI) indicates that PWSI was used to modify the water stress scalar in the LUE model.
Data from July–September 2021 and May–June 2022.
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sunny days (a) and cloudy days (b) in cork oak plantation. The red line is the fitting curve.
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