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Abstract: The rapid socio-economic development of the metropolitan area has led to the continuous
deterioration of the ecological environment. This leads to intense competition and conflict between
different spatial use types. Spatial conflict research is essential to achieve ecological-economic
coordination and high-quality development. However, existing studies lack comprehensive and
direct ecological-economic spatial conflicts, especially those on the spatial-temporal evolution and
potential drivers of spatial conflict. In this study, we identified the ecological-economic spatial
conflicts in the Nanjing metropolitan area in 2010, 2015, and 2020. This study used the random forest
to analyze the factors that influenced the change of spatial conflict. Results show that: (1) From 2010 to
2020, the ecological-economic spatial conflict in the Nanjing metropolitan area changed significantly.
(2) Land use change has an important effect on spatial conflicts, which are easily triggered by
uncontrolled urban expansion, but ecological land can mitigate spatial conflicts. (3) Relevant driving
factors of spatial conflicts show multi-level features, so the development of conflict reconciliation
countermeasures needs to be tailored to local conditions. This study provides a significant foundation
for the high-quality development of the Nanjing metropolitan area and provides a reference for the
planning and management of the territorial space.

Keywords: spatial conflict; conflict identification; analysis of driving factor; the Nanjing
metropolitan area

1. Introduction

In sustainable development, the development of human society should not only meet
the needs of contemporary people, but also should not damage the ability of future gen-
erations to meet their own needs. “Space” is the collective term for the Earth’s surface
area that is suitable for human economic and social activities [1]. As an objective geo-
graphical phenomenon caused by spatial resource scarcity and spatial function overflow,
spatial conflict is caused by the competition for spatial resources in human activities [2].
Although there are relatively few studies related to spatial conflicts, scholars have noticed
the widespread phenomenon of spatial conflicts in society and have put forward the con-
cepts of “regional deprivation” and “spatial competition”, which are similar to spatial
conflicts. Those concepts’ connotations are all contradictory phenomena in the process
of spatial conflict. For example, the collision between urban space and rural space, the
encroachment of arable land by urban expansion, the competition between green ecological
space and urban construction land, and the decline of ecological environment quality due
to the disorderly expansion of urban construction land are all important manifestations of
the phenomenon of spatial conflict. Along with the continuous development of the social
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economy, human activities now have far more influence on the Earth’s surface than any
period in history. The friction generated by human activity space and natural ecological
space also exceeds the limit that the local environment can bear. The degradation of the
ecological environment caused by rapid urban expansion makes the ecological-economic
space conflict increasingly fierce [3]. The ecological-economic space conflict has also be-
come an important reason hindering sustainable development, which has attracted the
continuous attention of scholars [4].

Previous studies have provided various identification and evaluation methods of
ecological-economic space conflicts, but most existing studies on ecological-economic
conflict are based on panel data and lack spatial analysis. In the past few decades, rapid
advances in remote sensing (RS) and geographical information systems (GIS) technology
have provided the basis for spatial data acquisition and analysis, which provides an
accurate source of data for monitoring and detecting land use, ecological changes, and
human activity intensity [5,6]. The spatial data provided by remote sensing can reflect
the spatial variation in regions better than traditional statistical surveys. As the carrier
of ecological environment and economic activities, land use conflict is the most direct
manifestation of ecological-economic spatial conflict and the earliest research involving
ecological-economic space conflict [7]. Scholars determine the types of space they belong
to according to different land use patterns, and they have found that potential spatial
conflicts may arise from different land use patterns overlapping in space [8–10]. Based on
the actual situation in China, Chinese scholars have put forward the theory of “ecology-
production-life” to study spatial conflict, which is based on the three pillar theories of
sustainable development. In the ecological-production-life framework, space is divided
into three independent and interrelated spaces: ecological, production, and living space,
which makes it easier to distinguish conflicts between different spaces [11]. Meanwhile,
this theory also coordinates the relationship between ecological, production, and living
space and offers countermeasures and suggestions for the sustainable development of
society [12].

In addition, domestic and foreign scholars also analyze the ecological-economic space
conflict from the perspective of landscape [13]. The spatial conflict caused by the unrea-
sonable spatial structure of land use can be accurately identified by the landscape pattern
theory [14,15]. Scholars use landscape pattern theory to build a spatial conflict model to
describe the impact of human activity or natural environment change on the landscape
composition, structure, and function and also use relevant landscape pattern models to
measure spatial conflict [16,17]. As attention to ecological protection has increased, a
conflict analysis method that can directly link ecology and the economy has also made
great progress [18–20]. The theory of ecosystem service is considered the bridge between
natural environmental systems and social-economic systems [21]. Based on the “land use
mode-ecological process-ecological service system” [22], the contradiction between regional
ecological and economic space can be directly analyzed through the contradiction between
the supply and demand of ecosystem service theory [23–26].

In a word, the existing studies can basically reflect the ecological-economic space
conflict, but they are mostly specific ecological aspects, such as for wetlands, water, pro-
tected natural areas, and other social and economic space conflicts, and there is still a
lack of overall analysis of the ecological-economic space conflict [27–29]. Moreover, the
identification of spatial conflicts relies too much on land use change, neglecting other
socio-economic and natural environmental factors. The existing related methods also
have their disadvantages. The “ecology-production-life” theory divides space into three
separate spaces, thus separating the integrity of space, and cannot well analyze the space
conflict in complex situations. Due to its theoretical characteristics, the landscape pattern
theory considers economic factors less [30]. Influenced by dynamic changes in time and
space, the supply and demand studies of ecosystem services are greatly influenced by the
size of the study area [31]. Thus, the existing related methods have their shortcomings.
Some scholars have identified the relevant shortcomings and tried to combine multiple
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methods to study the regional spatial conflict situation, such as by analyzing the regional
ecosystem service value change under the framework of the “ecology-production-life” the-
ory [32], using the landscape pattern index to quickly and accurately identify the regional
“ecology-production-life” spatial evolution [33], or studying the response of ecosystem
service function to the landscape pattern change caused by land use transformation [34].
However, there is no study combining these three theories, leading to one-sided results in
the identification of ecological-economic space conflicts.

Most of the existing studies take cities and counties as the research units or take
the whole country as the subject investigated. Few studies have researched the spatial
conflict situation in metropolitan areas, which is a novel and advanced form of territorial
spatial organization [4,33,34]; the role of the metropolitan is becoming apparent in regional
economic development. Along with the rapid development of metropolitan areas, there
are frequent transfers between various land types [35,36]. The original spatial pattern
breaks, leading to many spatial conflict problems. Metropolitan areas have become an
important driving force behind China’s economic growth and contribute to the coordinated
development of regional space, which is increasingly receiving national attention [37].

Located in the Yangtze River Delta, the Nanjing metropolitan area is China’s first inter-
provincial metropolitan area. In February 2021, the Nanjing metropolitan area became the
first metropolitan area plan in China to be officially approved by the National Development
and Reform Commission, marking a further increase in the strategic status of the Nanjing
metropolitan area. Owing to its superior natural geographical conditions, the Nanjing
metropolitan area economy developed rapidly. At the same time, conflicts caused by envi-
ronmental protection and economic development are increasingly intensified. Therefore,
there is an urgent need to study the actual situation and the relevant influencing factors of
ecological-economic space conflicts [38]. To explore the conflict caused by the disharmony
and inconsistency between ecological and economic space, this study used the compre-
hensive evaluation model of ecological-economic space conflict to identify the severity
using the random forest method. This study provides an important realistic basis for the
high-quality development of the Nanjing metropolitan area and new ideas for studying the
sustainable development path of metropolitan areas in China.

2. Materials and Methods
2.1. Study Area

Situated at the lower reaches of the Yangtze River (Figure 1), the Nanjing metropolitan
area has a warm and humid climate and is blessed with abundant natural resources. The
southern part of the metropolitan area has a high forest cover and rich forest resources.
The northern and central parts are mainly plains, which are suitable for agricultural de-
velopment. The metropolitan area has well-developed river systems with two important
drainage systems, the Yangtze River and the Huai River, and large lakes such as Hung-tse
Lake and Gaoyou Lake. Now, the Nanjing metropolitan area has 8 cities and 2 districts,
including Nanjing, Zhenjiang, Yangzhou, Huaian, Maanshan, Chuzhou, Wuhu, Xuancheng,
Liyang, and Jintan in Changzhou. The total area of the Nanjing metropolitan is over
65,000 square km and the population is more than 35 million. Its GDP is above 4.6 trillion
yuan, making the Nanjing metropolitan area one of the most important economic centers
in the Yangtze River Delta. The rapid development of the social economy in the Nanjing
metropolitan area has brought great pressure and challenges to the local environment,
making the ecological-economic space conflict increasingly fierce.
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Figure 1. Administrative division and terrain of the study area.

2.2. Research Framework

The essence of spatial conflict is the game of spatial resource possession between the
conflicting parties. Along with the development and use of spatial resources, the original
spatial pattern will also change, leading to changes in spatial functions and thus changes in
the spatial carrying capacity of the region. On this basis, we divide the spatial use mode
into three different use types: spatial resource use, spatial function use, and spatial capacity
use and construct a spatial conflict identification system by combining relevant previous
studies [39]. Then, we classified spatial conflicts into five levels to identify and analyze
the ecological-economic conflicts in the Nanjing metropolitan area. Finally, the study used
the random forest method to measure the contribution of the relevant driving factors to
analyze their importance. Our study research framework is shown in Figure 2.
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2.3. Data Collection

Table 1 shows the source of the data; our data can be divided into three main categories.
First, the study divided the land use data into six types according to LUCC standards [40];
the specific situation of land use is shown in Figure 3. Second, the natural environment data
are mainly from relevant satellite remote-sensing image data. Third, the spatial resolution of
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the socioeconomic data is 1 km and was mostly provided by the Resource and Environment
Data Sharing Center of the Chinese Academy of Sciences.

Table 1. Data sources.

Data Resolution Data Available Time Interval Source

Land Use Data 1 km × 1 km 2010, 2015, 2020 Resource and Environmental Science and Data Center
(https://www.resdc.cn (accessed on 25 January 2020))

Net primary productivity
(NPP) 0.5 km × 0.5 km 2010–2020

Product of MOD17A3H estimated by moderate resolution
imaging spectroradiometer (MODIS) images

(http://www.noaa.gov/ (accessed on 26 January 2020))

Normalized difference vegetation
index (Ndvi) 1 km × 1 km 2010–2020 MYDND1M China 500M (http://www.noaa.gov/

(accessed on 11 January 2021))

Fine particulate matter (PM2.5) 1 km × 1 km 2010–2020 https://doi.org/10.5281/zenodo.6372847 (accessed on 18
March 2022)

Nighttime light (NtL) 1 km × 1 km 2010–2020 NOAA (https://ngdc.noaa.gov/eog/dmsp/downloadV4
composites.html (accessed on 7 April 2022))

Gross domestic product (GDP) 1 km × 1 km 2010, 2015, 2019 Resource and Environmental Science and Data Center
(https://www.resdc.cn (accessed on 17 April 2022))

Population data (Pop) 1 km × 1 km 2010–2020 Worldpop (https://www.worldpop.org/ (accessed on 27
March 2021))

Since the Chinese Academy of Sciences has not yet given the spatial data of China’s GDP in 2020, we choose to
use the spatial data of China’s GDP in 2019 instead.
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2.4. Indicator Construction

In this study, spatial use was divided into three types, corresponding to the spatial
resource development process, the spatial function change situation, and the spatial car-
rying capacity change situation. We then selected the corresponding evaluation indexes
from the natural factors and socio-economic factors to construct an ecological-economic
spatial conflict evaluation index system. We selected relevant data from 2010, 2015, and
2020 and conducted standardized processing before the calculation to prevent the possible
uncertain impact of different data values on the overall operation. The composition of the
indicator system is shown in Figure 4. The entropy weighting method was used to calculate
the weights of resource conflict (RC), function conflict (FC), and capacity conflict (CC) to
derive the spatial conflict value for that year [39]. All of these are shown in Table 2. The

https://www.resdc.cn
http://www.noaa.gov/
http://www.noaa.gov/
https://doi.org/10.5281/zenodo.6372847
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.resdc.cn
https://www.worldpop.org/
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entropy weight method is an objective empowerment way to calculate the weight through
the information entropy, which is through the dispersion degree of the original data of each
index. It can effectively avoid the deviation caused by subjective factors and improve the
credibility and accuracy of the index weight value [41,42]. We used the weighted average
of the 3 option weights as the final weight of the study, with resource conflict (RC), function
conflict (FC), and capacity conflict (CC) having final weight values of 0.32, 0.42, and 0.25.
Finally, the study used ArcGIS 10.7 and applied equal interval classification to classify the
Nanjing metropolitan area 2010–2020 ecosystem service demand index into five classes:
highest-conflict, high-conflict, medium-conflict, low-conflict, and lowest-conflict.
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Table 2. Ecological-economic spatial conflict evaluation Indicator system.

Indicator Type Standard Layer Indicator Layer Indicator
Attribute Indicator Description

Resource Conflict (RC)

Land use conflict (RC1)
Landscape aggregation index (AI) Negative Reflects the conflict between cultivated

land resources and construction land

Landscape sprawl index (Contag) Negative Reflects the conflict between ecological
land resources and construction land

Human activities clash with natural
resources (RC2)

NPP data Negative Reflects the vegetation
regeneration capacity

Construction–land density reaction positive Reaction to the consumption of
land resources

Function Conflict (FC)

Supply and demand of ecosystem
services conflict (FC1)

Supply of ecosystem services Negative Reflects the supply and demand of
ecosystem servicesDemand of ecosystem services positive

Carbon-fixing capacity conflicts with
carbon emissions (FC2)

Carbon emissions positive Reflect carbon emissions and
carbon storageCarbon sequestration Negative

Capacity
Conflict (CC)

Biodiversity conflict (CC1) Habitat quality Negative Reflects species richness
through biodiversity

Economic and environmental
conflict (CC2)

GDP positive Reflects the economic
development situation

PM2.5 positive Reflects the air environmental
quality situation

Pop positive Reflects the size of the population

Ndvi data Negative Reflects the vegetation
coverage situation
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2.5. Interpretation and Calculation of Indicators

Resource conflict (RC) is mainly expressed as the conflicts between human-led eco-
nomic activities, food production, and other processes on other biological and resource
supplies. Among them, RC1 uses AI to measure the conflicts between arable land and
construction land, the degree of cultivated land fragmentation to reflect the conflict between
construction land and arable land, Contag to measure the degree of ecological land and
construction land, and the degree of fragmentation to respond to the conflicts between con-
struction land and ecological land. The degree of ecological land fragmentation responds to
the spatial connectivity of ecological land by the encroachment of construction land [43,44].
RC2 uses NPP data and the density of built-up land to reflect the influence of urban devel-
opment on vegetation regeneration capacity. The space occupied by human socio-economic
activities undoubtedly affects the growth of the original ecological vegetation. The NPP
data were used to reflect the spatial situation of vegetation growth activities on the surface,
whereas the density of built-up land reflects the distribution intensity of human economic
activities on the surface [45,46].

AI =

[
m

∑
i=1

(
gii

maxgii

)
pi

]
× 100 (1)

where g is the number of nodes between image elements of patch type i based on the
single-fold method and maxgii is the maximum number of nodes between image elements
of patch type i based on the single-fold method. Pi is the area proportion of patch type i
in landscape.

CONTAG =

1 +

m
∑

i=1

m
∑

k=1

[
pi

(
gik/

m
∑

k=1
gik

)]
×
[

ln pi

(
gik/

m
∑

k=1
gik

)]
2 ln(m)

× 100 (2)

where Pi is the proportion of area of patch type i in the landscape, gik is the number of
nodes between patch type i and patch type k on the basis of the doubling method, and m is
the number of patch types in the landscape, including those in the landscape boundary.

Functional conflict (FC) is mainly reflected in the overlapping area of the economic
activity area and ecological function area. The overlap results in conflict caused by social
and economic production to ecological function disturbance. According to a previous
study, we used ecosystem service supply and demand to judge the functional conflict of
ecological-economic space [47]. The ecosystem service supply was calculated by the value
equivalent method, while the demand for ecosystem service was calculated according to
previous studies [25]. Based on previous studies, this study uses nighttime light (NtL) to
estimate carbon emissions [48]. Then we used the invest model carbon storage module to
calculate carbon reserves. The invest model carbon storage module specific formula is

Cx,t =
J

∑
j=1

Axj

(
Caj + Cbj + Csj + Cdj

)
(3)

Cx is the carbon stock of region x in t, Axj is the area of land cover type j in region x,
and Caj, Cbj, Csj, and Cdj represent the above-ground carbon density, below-ground carbon
density, soil carbon density, and dead organic matter carbon density of land cover type j,
respectively [49].

Capacity conflict (CC) mainly occurs in the process of space evolution between human
activities and the ecological environment. CC1 uses the invest model of the habitat quality
module to calculate the impact of human activities on the bearing capacity of the natural
environment [50]. Based on previous studies, CC2 uses GDP, PM2.5, Pop, and Ndvi to
reflect the conflict between environmental protection and economic development [39].
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GDP and Pop represent the capacity of economic development while the Ndvi and PM2.5
represent the capacity of ecological protection.

The habitat quality module formula is

Qxj = Hj

 Kz(
Dz

xj + Kz
)
 (4)

where Qxj is the habitat quality index of raster cell x in land use type j and Hj is the habitat
suitability of land use type j. The value range is [0, 1]. The closer the value is to 1, the higher
the habitat quality. Dxj is the degradation degree of raster cell x in land use/cover type j. K
is the half-saturation constant, which is usually half of the maximum degradation degree;
the default value is 0.5. z is the normalization constant, which is the default parameter of
the model, and takes the model definition value of 2.5 [51].

2.6. Data Sources and Methods of Driving Factor

Eight potential driving factors were selected for analysis as potential causes of ecological-
economic spatial conflicts that may affect the Nanjing metropolitan area [52]. These driving
factors include two main aspects: (1) For natural environmental factors, the study selected
DEM, distance to water, average annual temperature, and soil as driving factors in the
natural environment. DEM, distance to water, and soil type data were obtained from the
Chinese Academy of Sciences Resource Environment Data Sharing Center (https://www.
resdc.cn/(accessed on 11 March 2022)). The annual average temperature data were obtained
from the site data interpolation of China Meteorological Network (http://www.cma.gov.cn/
(accessed on 11 January 2022)). (2) For socio-economic factors such as distance to the major
highways, distance to the Nanjing, industrial density (nuclear density of industrial parks and
development zones), and distance to the railroad, the data were crawled from Amap.

The random forest algorithm has excellent performance for establishing the nonlinear
relationship between input variables and output variables [53]. Based on the principle
of random forest, Liang proposed a patch-generated land-use simulation model (PLUS
model), which has been successfully applied to dynamic simulation and prediction of
land-use change and can analyze the contribution of related drivers to land use change [54].
The role of the LEAS model is to transform the mining of transition rules of each land use
type in the PLUS model into a binary classification problem. This is specifically done to
calculate the relationship between the growth of each land use type and the associated
drivers based on the random forest algorithm and finally output the growth probability Pd

i,k
of land use type k at cell i. The random forest algorithm formula is

Pd
i,k(x) =

M
∑

n=1
I(hn(x) = d)

M
(5)

The value of d is either 0 or 1; when the value of d was 1, there were other land use
types changed to land use type k, while 0 represents other transitions; x is a vector that
consists of multiple driving factors; I (·) is the indicative function of the decision tree set;
hn(x) is the prediction type of the n-th decision tree for vector x; and M is the total count of
decision trees.

Jiang used similar principles to analyze the impact of related factors on potential pollu-
tion sites in the Yangtze River Delta [55]. On this basis, we performed spatial superpositions
on the ecological-economic spatial conflict zone data in different periods, subtracted the
previous spatial conflict zone data from the spatial conflict zone data in the latter period,
and extracted the changes to represent the change areas of each spatial conflict level. Then,
we used the LEAS module of the PLUS model to mine the influence of each driving factor on
the change of each level of conflict area based on the random forest algorithm to evaluate the
relative importance of each driver on different types of spatial conflict area and provide sta-
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ble and accurate classification results. For a detailed description of the PLUS model, please
refer to https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model (ac-
cessed on 27 January 2022).

3. Results
3.1. Spatial Distribution Characteristics of Ecological-Economic Space Conflict

This study used the constructed index system to obtain the ecological-economic spatial
conflict distribution characteristics of the Nanjing metropolitan area for the three periods
of 2010, 2015, and 2020. Figure 5 and Table 3 show that the ecological-economic spatial
conflict in the Nanjing metropolitan area changes substantially from 2010 to 2020. The
spatial conflict state in the Nanjing metropolitan area was dominated by low conflict.
The proportion of low-conflict areas increased from 58.94% in 2010 to 66.15% in 2020.
Meanwhile, the proportion of highest-conflict and high-conflict areas were low. These
situations together show that the degree of ecological-economic space conflict in the Nanjing
metropolitan area is not serious. However, we found some features of its space-time
evolution: First, numerous medium-conflict areas were spread along the edges of the city in
2010. Medium-conflict areas accounted for 24.49% of the period, which gradually stabilized
at around 18% over the next decade. Second, the high-conflict and highest-conflict areas
were distributed in the city and its surrounding areas, and two larger core conflict areas
formed in the central region along the river and northern region; the area proportion
of these two conflicts is increasing. Finally, the lowest-conflict areas were mainly in the
mountainous zone of Xuancheng and the hilly areas of Chuzhou, but the proportion of
low-conflict areas is shrinking.
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Table 3. Area composition of different conflict types.

Conflict Types Highest Conflict High Conflict Medium Conflict Low Conflict Lowest Conflict

2010 1.07% 2.95% 24.49% 58.94% 12.56%
2015 1.24% 3.33% 18.22% 64% 13.21%
2020 1.94% 3.69% 18.98% 66.15% 9.24%

3.2. Spatial-Temporal Evolution of Ecological-Economic Spatial Conflict

To investigate the spatial and temporal changes of ecological-economic spatial conflicts
in the Nanjing metropolitan area, we created a map of ecological-economic spatial conflict
change zone transfer in the Nanjing metropolitan area (Figure 6) between 2010 and 2020.
Figure 6 shows that transfers between spaces of different conflict levels were more frequent
during 2010–2015, whereas the frequency of transfers decreased remarkably during 2015–
2020. Specifically, highest-conflict and high-conflict areas had the least probability of spatial
shifts. Shifts between medium-conflict areas, low-conflict areas, and lowest-conflict areas were
frequent, especially between medium-conflict areas and low-conflict areas.
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from 2010 to 2020 (the color of the highest, high, medium, low, and lowest five different spatial
conflict levels is consistent with those in Figure 5).

Hotspot analysis (Figure 7) can fully show the clustering of ecological-economic spatial
conflicts in the Nanjing metropolitan area: the deeper the red color is, the higher the degree
of clustering in areas with high-conflict values, and vice versa [56]. Figure 7 shows that the
spatial agglomeration characteristic of cold and hot spots in the Nanjing metropolitan area
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is remarkable. The cold spots in the Nanjing metropolitan area are mostly concentrated in
the hilly areas of Chuzhou and the mountainous region of Xuancheng. The overall change
is large, with an obvious decrease in cold spots over the last 10 years. The proportion of
cold points in 2020 decreased by 22% compared with 2010. The hot spot areas were mainly
concentrated around the central part of the metropolitan area along the Yangtze river and
the urban area of Huai’an in the north, showing a trend of concentration to the city and its
surrounding areas, and the hot spot value has significantly increased.
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3.3. Factors Influencing the Change of Ecological-Economic Spatial Conflict in Nanjing
Metropolitan Area
3.3.1. Effect of Land Use on Ecological-Economic Space Conflict

Based on the analysis of the proportion of land use type in different conflict levels
(Figure 8), construction land is the main land use type in the highest-conflict zone and
high-conflict zone in Nanjing metropolitan area from 2010 to 2020. Construction land in
2010 only accounted for 60% of the high-conflict area, while this proportion rose to 79%
by 2020. In the highest-conflict areas, the proportion of construction land has been above
90%, and reached 98% in 2020. The medium-conflict areas are mostly located around
various cities and mainly show spatial conflict between arable land and construction
land; that is, the proportion of arable land and construction land is the highest. As an
important carrier of many socio-economic activities, the coastal parts of lake areas are
disturbed by human activities and their ecological function is weakened, which makes
them prone to medium spatial conflicts. As arable land is the biggest land type in the
Nanjing metropolitan area, arable land is also the main type of land in the low-conflict
zones, where its share is consistently around 70%. According to the current situation, the
areas with the lowest conflict are mainly ecological lands such as forest and grassland, with
the highest percentage of woodlands consistently being around 70% (Table 4).
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Table 4. The proportion of different land use types in each conflict level.

Time Land Use Type Lowest
Conflict

Low
Conflict

Medium
Conflict

High
Conflict

Highest
Conflict

2010

Arable land 24.97 63.97 61.76 29.31 2.34
Woodland 65.73 11.68 5.11 3.97 3.21
Grassland 6.46 4.26 1.83 0.26 0.15

Waters 1.57 11.57 11.52 6.52 2.63
Construction Land 1.20 8.44 19.68 59.57 91.68

Unused land 0.07 0.08 0.10 0.37 0

2015

Arable land 6.3 74.71 40.90 11.80 0
Woodland 70.51 10.86 1.12 0.33 0
Grassland 12.89 3.08 0.53 0.09 0

Waters 10.20 9.23 14.79 1.42 0.25
Construction Land 0.06 2.09 42.36 85.88 99.75

Unused land 0.04 0.03 0.29 0.47 0

2020

Arable land 9.67 68.17 48.93 15.12 0.98
Woodland 77.54 13.20 2.28 1.07 0
Grassland 10.22 4.18 0.77 0.17 0

Waters 2.45 10.07 15.46 4.33 0.98
Construction Land 0.10 4.31 32.35 79.22 98.04

Unused land 0.02 0.06 0.21 0.09 0

3.3.2. Driving Factor of Changes in the Ecological-Economic Space Conflict

This study was based on previous studies that used similar principles to the LEAS
model, which is based on the random forest method to rank the ecological-economic
spatial conflict driving factors in the Nanjing metropolitan area. Then, we analyzed the
contribution of different driving factors to different conflict rank regions. The number of
decision trees was set as 50, the sampling rate set as 0.1, and the total sample size was
8939; also, this study used RMSE to reflect the accuracy of random forests. In general,
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the precision values of the random forest were inversely proportional to the RMSE values
(Table 5).

Table 5. Random forest accuracy by RMSE.

Time Highest
Conflict

High
Conflict

Medium
Conflict

Low
Conflict

Lowest
Conflict

2010–2015 0.03 0.07 0.14 0.17 0.12
2015–2020 0.07 0.15 0.17 0.13 0.09
2010–2020 0.07 0.14 0.16 0.13 0.09

Just as shown in Figure 9 and Table 6, the different influencing factors affect each
conflict state to different degrees, and the influence of DEM on each conflict-level area is
substantial, especially for the lowest-conflict areas. In the 2010–2015 period, the contribution
weight of DEM to the lowest-conflict region and low-conflict region both exceeded 0.2.
In the 2015–2020 period, the contribution weight of DEM to the lowest-conflict region
reached 0.39. As a whole, the contribution weights of DEM to the lowest conflict region
and low conflict region during 2010–2020 were 0.18 and 0.24, both of which are at the
top of the contribution scale. The distance to water is also an important driving factor
for lowest-conflict and low-conflict areas. Overall, industrial density had the greatest
impact on the expansion of high and highest conflict areas in the 2010–2020 period, with
contribution weights of 0.2 and 0.23, which were above the other driving factors. However,
between 2010 and 2015, the largest contributor to the expansion of highest-conflict areas was
distance to railroads with a weight of 0.22, slightly higher than the industrial density (0.18),
while the distance to highways contributed much less than the distance to railroads. The
weight of the contribution of industrial density to the highest-conflict areas was 0.23 for the
2015–2020 period, which was at the top of each driving factor. The degree of contribution
of soil type, the distance to the Nanjing, and the annual average temperature were also not
remarkable, indicating that the development of the Nanjing metropolitan area relies more
on the remaining characteristics.
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Table 6. Contribution weight values of related driving factors.

Time Factors Highest
Conflict

High
Conflict

Medium
Conflict

Low
Conflict

Lowest
Conflict

2010–2015

Industrial density 0.18 0.18 0.12 0.13 0.12
DEM 0.09 0.13 0.19 0.2 0.24

Distance to highways 0.06 0.13 0.09 0.1 0.09
Distance to Nanjing city 0.13 0.08 0.07 0.07 0.09

Average annual temperature 0.19 0.17 0.14 0.13 0.13
Distance to water 0.07 0.13 0.18 0.16 0.19

Distance to railroad 0.22 0.12 0.08 0.11 0.05
Soil type 0.05 0.07 0.12 0.1 0.09

2015–2020

Industrial density 0.23 0.15 0.16 0.11 0.11
DEM 0.15 0.19 0.19 0.21 0.39

Distance to highways 0.11 0.1 0.09 0.12 0.06
Distance to Nanjing city 0.07 0.1 0.1 0.1 0.09

Average annual temperature 0.13 0.14 0.13 0.15 0.11
Distance to water 0.1 0.13 0.12 0.14 0.1

Distance to railroad 0.14 0.1 0.1 0.1 0.08
Soil type 0.07 0.09 0.1 0.08 0.05

2010–2020

Industrial density 0.2 0.23 0.13 0.15 0.13
DEM 0.12 0.1 0.22 0.18 0.24

Distance to highways 0.09 0.09 0.08 0.1 0.08
Distance to Nanjing city 0.09 0.08 0.08 0.08 0.08

Average annual temperature 0.17 0.17 0.16 0.14 0.17
Distance to water 0.12 0.11 0.12 0.15 0.11

Distance to railroad 0.15 0.13 0.1 0.11 0.09
Soil type 0.07 0.09 0.11 0.09 0.1

4. Discussion

In the context of ecological civilization construction, the identification of ecological-
economic spatial conflict and research on influencing factors have become an important
prerequisite for high-quality development, which may help policymakers and stakeholders
to conduct investigation and adjustment work. In this study, all the data were derived
from remote sensing satellite data and their deductive data to ensure accuracy and authen-
ticity. Researchers have carried out many related studies on space conflict identification,
which provided us with the relevant theoretical basis and methods for the identification
of ecological-economic space conflicts. However, due to the defects of relevant theories,
there are still some deficiencies in the identification of ecological-economic space conflicts.
Based on previous studies, we tried to create a comprehensive, integrated index system to
reflect the ecological-economic space conflict in the Nanjing metropolitan area as truthfully
and thoroughly as possible. Furthermore, we analyze the extent of different drivers of the
ecological-economic spatial conflict in the Nanjing metropolitan area through the latest
random forest methods [55].

4.1. The overall Pattern of Ecological-Economic Spatial Conflicts Is Stabilizing, but the Lowest
Conflict Areas Will Gradually Shrink

Our study shows that the situation of ecological-economic spatial conflict in the
Nanjing metropolitan area has changed significantly over the past decade. This is reflected
in the continuous increase of the highest-conflict and high-conflict zones, while the area
of the lowest-conflict zone continues to decline. The percentage of area in the lowest
conflict region in 2020 was only 9.24%. The area proportion of low-conflict zones increased
from 58.94% in 2010 to 66.15%, and the area share of medium-conflict zones gradually
decreased from 24.49% in 2010 before stabilizing at about 18% in 2020. In terms of the
transfer of spatial conflict regions, the frequency of transfer is decreasing, indicating that
the overall spatial conflict patterns gradually stabilize. Among them, the probability of
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the highest-conflict and high-conflict areas undergoing spatial transfer is minimal, and the
highest-conflict and high-conflict areas will be difficult to change once formed. Medium-
conflict and low-conflict areas are the most likely to be affected and change. In particular,
the transfer of medium-conflict zones from 2010 to 2015 was very frequent. The spatial
structure of medium-conflict zones and low-conflict zones was still not stable enough, the
spatial structure of these areas was not stable enough, and changes in relevant policies or
new development projects can change the local spatial conflict situation. From the change
on the cold–hot spot maps, we can further see that the hot spots eventually contracted
to be near the city, especially around the central part of the metropolitan area along the
Yangtze river and the urban area of Huai’an in the north. This further proves that the
ecological-economic space conflict situation in the Nanjing metropolitan area is effectively
controlled and that the high-conflict level areas are restricted to the city zone. At the
same time, we also note that with the development of the economy, the proportion of the
cold spot areas will continue to decrease; in particular, the Xuancheng area decreased at a
significant rate, which means that the pressure on ecological and environmental protection
will continue to increase.

4.2. Different Land Use Types Have Different Effects on Changes in Ecological-Economic
Spatial Conflicts

The spatial overlap of different functional requirements leads to spatial conflict. As
the most common and direct influencing factor of spatial conflicts, land use patterns
have always had a profound effect on the evolution of spatial conflicts [57]. Based on
the proportion of different land use types at different conflict levels, construction land is
undoubtedly the most important trigger of ecological-economic conflicts, because it must
carry out most socio-economic activities, which further weakens the ecological functions
of this land use type. The medium-conflict and low-conflict areas are mainly made up of
arable land and water areas. Arable and water areas are mostly on the edge area of human
activities. By rational planning of the use of these two types of land, industrial development
can be achieved without damaging the ecosystem. However, they are inherently less stable
and vulnerable to the influence of surrounding areas, so strict spatial boundary planning
control of these land use types is needed to reduce the impact of adjacent units on them [12].
Pure ecological land types such as woodland and grassland are the main land types in the
lowest-conflict areas, and strict protection measures should be taken so that ecological land
can rebuild the regional ecological security pattern. Developing ecotourism industries and
other industries that have less effect on the ecological environment while improving land
use efficiency as much as possible is also important [58].

4.3. The Development of Eco-Economic Spatial Conflict Mitigation Measures Needs to Be Tailored
to Local Conditions

According to the analysis of the relevant factors, we found that the relevant driving
factors of spatial conflicts showed multi-level features, meaning that the development of
conflict reconciliation countermeasures should also be adjusted to local conditions [59].
The distribution of industries largely influences the proliferation of both high-conflict and
highest-conflict areas, so the study can conclude that the construction of industrial parks
will quickly change the local conflict state and will lead to the rapid enhancement of socio-
economic functions as well as the decline of ecological functions [60]. Hence, industrial
parks must be built in and around cities as much as possible, away from ecological reserves
or ecologically fragile areas. This was also confirmed in a study by Wang et al. [61]. DEM is
the factor that contributes most to the lowest-conflict and low-conflict areas. Given that the
Nanjing metropolitan high-altitude areas are mountainous forests, they are not amenable
to socio-economic activities. Moreover, most of these areas belong to ecological protection
zones, so the distribution of altitude highly overlaps with the distribution of lowest-conflict
and low-conflict areas. At the same time, the low-elevation Nanjing metropolitan areas are
mostly plains, which are suitable for socio-economic activities and agricultural production.
Therefore, the spatial utilization of the Nanjing metropolitan area should be developed
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rationally according to local conditions. In addition, relevant policies or major constructions
can have a remarkable effect on the conflict situation in that year. For example, railroads
contributed the most to the expansion of high-conflict areas during 2010–2015. High-speed
railway stations were mostly established near suburbs in the past and the establishment of
high-speed railway stations could drive the rapid development of the surrounding area,
which made the ecological-economic spatial conflicts near high-speed railway stations
intensify rapidly.

4.4. Findings and Policy Suggestions

In sum, we found that due to better ecological background conditions, the degree of
ecological-economic spatial conflict in the Nanjing metropolitan area is not serious and
mainly dominated by low conflict. However, the Nanjing metropolitan area’s ecological
environment pressure will gradually increase with the continuous development of the
social economy, so relevant ecological environment protection measures, such as set natural
protection and water protection, should be implemented to ensure that the low-conflict
areas no longer drop. Along with the continuous development of the city, the high-conflict
and highest-conflict areas will inevitably increase. Based on the analysis of the changes in
spatial conflict over the past 10 years and related influencing factors, we find that the most
advisable way to alleviate the ecological-economic space conflict in the Nanjing metropoli-
tan area is to, first, limit the disorderly growth of the urban area and strictly implement the
requirements of ecological civilization construction and land space planning, second, pro-
tect the relevant ecological areas, and third, lock the eco-economic space conflict area in the
city and its surrounding areas. This can maximize the avoidance of disorderly expansion
similar to 2010 to ensure the normal operation of other ecological spaces and achieve the
overall ecological-economic harmony state. In so doing, the Nanjing metropolitan circle
can finally achieve the goal of sustainable development. Our conclusion is consistent with
the findings of Zhang and Xu [62,63], as well as with the current mainstream solution
view of spatial conflict. Scholars now believe that since spatial conflict is inevitable, the
solution to spatial conflict should shift from traditional confrontation and elimination to
guidance and weakening and should give priority to the legitimate needs of human social
development [64–66].

4.5. Implications and Limitations

To diagnose Nanjing metropolitan area ecological-economic spatial conflicts, iden-
tify them, and determine their intensity, several problems remain to be solved. First, the
theoretical understanding of spatial conflict must be strengthened. Most existing studies
consider the overlap of different functions of space to be a conflict [67,68]. Most existing
studies also believe that an important cause of spatial conflicts is the overlap of different
spatial functions. However, a space with only a single function is rare in reality. There-
fore, subsequent studies need to systematically discuss the forms and connotations of
spatial conflicts. Second, although this study attempted to use spatial data to establish a
comprehensive system of indicators to measure ecological-economic spatial conflicts to
compensate for the shortcomings of existing studies, we have only analyzed spatial conflicts
from an ecological-economic perspective. Space also has cultural, aesthetic, and other social
functions, and analyzing these social spatial functions requires the reuse of panel data or
through methods such as questionnaires. Our future research may explore spatial conflict
from the perspective of civil rights protection and social spatial equity [69]. However,
the method for considering these functions in the study of spatial conflicts remains to
be explored.

5. Conclusions

This study identified and diagnosed the intensity of ecological-economic spatial con-
flicts in the Nanjing metropolitan area in 2010, 2015, and 2020. The degree of contribution
of selected natural environmental and socio-economic factors to the spatial conflict changes
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was analyzed via the random forest method. The main conclusions of this paper are
as follows:

(1) From 2010 to 2020, the ecological-economic space conflict in the Nanjing metropolitan
area changed considerably. The spatial conflict status of the Nanjing metropolitan
area was dominated by low conflict areas, and the lowest-conflict areas were mainly
concentrated in the hilly areas of Chuzhou and the mountainous areas of Xuancheng.
High-conflict and highest-conflict areas had the lowest proportion and were mainly
concentrated in urban areas, while two large conflict areas formed in the central and
northern regions of the metropolitan area. The proportion of medium-conflict areas is
larger and mainly concentrated in the urban periphery.

(2) The change in land use has a substantial effect on spatial conflicts. In general, the
main land use types in the lowest-conflict zone are forest land and arable land, the
main land use types in the low-conflict and medium-conflict zones are arable land,
and the high-conflict and highest-conflict zones consist mainly of construction land.
Therefore, spatial conflicts are easily triggered or intensified by disorderly urban
expansion, whereas the presence of ecological land can mitigate spatial conflicts.

(3) The relevant driving factors of spatial conflicts showed multi-level features. The factor
that contributed most to the lowest-conflict and low-conflict areas was DEM, and
the factor that contributed most to the highest-conflict and high-conflict areas was
industrial density. However, the situation varied from year to year and from region
to region, so the development of conflict reconciliation countermeasures needs to be
tailored to local conditions.

Finally, this paper offers suggestions to help the Nanjing metropolitan area achieve
sustainable development. As a typical metropolitan area in China, the sustainability and
spatial conflict situation of the Nanjing metropolitan area needs more attention.
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