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Abstract: As sea-crossing bridges are important hubs connecting separated land areas, their detection
in SAR images is of great significance. However, under complex scenarios, the sea surface conditions,
the distribution of coastal terrain morphologies, and the scattering components of different structures
in the bridge area are very complex and diverse, which makes the accurate and robust detection of
sea-crossing bridges difficult, including the sea–land segmentation and bridge feature extraction on
which the detection depends. In this paper, we propose a polarimetric SAR image detection method
for sea-crossing bridges based on windowed level set segmentation and polarization parameter dis-
crimination. Firstly, the sea and land are segmented by a proposed windowed level set segmentation
method, which replaces the construction of the level set segmentation energy function based on the
isolated pixel distribution with a joint distribution of pixels in a certain window region. Secondly,
water regions of interest are extracted by a proposed water region merging algorithm combining the
distances of the water contour and polarization similarity parameter. Finally, the bridge regions of
interest (ROIs) are extracted by merging close water contours, and the ROIs are discriminated by the
polarimetric parameters of the polarization entropy and scattering angle. Experimental results using
multiple AirSAR, RADARSAT-2, and TerraSAR-X quad-polarization SAR data from the coastal areas
of San Francisco in the USA, Singapore, and Fuzhou, Fujian, and Zhanjiang, Guangdong, in China
show that the proposed method can achieve 100% detection of sea-crossing bridges in different bands
for different scenes, and the accuracy of the intersection of the ground-truth (IoG) index of bridge
body recognition can reach more than 85%. The proposed method can improve the detection rate
and reduce the false alarm rate compared with the traditional spatial-based method.

Keywords: bridge detection; polarimetric synthetic aperture radar (PolSAR); sea-crossing bridge;
level set segmentation; water merging; polarimetric parameter extraction

1. Introduction

Bridges are some of the most important stationary artificial buildings. The automatic
detection of bridge targets in SAR images is important for disaster prevention, automatic
navigation, and terrain mapping. Since the sea-crossing bridges are transportation hubs
connecting different land areas, their detection is even more significant. For example, when
natural disasters such as floods and earthquakes occur, the bridge recognition based on
the SAR image can be used to assess the disaster situation and formulate disaster relief
plans. When a flying platform deviates from its orbit during the flight, attitude correction
can be achieved through the detection and matching positioning of sea-crossing bridges. In
addition, the monitoring and analysis of moving targets on bridges can be achieved through
automatic detection and identification of bridge areas. However, due to the complexity of
SAR imaging’s characteristics, the coastal terrain distribution, and the marine environment,
accurate sea-crossing bridge detection and bridge body recognition are still very difficult.
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A bridge is long area spanning over the water. The intersection lines between the
bridges and water regions on both sides are parallel, and the distance is usually small.
In the SAR images, the single- and double-scattering components of the metal support
structures of bridges make them characterized as strong scatterers with high brightness.
Most of the existing bridge detection methods are spatial-based methods, in which bridges
are detected by the spatial topological relationship between the bridge and the water.
Starting from the proximity characteristics of two water regions on both sides of the
bridge, References [1–4] extracted the connected sea regions and the water boundaries
using different segmentation methods and detected bridges by calculating the distance
between different water boundaries. Using the characteristics of the bridge protruding
from the water, Chen et al. [5] proposed to extract water regions using a particle filter
tracking method and detected bridges by scanning land regions protruding from the water
regions. Starting from the feature that the two sides of the bridge are straight and parallel,
Yu et al. [6,7] extracted water boundaries by an edge detection method and determined
straight parallel lines by the line detection method of the Radon transform. Starting from
the high scattering intensity characteristics of bridges, Song et al. [8] detected bridges by
extracting the strong scattering regions on the extracted connected water regions using the
constant false alarm rate (CFAR) detection method. Due to the complexity of bridge and
terrain morphologies, the above existing single-feature-based bridge detection methods are
prone to missed detections and false alarms. Thus, Wang et al. [9] integrated the spatial
structural features and scattering intensity features of bridges for detection. Liu et al. [10]
proposed a bridge detection method based on water network construction using a Markov
tree, in which the scattered distributed water branches are connected by the probability
graph model of the Markov tree, and bridges were detected by traversing the constructed
tree. Chen et al. [11] proposed a deep-learning-based bridge detection method using a
multi-resolution attention and balance network. Due to the strong speckle noise of SAR
images and the complexity of bridges and surrounding terrains, problems exist in all the
above methods. The problem of the spatial-feature-based method is that the water regions
are difficult to extract accurately. The problem of the land scanning method is that there are
some false alarms formed by natural terrains or raised areas of farmed ponds. The problem
of the method based on parallel line detection is that the two sides of some bridges are not
parallel. The problems of the CFAR-based method are that only some bridges have high
scattering intensity characteristics, and the strong scattering targets and regions on the sea
are not only bridges. The problems of deep-learning-based methods are that many training
samples are needed to cover bridges with different morphologies and backgrounds.

The sea-crossing bridge is an important class of bridges connecting land regions
separated by the sea. The distinctive feature of the sea-crossing bridge is that it usually
spans a large sea area, dividing the sea into two parts and appearing as a long, narrow
region in the images. The span of the sea-crossing bridge is usually very long, some reaching
several thousand meters, and a relatively small width of just a few tens of meters. In SAR
images, the large metal supports on both sides of the sea-crossing bridge make its scattering
intensity high. In polarimetric SAR images, the single-, double-, and multiple-scattering
between the bridge supports, vehicles on the bridge, bridge piers, and the surrounding sea
regions make its scattering components very complex. According to the spatial relationship
between the bridge and the sea and the geometric features of the bridge, the basic idea of
the sea-crossing bridge detection is to segment the sea and land to extract the connected sea
regions of a large area first and then determine the close contour parts of the adjacent sea
regions or detect the long land regions along the sea. As a summary of the existing bridge
detection methods, the difficulties of the sea-crossing bridges’ detection mainly include
two aspects. One is the accuracies of the sea–land segmentation. Wrong segmentations are
prone to occur due to the inherent coherent speckle of SAR images, different sea conditions,
and low-scattering soil regions along the coast. The other is the extraction of bridge features.
Due to the presence of natural protruding terrains, coastal farming regions, and soils of low
scattering, a large number of false alarms will be detected using the spatial-based method.
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Because the two sides of the sea-crossing bridge are not straight lines and the intensity
distribution of the bridge region is complex, the methods based on parallel line detection
and strong scattering region extraction are unable to achieve the detection.

With respect to the sea–land segmentation of polarimetric SAR images, the existing
methods mainly use edge-based or region-based active contour models. Sheng et al. [12]
proposed a method combining the watershed segmentation algorithm and gradient vector
flow snake active contour model. Silveira et al. [13] established the region statistical
distribution as a mixed log-normal distribution to obtain the energy term of the level
set segmentation. Shu et al. [14] used the narrowband level set segmentation method
for the refinement of the sea–land segmentation. Liu et al. [15] proposed a multi-scale
level set segmentation method by the analysis of the deviation effect of smoothing to the
segmentation. Liu et al. [16] proposed a two-scale active contour model, in which the
sea–land is segmented using the region-based and edge-based active contour model in two
scale images from coarse to fine, respectively. Modava et al. proposed two methods using
the level set segmentation method combining spatial fuzzy clustering [17] and the regional
local spectral histogram [18], respectively. Zhu et al. [19] proposed a method by embedding
the edge information obtained from edge detection into the geodetic active contour model.
The problem of the region-based active contour model is that the sea and land regions are
usually not homogeneous. The scattering intensity of some high sea state regions may
even be higher than that of some land regions, while the land regions contain man-made
buildings, vegetation, soils, and rivers. The distribution of the land and sea regions cannot
be fit using the Gamma or Wishart distribution obeyed by homogeneous terrains. Accurate
sea–land segmentation is difficult to obtain using the existing region-based segmentation
methods based on the homogeneous distribution of the intensity or coherent matrix of a
single pixel.

In terms of feature extraction, in addition to the geometric features, the polarimetric
features of the sea-crossing bridge are also distinct. Lee et al. analyzed the scattering
model and scattering components of the Great Belt Bridge using EmiSAR images in the
article [20]. The results showed that the polarization entropy and the scattering angle
of the single-, double-, and multiple-scattering regions are much higher than those of
the background regions. Apart from this, there is little research work on the analysis of
the scattering features of the sea-crossing bridge. However, the polarimetric scattering
characteristics of the sea-crossing bridge are similar to other offshore strong scattering
targets because the backgrounds of the two targets are the same, and the superstructure
of the sea-crossing bridge also forms strong scattering. The difference is that the span of
the sea-crossing bridge is large and the superstructure is not dense. Thus, polarimetric
parameters used for the detection of offshore targets can be used for the feature extraction
of the sea-crossing bridge. In terms of the polarimetric feature extraction of offshore targets,
Chen et al. [21] proposed the polarimetric cross-entropy method for the feature extraction
of ships. Yang et al. [22] used the polarization similarity parameter [23] to estimate the
scattering type and geometric feature of targets first and then proposed a polarimetric
feature extraction of ships and man-made buildings based on the generalized optimization
of polarimetric contrast enhancement (GOPCE) parameter [24], which enhances the con-
trast of the coastal terrains and targets with the background by a fusion of the similarity
parameter, the polarization entropy, and the power of each channel. Liu et al. [25] also
detected offshore oil platforms using the GOPCE features. In addition, the scattering of
the sea-crossing bridge is similar to that of some buildings on land. The sea-crossing
bridges are buildings with structures such as supports, bridge bodies, piers, and so on. The
difference between the two types buildings is that the sea-crossing bridge is a narrow and
long region. Thus, the polarimetric parameters used for man-made building extraction
can be used for the feature extraction of bridges. Using the reflection symmetry difference
between natural features and man-made buildings, Moriyama et al. [26] proposed the
polarization correlation coefficient, Ainsworth et al. [27] proposed the circular polariza-
tion correlation coefficient, Wang et al. [28] proposed the reflection symmetry parameter,
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and Kakimoto et al. [29] proposed the polarization orientation angle parameter for the
polarimetric feature extraction of man-made buildings. Liu et al. [30] proposed the ratio
parameter of the double-bounce scattering power to the volume scattering power for the
recognition of port jetties. By the extraction of polarimetric features, false alarms formed by
natural terrains and coastal farming regions can be effectively reduced.

As a summary of the existing bridge detection methods, problems exist in both the
sea–land segmentation and feature extractions. In the aspect of the sea–land segmenta-
tion, correct results are difficult to obtain in a strong noisy environment. Region-based
segmentation methods based on the statistical distribution of a single pixel are prone to
obtaining wrong segmentation results because of the possibility of incorrectly connecting
low-scattering regions such as soils along the coast or water regions on land with the real
sea regions. When the area of the strong-scattering regions is too large, the two-region
segmentation method may segment the image into a strong-scattering region and the other.
Additionally, the segmented contour of bridges is not smooth due to the coherent speckle
noise. Because the scattering intensity of some water regions along the bridge interfered
by the double-bounce scattering components between the metal structures of bridges is
high, the deviation of the segmented contour is large sometimes. In terms of the feature
extraction, there will be many false alarms in the naturally raised regions and the maricul-
ture region along the coast due to the complexity of the terrain topography. Thus, to avoid
sea–land segmentation errors and reduce the false alarm rate, we propose a sea-crossing
bridge detection method based on windowed level set segmentation and polarization
parameter discrimination. To reduce the segmentation errors caused by isolated noisy
pixels, the method replaces the single-pixel statistical distribution in the traditional level set
segmentation method with a joint statistical distribution of pixel-centered window regions
first. The segmented water regions are then merged by fusing the polarization similarity
parameters to eliminate some incorrectly segmented water regions. The bridge regions of
interest (ROIs) determined by water merging are finally discriminated by the parameters
of polarization entropy and scattering angle, effectively reducing the false alarm formed by
naturally raised terrains.

The rest of this paper is organized as follows. In Section 2, the proposed method is
introduced. In Section 3, experimental results are shown and discussed. The discussion is
given in Section 4. The conclusion is given in Section 5.

2. The Proposed Method

The diagram of the proposed method is shown in Figure 1, and the proposed method
mainly includes three steps. The first step is sea–land segmentation. A windowed level set
segmentation method is proposed to carry out the segmentation and obtain the candidate
sea regions. The second step is to determine the sea regions related to the sea-crossing
bridge. Calculating the distances of contours and polarization similarity among the can-
didate sea regions, the final sea regions of interest are extracted by merging regions in a
fusion of the two distances. The third step is bridge recognition. The regions of interest of
the sea-crossing bridge are extracted by determining the land regions between two close
sea regions first. The ROIs are then discriminated by the distribution of the polarization
entropy and scattering angle parameters of the candidate regions.
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c.Bridge detection 

b.Water merging 

a.Sea-land segmentation 

Segmentation by the windowed level set  

Connected region extraction 

Calculating water contour distance 

Calculating polarization similarity parameter 

Water merging fusing two distances 

ROI extraction by contour merging 

ROI censoring by H/alpha parameter 

Figure 1. Diagram of the proposed method, where ROI denotes region of interest.

2.1. Sea–Land Segmentation

In the Bayesian framework, the maximum posterior probability model of the region-
based segmentation can be built by modeling the statistical distribution of the sea and
land regions. Assuming that the segmentation plane is Ω, Q(Ω) denotes the segmentation
of the image plane, and I(Ω) is the pixel value of the image, the optimal segmentation
is obtained when the segmentation function maximizes the posterior probability P(Q|I)
given the observed image I(Ω). The model is expressed as

Q =
argmax

Q P(Q|I). (1)

The posterior probability P(Q|I) ∝ P(I|Q)P(Q), where P(I|Q) is the likelihood func-
tion of Q and P(Q) is the prior information of the segmentation. P(I|Q) is determined
by the probability distributions of different segmentation regions. P(Q) can be seen as a
regularized restriction term about the segmentation curve, which is restricted by the area
of the segmented regions and its length:

P(Q) ∝ exp
{
−γr|D(Q)|ρ − λr|∂Q|

}
, (2)

where γr, ρ, λr are constant, |D(Q)| is the area of the segmentation region, and |∂Q| is the
length of the segmentation curve.

The sea–land segmentation is a two-region segmentation problem. If it is assumed
that both the sea and land are homogeneous regions, denoted as Ri(i = 1, 2), respectively,
and the probability distribution of the coherent matrix T is f (T |Ri), then the likelihood
function P(I|Q) can be described as follows:

P(I|Q) ∝ ∏
i

∏
(x,y)

f (T(x, y)|Ri), (3)

where (x, y) is the two-dimensional coordinate of the pixel.
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The maximum posterior probability is equivalent to the minimization of the negative
logarithm of the posterior probability. Thus, according to (2) and (3), the energy function of
the segmentation can be converted to

E(Q) = γr|D(Q)|ρ + λr|∂Q| −
∫

R1

log f (T |R1)dxdy−
∫

R2

log f (T |R2)dxdy. (4)

If the segmentation curve is expressed as Γ, R1 is the enclosing inner region of Γ and
R2 is the enclosing outer region of Γ, then |D(Q)| is the area of R1, and |D(R1)| and |∂Q| is
the length of the segmentation curve |Γ|.

The optimal segmentation is obtained by evolving the curve as the gradient of the
energy function to the curve until the minimum of the energy function is reached.

2.1.1. Level Set Segmentation

The curve evolution of the explicit parametric representation Γ = (x(s), y(s)) is unable
to adapt to changes in the topology of the curve. Thus, the segmentation curve is usually
embedded implicitly in a high-dimensional level set function Φ(x, y, t). The segmentation
curve corresponds to the zero level set function Γ = {(x, y)|Φ(x, y, t) = 0} in each moment.
By evolving the level set function globally, the segmentation curve adapts to the complex
topology changes. The energy function is [31]

E(Φ) =γr

∫
R

H(Φ)dxdy + λr

∫
R
|∇Φ|dxdy−∫

R
H(Φ)log f (T |R1) + (1− H(Φ))log f (T |R2)dxdy,

(5)

where H(Φ) is the step function, if Φ ≥ 0, H(Φ) = 1, and if Φ < 0, H(Φ) = 0. R1
corresponds to Φ ≥ 0, and R2 corresponds to Φ < 0.

Evolving the level set function along the negative gradient direction, the variational
method yields

∂Φ

∂t
= |∇Φ|

(
λrκ − γr − log

f (T |R2)

f (T |R1)

)
, (6)

where ∇ is the gradient operator, κ = div(∇Φ/|∇Φ|) is the curvature of Φ, and div(.) de-
notes the divergence. According to the law of equal perimeters [31], the area regularization
term can be restricted by the curve length term, so the term γr|∇Φ| is usually ignored.

The scattering matrix of each region of the multi-look polarimetric SAR images obeys
the complex Wishart distribution. If the average coherent matrix of the region is Σ and the
number of looks is L, then the coherent matrix T ∼W(Σ, L, p) is

f (T |Σ, L, p) =
LpL|T |L−pexp

{
−Ltr

(
Σ−1T

)}
K(L, p)(|Σ|)L , (7)

where p is the dimension of the Pauli vector, tr(.) denotes the trace of the matrix, K(L, p) =
πp(p−1)/2Γ(L) . . . Γ(L− p + 1), and Γ(.) is the Gamma function.

If the average coherent matrix of the region Ri is Σi, the evolution speed of the level set
segmentation is obtained by substituting the probability distribution (7) into Equation (6) as:

F(T) = λrκ − L
(

log|Σ1|+ tr
(

Σ−1
1 T

))
+ L

(
log|Σ2|+ tr

(
Σ−1

2 T
))

. (8)

The level set function Φ is initialized using the signed distance function. Setting the
regularization parameter λr, the final segmentation result is obtained by evolving the level
set function according to Equation (8) until the energy function is minimized. In the process
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of the iterative evolution, the average coherent matrix of the region is estimated by the
likelihood estimation method as follows.

Σ̂i =
1
Ni

∑
(x,y)∈Ri

T(x, y). (9)

where Ni is the number of pixels in the region Ri.

2.1.2. Windowed Level Set Segmentation

The problems of the level set segmentation method based on the single-pixel statistical
distribution include two aspects. The first is that the segmentation boundaries are not
smooth due to the varied scattering of an isolated pixel in the effect of SAR coherent speckle
noise. The other is that the missegmentation of several coastline pixels tends to connect the
low-scattering regions such as soils along the coast or water regions on land with the sea,
leading to incorrect segmentation results. Thus, a joint distribution of a window region
centered on each pixel is used for segmentation instead of the isolated pixel distribution.

For pixel (x, y), if the pixel-centered window region of size w× w is W, the joint prob-
ability distribution of the window region is proportional to the product of the probability
distributions of each pixel:

f (W|Ri) ∝ ∏
(u,v)∈W

f (T(u, v)|Ri). (10)

Substituting Equation (10) into Equation (5) and adding the normalization factor 1/w2,
we can obtain the segmentation energy function as

E(Φ) = λr

∫
R
|∇Φ|dxdy− 1

w2

∫
R

H(Φ)log f (W|R1) + (1− H(Φ))log f (W|R2)dxdy. (11)

From Equation (11), the improved evolutionary speed is

F(T) =λrκ − 1
w2

∫∫
(u,v)∈W

log f (T(u, v)|R1)dudv +
1

w2

∫∫
(u,v)∈W

log f (T(u, v)|R2)dudv

= λrκ − L
(

log|Σ1|+ tr
(

Σ−1
1 T̄

))
+ L

(
log|Σ2|+ tr

(
Σ−1

2 T̄
))

.
(12)

where T̄ is the average coherent matrix of a window region.
Setting the initial level set function and the regularization parameter, the final segmen-

tation result can be obtained by evolving the level set function using (12) until convergence.
The estimation of the average coherent matrix of each segmentation region during the
iterative process is also determined by (9).

2.2. Water Merging

Due to the presence of water regions on the land and strong scatterers on the sea, the
segmentation results obtained by the level set segmentation method contain several land
regions on the sea and several water regions on the land. Thus, to extract the sea regions
related with the sea-crossing bridge, the segmented water regions need to be censored by
their areas and merged by distance.

2.2.1. The Water Merging Algorithm

If the segmentation result is A, the set of connected water regions extracted by the
segmentation result is B = {bk}(k ∈ {1, . . . , Nb}). The set is C = {cl}(l ∈ {1, . . . , Nc})
after censoring by the area thresholding process of Areath. The contour boundary of each
water obtained by the boundary tracking algorithm is Z = {zl}(l ∈ {1, . . . , Nc}), where
zl denotes the set of boundary points of the water region l. The contour distance matrix
between each of the two water regions is D =

{
dij
}

. Because the width range of bridges is
known, two water regions can be merged into the same water region if the contour distance
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is less than the maximum of the bridge width. Thus, if the distance threshold is set to Dth,
the water region merging algorithm is as follows (Algorithm 1).

Algorithm 1 Region merging algorithm.
Input:

Water regions: C;
The contour distance matrix: D;
The contours of water regions: Z;
A flag array for all water regions to be merged: F;
The size of C: Nc;
A queue for the storage of unmerged water regions: Q.

Initialization:
initialize all elements in F to zero;
Find the water with maximum area cm, Q.push(m).

Region_merge(region C, dmatrix D, contour Z, flag F, size Nc, queue Q)
1: while Q.size() > 0 do
2: Seed = Q. f ront()

F(Seed) = true
Q.pop()

3: for i = 1 to Nc do
4: if dseed,i < Dth and !F(i) then
5: Q.push(i)
6: end if
7: end for
8: end while

State: Q.size(), Q. f ront(), Q.pop(), and Q.push(i) denote the current size, the front ele-
ment, the pop process, and the push process of the queue; dseed,i denotes the minimum
contour distance of water regions’ seed and i.

All the water regions G = {gk}
(
k ∈

{
1, . . . , Ng

})
satisfying the flag of F(gk) being

true are determined as the final water segmentation result.

2.2.2. Water Merging Algorithm Fusing Polarization Similarity Parameter

Because of the presence of low-scattering regions such as coastal soil and farming
regions, some errors may exist in the segmentation results using Algorithm 1. The cause
is that only the contour distance is used in the merging process. Considering that the
polarimetric scattering characteristics between these erroneous water regions and the real
water regions are different, the polarization similarity parameter among the suspected
water regions is used for the improvement of the water merging algorithm.

For any given two regions X and Y, if their average coherent matrices are TX and TY,
respectively, the polarization similarity parameter [23] of the two regions is defined as

r(TX , TY) =

〈
T0

X , T0
Y
〉∥∥T0

X
∥∥

F

∥∥T0
Y
∥∥

F
=

∣∣∣tr((T0
X
)HT0

Y

)∣∣∣√
tr
((

T0
X
)HT0

X

)
tr
((

T0
Y
)HT0

Y

) . (13)

where T0 = De(T) denotes the deorientation operation, 〈·, ·〉 denotes the inner product
operation, and ‖·‖F denotes the matrix Frobenius norm.

Considering that the orientation angle of the water is almost negligible and the incor-
rectly segmented regions may have a certain orientation angle, the deorientation operation
is meaningful. For the candidate water set {cl}, the average coherent matrix T l is calculated
first. The polarization similarity parameters of each of the two regions are then calculated
separately according to Equation (13) to obtain the similarity parameter measure matrix
ρ =

{
ρij
}

. The values of the polarization similarity parameter of the two regions are in the
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range 0 ∼ 1. Statistical results show that, if the polarization similarity parameter of the
two regions is higher than 0.9, the two regions can be considered as a homogeneous region.
Thus, the threshold of the polarization similarity parameter ρth is set to 0.9 or higher.

According to the similarity parameter measure matrix and the similarity threshold,
the water merging algorithm fusing polarization similarity parameter can be obtained by
modifying the merging constraint in Algorithm 1 from dseed,i < Dth to dseed,i < Dth and
ρseed,i < ρth, where ρseed,i is the polarization similarity parameter between the water regions’
seed and i. In practice, there may be several sea regions separated by large land regions
instead of the sea-crossing bridges. However, only the sea region of the largest area can be
extracted by Algorithm 1. Thus, it is necessary to improve Algorithm 1 to be applicable in
the case of water merging containing multiple subsets of the sea. By marking all the major
water regions using a flag array MF, the multi-region merging algorithm can be described
as follows (Algorithm 2).

Algorithm 2 Multi-region merging algorithm.
Input:

Water regions: C;
The contour distance matrix: D;
The contours of water regions: Z;
A flag array for all water regions to be merged: F;
The size of C: Nc;
A queue for the storage of unmerged water regions: Q.

Initialization:
initialize all elements in F to zero;
set an area threshold Areath2 for the major water regions’ determination;
initialize a flag array MF to zeros for the marking of all major waters.

Multi_region_merge(region C, dmatrix D, contour Z, flag F, size Nc, queue Q)
1: for i = 1 to Nc do
2: if C(i).area() > Areath2 then
3: MF(i) = true
4: end if
5: end for
6: while ∀i ∃ MF(i) is true and F(i) is false do
7: for all i = 1 to Nc such that MF(i) is true and F(i) is false do
8: m← max(C(i).area())
9: end for

10: Q.push(m)
11: while Q.size() > 0 do
12: Seed = Q. f ront()

F(Seed) = true
Q.pop()

13: for i = 1 to Nc do
14: if dseed,i < Dth and ρseed,i < ρth and !F(i) then
15: Q.push(i)
16: end if
17: end for
18: end while
19: end while

2.3. Bridge Detection
2.3.1. Extraction of Bridge Regions of Interest

According to the spatial relationship between sea-crossing bridges and the sea, bridge
regions of interest can be determined by extracting the proximity contours of each of two
adjacent water regions based on the sea segmentation results. The process of the adjacent
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water region extraction is similar to that of the water merging. However, because a water
region may be adjacent to more than one water region, the algorithm for the ROI extraction
is as follows (Algorithm 3).

Algorithm 3 Bridge ROI extraction algorithm.
Input:

Water regions extracted by Algorithm 2: G;
The contour distance matrix: D;
The contours of water regions: Z;
The size of G: Ng.

Output:
Water regions extracted by Algorithm 3: ROI.

ROI = Bridge_ROI(region G, dmatrix D, contour Z, size Ng)
1: for i = 1 to Ng do
2: for j = i + 1 to Ng do
3: if di,j < Dth then
4: ROI ← all points on zi and zj s.t. dist

(
zi, zj

)
< Dth

5: end if
6: end for
7: end for
8: ROI ← all land pixels in the minimum circumscribed rectangular ROI
9: return ROI

2.3.2. ROI Censoring by Polarization Parameters

Because of the complexity of coastal terrain and the presence of farming dams, some
false alarms occur in the detection method of the water merging by distance using Algo-
rithm 3. To reduce the false alarm, polarimetric scattering parameters need to be extracted.
Due to the double-bounce and multiple scattering components between the metal structure
and the bridge deck, the polarimetric scattering components of the real sea-crossing bridge
are more complex than that of the false alarm. Lee analyzed the scattering characteristics of
the Great Belt Bridge in EMISAR in [20]. The statistical results showed that the average
scattering angle parameters [32] of the single-, double-bounce, and multiple-scattering
regions of the bridge were much higher than those of other regions. An example statistical
result is shown in Figure 2 using TerraSAR-X data in San Francisco. Figure 2a shows the
Pauli pseudo-color image, where the region marked in red is a selected coastal natural
raised terrain. Figure 2b shows the distribution of the polarization entropy and scattering
angle within the region of the Richmond Bridge, where the gray region is the distribution
of the whole image, the red line is the contour line of the overall distribution, and the blue
dots are the scatter distribution of the pixels in the bridge region. Figure 2b shows that the
scattering angles of the bridge region are all distributed in the region above 45◦, and the
polarization entropy is mostly distributed in the region above 0.5. Figure 2c shows the H/α
distribution of the coastal natural raised terrain. We can see that the alpha angles of most
pixels are below 45◦. Figure 2d shows the alpha angle histograms of the two regions, where
the red color is the histogram of the bridge and the green color is the coastal raised terrain
region. It can be observed that the difference of the alpha angle distributions between the
sea-crossing bridge and the false alarm region is large. Thus, the detected ROIs can be
discriminated by the H/α distribution. According to the statistical results, if the proportion
of pixels of H > 0.5 and α > 45◦ is higher than a threshold σ, the ROI can be identified as
the sea-crossing bridge.
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(a) (b)

(c) (d)

Figure 2. Distribution of polarization entropy and scattering angle of the sea-crossing Richmond
Bridge in the San Francisco region from TerraSAR-X. (a) The Pauli pseudo-color image of the sample
data, where the region marked in red is a selected coastal natural raised terrain. (b) Results of the
sea-crossing bridge, where the gray region is the distribution of the whole image, the red line is the
contour line of the overall distribution, and the blue points are the scatter distribution of the pixels
in the bridge region. (c) Results of the raised terrain region along the coast. (d) Comparison of the
scattering angle histograms of the two regions, where the red area is the bridge region and the green
area is the coastal raised terrain region.

3. Experimental Results and Analysis

Multiple AirSAR, RADARSAT-2, and TerraSAR-X single-look and multi-look quad-
polarization data from the San Francisco region of the United States, the Singapore coastal
region, the Fuzhou region of Fujian province, and the Zhanjiang region of Guangdong
province, China, which contain sea-crossing bridges, were selected for the experiment. The
detail information of the data is shown in Table 1. Except for the AirSAR San Francisco
data with a size of 900 × 1024 and a resolution of 12 m × 6 m, all other data are close to
6000 × 3000 in size, RADARSAT-2 data with a resolution close to 5 m× 5 m, and TerraSAR-
X data with a resolution close to 2 m × 6.5 m. Figure 3 shows the Pauli pseudo-color
images of different data, where “R”, “G”, and “B” denote the three components of the
Pauli vector. To keep the balance of color contrast, each component is divided by its mean
when the image is shown. Because the acquisition track of the testing TerraSAR-X data
is different from the AirSAR and RADARSAT-2 data, the figures of Data 6 and Data 7 in
Figure 3 are back-side compared with the corresponding Google map. From Figure 3, we
can observe that the sea-crossing bridge spans over the sea with different topographic
distributions. Because the morphology of the bridge and the surrounding environment are
varied, the scattering components of the sea-crossing bridge are varied. Due to the varied-
single, double-bounce, and multiple-scattering components of the bridge superstructure,
the scattering intensity of the bridge varies and the two sides of the bridge are not parallel.
The Golden Gate Bridge and Richmond Bridge in the San Francisco region are brighter
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than the bridges in other regions due to their wide width and more complex structural
components. Due to the simultaneous inclusion of three bridges, the width of the Golden
Gate Bridge is greater than that of the other bridges. Unlike the other bridges that appear as
a narrow strip region, the Richmond Bridge has a large span and the sides are not straight.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3. The Pauli pseudo-color images of the experimental data. (a) AirSAR San Francisco. (b)
The color code of the Pauli image, where “R”, “G”, and “B” denote the three components of the
Pauli vector, respectively, and (HH, VV, HV) are the three components of the Sinclair matrix. (c)
RADARSAT-2 Fuzhou. (d) RADARSAT-2 Zhanjiang. (e) RADARSAT-2 Singapore. (f) RADARSAT-2
San Francisco. (g) TerraSAR-X San Francisco. (h) TerraSAR-X Singapore.
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Table 1. Details of the experimental data, where UTC stands for the international standard time,
AOI stands for the angle of incident, m×m stands for meter times meter, MLC stands for multi-look
complex data, and SLC stands for single-look complex data.

Data Scene Sensor Band Mode Size Resolution UTC AOI
(m × m) (o)

1 San Francisco AirSAR L MLC 900× 1024 12× 6 1992 47.3
2 Fuzhou RADARSAT-2 C SLC 6140× 3332 4.73× 4.81 10/20/2013 10:05:53 36.02
3 Zhanjiang RADARSAT-2 C SLC 5937× 3920 4.73× 4.95 03/23/2012 22:28:47 43.31
4 Singapore RADARSAT-2 C SLC 6161× 4256 4.73× 4.80 19/01/2013 11:31:08 47.4
5 San Francisco RADARSAT-2 C SLC 6000× 2800 4.73× 4.82 09/04/2008 02:01:33 28.9
6 San Francisco TerraSAR-X X MLC 5800× 3000 1.84× 6.59 03/10/2014 11:05:42 39.7
7 Singapore TerraSAR-X X MLC 5500× 2500 2.06× 6.59 10/03/2014 11:07:06 34.7

Referring to Google Earth for the ground-truth mapping, the performance was evalu-
ated using the detection rate, false alarm rate, Intersection over Union (IoU) and Intersection
over Ground-truth (IoG) indices. If DR denotes the recognized bridge region and GT de-
notes the labeled real bridge region, the IoU index is defined as the ratio of the intersection
of DR and GT to the union of both. Considering that the main concern is usually the
proportion of the real region of the bridge that is correctly detected in practice, the IoG
metric is defined as the ratio of the intersection of DR and GT with GT.

IoU =
DR ∩ GT
DR ∪ GT

IoG =
DR ∩ GT

GT

(14)

where ∩ denotes the intersection operation and ∪ denotes the union operation.
Five experiments were carried out to evaluate the performance of the proposed method.

The algorithm processes are shown in detail using the AirSAR data of San Francisco in
Experiment 1. Experiment 2 evaluated the detection performance in different regions.
Experiment 3 compared the detection performance using datasets of the same region
in different bands. Experiment 4 compared the performance of the algorithm under
different parameters. The performance of the windowed level set segmentation and the
final detection performance were compared under different window sizes. Experiment
5 compared the performance differences between the proposed method and the bridge
detection method based on the spatial structure.

3.1. Parameters Setting

When the windowed level set segmentation method was carried out, the curve reg-
ularization parameter λr was set to 0.2 and the window size w was set to 5, which was
determined by comparing the performances under different parameters in Experiment 4.
When performing water merging, if the image resolution is Rx × Ry, the maximum width
of the bridge is Wb, and supposing the span of the sea-crossing bridge is at least 1 km, the
area threshold Areath was set to 103/Rx × 103/Ry and the distance threshold Dth was set

to Wb/
√

R2
x + R2

y. When performing bridge recognition, the high H/α area ratio threshold
σ was set to 1/4 since there was no bracket part above most of the bridge region.

3.2. Example Results

In the first experiment, the procedure of the proposed method was demonstrated using
the AirSAR San Francisco data. The experimental results are shown in Figure 4. Figure 4a
shows the Pauli pseudo-color image of the data and the ground-truth of the bridges, where
the green pixels in the red boxes are the marked bridge region. We can find that there exists
only one sea-crossing bridge, the Golden Gate Bridge. The sea regions in the figure are
presented as different sea states with different colors, while the land includes mountainous,
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urban, vegetation, and soil regions. It is difficult to segment the sea and land accurately
using the two-region-based segmentation method. The result of sea–land segmentation
using the windowed level set method is shown in Figure 4b. It can be observed that the
high sea state region in the upper right corner was incorrectly segmented as the land region,
while part of the land region along the mountainous coast was incorrectly segmented as
the sea region. Because the scattering components of the sea-crossing bridge are complex,
part of the water near the bridge was incorrectly segmented. Because the segmentation
contours of the sides of the bridge were not smooth, the geometric features of the bridge
were difficult to extract. Figure 4c shows the result of sea and land segmentation after the
post-processing of area thresholding. Through the area thresholding, most of the small
water and land regions that are not relevant to the sea-crossing bridge were eliminated.
Figure 4d shows the result of sea–land segmentation after water merging, where the red
pixels are the recognized ROI. We can observe that almost all the bridge pixels were correctly
extracted. Figure 4e shows the high entropy and high scattering angle regions by the H/α
thresholding segmentation, where the recognized ROI is marked in a red box. It can be
observed that most pixels of the bridge body are in the high-entropy and high-scattering
angle regions. We also can see that the wrong water and land segmentation region in the
upper right corner of Figure 4d can be corrected by the H/α segmentation. For the proposed
method, only the recognized ROI needs to perform the H/α computation to discriminate
whether it is a false alarm or not. Figure 4f shows the final bridge detection result, where
the red pixels are the detected bridge and the green pixels are the ground-truth. Comparing
the two regions, we can find that the recognized bridge region almost overlaps with the
ground-truth except for some pixels near the bridge outline. In the following experiments,
the color markings in the experimental results were consistent with those in Experiment 1
and will not be repeated here.

(a) (b) (c)

(d) (e) (f)

Figure 4. Sea-crossing bridge detection results of the data of AirSAR San Francisco. (a) Pauli pseudo-
color image and ground-truth of bridges, where green pixels in red boxes are the marked bridge
region. (b) The result of sea–land segmentation using the windowed level set method. (c) The result
of sea–land segmentation after the post-processing of area thresholding. (d) The result of sea–land
segmentation after water merging, where the red pixels are the recognized ROI. (e) The high-entropy
and high-scattering angle regions by the H/α thresholding segmentation, where the recognized ROI
is marked in a red box. (f) The final bridge detection result, where the red pixels are the detected
bridge and the green pixels are the ground-truth.
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3.3. Performance Comparison under Different Regions

To verify the applicability and robustness of the proposed method in different sce-
narios, experiments were carried out using RADARSAT-2 polarimetric SAR data (Data
2–4 in Table 1) in the Fuzhou, Fujian, Zhanjiang, Guangdong, and Singapore regions. The
experimental results are shown in Figure 5, where Figure 5a1–a3 are Pauli pseudo-color
images. The observation shows that one sea-crossing bridge is distributed in each of the
Fuzhou and Singapore region data, and two sea-crossing bridges are distributed in the
Zhanjiang region data (there is another bridge at the left border of the Fuzhou and Zhan-
jiang region data, but it was ignored because it is too close to the border and can no longer
be distinguished). Both the Fuzhou and Zhanjiang data have large areas of beach along
the coast, and the Zhanjiang and Singapore data have a large number of strongly scattered
targets at sea, all of which increase the difficulties for accurate sea–land segmentation,
while the low-scattering areas and the farming dams along the coast are prone to forming
false alarms. Figure 5b1–b3 show the results of the sea–land segmentation. We can find that
there are many small regions in the sea and land segmentation results. There are several
mesh regions along the coast, in which the long dams across the water easily form false
alarms. Figure 5c1–c3 show the results of water merging, where the red pixels are the
bridge ROIs detected by the merging process. From Figure 5c1,c2, false alarms are found
in both Fuzhou and Zhanjiang data. Comparing the map, the false alarm of Fuzhou data
is the coastal port breakwater. The false alarm was caused by the wrong segmentation of
the coastal low scattering region into the sea, resulting in the formation of an area similar
to the sea-crossing bridge. Figure 5d1–d3 show the results of the recognized bridges after
censoring by the thresholding of H/α. Figure 5e1–e3 show the enlarged results of the area
near the sea-crossing bridge. Observing Figure 5d1–d3, it can be seen that the sea-crossing
bridges are correctly recognized in each image. Because of the difference of H/α between
the false alarms and the sea-crossing bridges, the false alarms detected by water merging
were correctly eliminated. Observing Figure 5e1–e3, we can see that the detected bridge
regions have small differences from the real regions, and the main differences are located at
the two ends of the bridges. Because some land pixels near the ends of the bridge are too
close to the water boundaries, there were some false pixels in the ends of the bridge under
the set distance threshold.

Table 2 shows the detection performance of the three datasets. All four sea-crossing
bridges were detected correctly in the three datasets. Because the span of the bridge is
relatively smaller and the background is better than those of the other two data, the IoG
and IoU indices of Data 4 were better than the other two data, reaching 90.37 and 78.56,
respectively. Because Data 3 contains two bridges with complex scattering components on
both sides of the bridge, more pixels in the sea were wrongly segmented into the bridge
region. Thus, the IoG and IoU indices were lower than those of the other two data, at 82.18
and 69.58, respectively.

Table 2. Performance of RADARSAT-2 polarimetric SAR data for sea-crossing bridge detection in
Fuzhou, Fujian, Zhanjiang, Guangdong, and Singapore regions, where Num denotes the number of
targets. Pd denotes the detection rate. Pf denotes the false alarm rate. IoG denotes the intersection
over ground-truth. IoU denotes the intersection over union.

Data Num Correct Pd False Pf IoG IoU
(%) Alarm (%) (%) (%)

2 1 1 100 0 0 88.05 71.86
3 2 2 100 0 0 82.18 69.58
4 1 1 100 0 0 90.37 78.56
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

Figure 5. Comparison of detection results of sea-crossing bridges under different scenarios. ai-ei
are the results of RADARSAT-2 polarimetric SAR data in Fuzhou, Fujian, Zhanjiang, Guangdong,
and Singapore, respectively. (a1–a3) The Pauli pseudo-color images and the ground-truth of bridges.
(b1–b3) Sea–land segmentation results. (c1–c3) Water merging results, where the red pixels are the
bridge regions detected by Algorithm 3. (d1–d3) The bridge results recognized by the censoring of
H/α. (e1–e3) The enlarged results of the region near the sea-crossing bridges.

3.4. Performance Comparison under Different Bands

To verify the robustness of the proposed method under different bands, experiments
were carried out using AirSAR, RADARSAT-2 and TerraSAR data in the San Francisco
region. From Figure 3, we can see that three sea-crossing bridges, the Golden Gate Bridge,
Richmond Bridge, and Bay Bridge, are distributed in the region. The results are shown in
Figure 6, where Figure 6a1–a3 show the Pauli pseudo-color image and the ground-truth of
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the bridges. We can find that the distributions of the scattering intensities of the sea and
bridges in the three bands are different. The scattering intensity of the sea in the X-band is
higher than that in the C-band and L-band. The scattering intensity of the urban region
near the coast of San Francisco is higher. Because the range resolution of TerraSAR-X
is higher than that of RADARSAT-2 and AirSAR, the width of the Golden Gate Bridge
is wider than that of the other two images. Figure 6b1–b3 show the results of sea–land
segmentation. We can observe that a large number of sea pixels near the Richmond Bridge
in the C-band data were incorrectly segmented as land pixels. Figure 6c1–c3 show the
results of the bridge detection, where the enlarged region near the Golden Gate Bridge is
shown in Figure 6d1–d3. We can see that there were some false alarm pixels at both ends
and sides of the detected bridges. The Richmond Bridge had fewer false alarm pixels in the
near straight half and more in the curved half due to the large span, the curved bridge, and
the connection to an island in the middle.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 6. Detection results of sea-crossing bridges with different bands of polarimetric SAR data
in San Francisco. (a1–a3) The Pauli pseudo-color images and the ground-truth of bridges. (b1–b3)
Sea–land segmentation results. (c1–c3) The bridge detection results. (d1–d3) The enlarged results
of the region near the Golden Gate Bridge. (a1–d1) Results of TerraSAR-X data. (a2–d2) Results of
RADARSAT-2 data. (a3–d3) Results of AirSAR data.
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The detection performance of each bridge in different data are listed in Table 3. It
can be observed that the AirSAR data had a higher mIoU index (IoU index of the whole
image) of 74.8 than the other two data due to the inclusion of only the Golden Gate Bridge.
Because the percentage of the bridge region being incorrectly segmented into sea pixels,
the RADARSAT-2 data had the highest mIoG index (IoG index of the whole image) of 88.94.
For the Golden Gate Bridge, which exists in all three bands, the IoU index of the AirSAR
data was better than that of the other two bands, and the IoG index of the RADARSAT-2
data was better than that of the other two bands. For the Bay Bridge, the IoG performances
of the TerraSAR-X and RADARSAT-2 data were comparable, but the IoU index of the
RADARSAT-2 data was superior. For the Richmond Bridge with the TerraSAR-X data,
the IoU index was better than that of the Golden Gate and Bay Bridges due to the narrow
bridge and fewer false alarm pixels.

Table 3. Detection performances of each bridge in the San Francisco region under different bands,
where mIoG denotes the average intersection over ground-truth value. mIoU denotes the average
intersection over union.

Sensor Bridge IoG IoU mIoG mIoU
(%) (%) (%) (%)

TerraSAR-X
Golden Gate Bridge 75.62 52.50

80.66 60.13Bay Bridge 89.38 59.38
Richmond Bridge 77.00 68.51

RADARSAT-2 Golden Gate Bridge 90.07 67.30 88.94 65.94Bay Bridge 87.81 64.58
AirSAR Golden Gate Bridge 85.24 74.80 85.24 74.80

3.5. Performance Comparison under Different Parameters

To verify the effectiveness of the proposed method, the segmentation and detection
performances were compared under different segmentation window sizes. Figure 7 shows
the detection results of the TerraSAR-X San Francisco data when the windows were set to
1, 3, 5, 7, and 9, respectively. Figure 7a1–a5 show the segmentation results of the level set.
Figure 7b1–b5 show the segmentation results and the extraction results of the ROI of the
bridge body after the water merging process. Figure 7ai–ci show the detection results when
the window sizes are 1, 3, 5, 7, and 9, respectively. Comparing the results of Figure 7b1–b5,
with the increase of the window size, the isolated pixels of the land internally segmented
as water were significantly reduced, and the segmentation results of the land region along
the coast were more connected. When the window size was one, the image was incorrectly
segmented into the strong scattering region and other regions from Figure 7a1, which
led to the inability of the two region segmentation methods to correctly segment the sea
and land from Figure 7b1. When the window size was three, some pixels in the coastal
low-scattering region were incorrectly segmented as the sea surface pixels, resulting in
the internal low-scattering region connected to the sea region and leading to the incorrect
segmentation of the sea region in the lower right corner and the formation of a false alarm
target from Figure 7b2. However, when the window size was larger than five, more water
pixels along the sea-crossing bridges were wrongly segmented as land regions due to the
smoothing effect. Because the wider land leads to the contour distance of two adjacent
water regions related to the Gold Gate Bridge being larger than the distance threshold
Dth, only part of the bridge is detected from Figure 7b4,b5. As shown in Figure 7c1–c5
for the bridge detection results, the segmentation result of a window size of five is more
favorable for the detection of the sea-crossing bridge. As listed in Table 4 for the detection
performance under different window sizes, the accuracy rate increased with the increase
of the window size when the window size was smaller than five. The bridge failed to
be detected in the case of a window size of one. The IoG index of a window size of five
was 7.4% higher that of a window size of three, and the IoU index was 9.8% higher. The
accuracy rate decreased with the increase of window size when the window size was larger
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than five. The IoG index of a window size of five was 5.11% higher that of a window size
of seven, and the IoU index was 2.75% higher.

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

Figure 7. Performance comparison of the TerraSAR-X San Francisco data using the windowed level
set segmentation under different window sizes. (a1–a5) The level set segmentation results. (b1–b5)
The segmentation results after water merging and the detection results of the region of interest of the
bridge. (c1–c5) The results of bridge recognition. (ai–ci) The detection results when the window sizes
are 1, 3, 5, 7, and 9, respectively.
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Table 4. Comparison of the detection performance of the TerraSAR-X San Francisco data using the
windowed level set segmentation under different window sizes.

Win Num Correct Pd False Pf IoG IoU
(%) Alarm (%) (%) (%)

1 3 0 0 0 0 0 0
3 3 3 100 0 0 73.27 50.30
5 3 3 100 0 0 80.66 60.13
7 3 3 100 0 0 75.55 57.38
9 3 3 100 0 0 77.71 57.20

3.6. Comparison with the Spatial-Based Method

Based on the same sea–land segmentation results, the performance differences be-
tween the proposed method and the spatial-based method (the comparison method) were
compared. Figure 8 shows the experimental results of Data 2, 3, and 7 in Table 1, where
Figure 8a1–d1 show the results of the Fuzhou data, Figure 8a2–d2 the results of the Zhan-
jiang data, Figure 8a3–d3 the results of the TerraSAR-X Singapore data, Figure 8a1–a3 the
results of sea–land segmentation, Figure 8b1–b3 the detection results of the spatial method,
and Figure 8c1–c3 the detection results of the proposed method, where the different de-
tection regions are marked in blue boxes. Comparing Figure 8b1,c1, it can be found that
there was a false alarm target in Data 2 for the comparison method. Figure 8d1 shows
the local enlargement of the false alarm target in Figure 8b1. We can find that the false
alarm target is an artificial breakwater according to the map. Comparing Figure 8b2,c2,
it can be found that there is a false alarm target in Data 3 for the comparison method.
Figure 8d2 shows the local area enlargement of the false alarm target in Figure 8b2. We can
find that the false alarm target is a farming dam according to the map. Figure 8a3 shows the
segmentation result of Data 7. It can be observed that the sea region of these data includes
three parts, the upper, middle, and lower parts, and the sea-crossing bridge is distributed
in the right bifurcation of the middle water, which increases the difficulty of detection.
Comparing Figure 8b3,c3, we can find that the sea-crossing bridge is not correctly detected
using the spatial-based method, while the proposed method obtained the correct detection.
Figure 8d3 shows the enlarged view of the local area of the bridge in Figure 8c3. Because the
bridge is located in the middle water, which was not correctly extracted, a missed detection
occurs in the comparison method. Table 5 shows the performance comparison between the
proposed method and the spatial method. It can be observed that the proposed method
outperformed the comparison method for all three data.

Table 5. Comparison of the bridge detection results between the proposed method and the spatial
method.

Data Num
The Comparison Method The Proposed Method

Correct Pd False Pf Correct Pd False Pf
(%) Alarm (%) (%) Alarm (%)

2 1 1 100 1 50 1 100 0 0
3 2 2 100 1 33.3 2 100 0 0
7 1 0 0 0 0 1 100 0 0
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 8. Comparison of the bridge detection results between the proposed method and the spatial
method. (a1–a3) Sea–land segmentation results. (b1–b3) Results of the spatial detection methods.
(c1–c3) Results of the proposed method. (d1–d3) The local enlargement of the different detection
regions marked in blue boxes in (b1–b3) and (c1–c3). (a1–d1) Results of the Fuzhou data. (a2–d2)
Results of the Zhanjiang data. (a3–d3) Results of the TerraSAR-X Singapore data.

4. Discussions

Taking full advantage of the spatial structure and polarization scattering characteristics
of the sea-crossing bridge, this paper proposed a sea-crossing bridge detection method
based on the windowed level set sea–land segmentation and polarization parameters’
discrimination. The method innovatively uses the joint distribution of windowed regions
to measure the distribution of a single-pixel coherent matrix in the level set segmentation,
uses the polarization similarity parameter to measure the similarity of water regions, and
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uses the polarization entropy and scattering angle parameters to distinguish the bridge
from the false alarm target. The method enables the detection of sea-crossing bridges to
be applied to the detection of different bridges with different polarimetric SAR data in
different bands and different scenes, and the false alarms of the traditional spatial method
were effectively avoided.

When the level set segmentation method based on the statistical distribution of the
single-pixel coherent matrix was used for the sea–land segmentation of the SAR images,
the varied scattering matrix may lead to many isolated pixels or small regions in the
segmentation results since the sea and land regions are not homogeneous regions. This
will lead to the segmentation of images into strongly scattering and non-strongly scattering
regions or incorrect segmentation results because the coastal low-scattering region is
connected with the sea. Using the joint multi-pixel distribution of window regions instead
of the single-pixel distribution can effectively avoid the problem and, thus, ensure the
correctness of sea–land segmentation. The segmentation results of the TerraSAR-X San
Francisco data in Experiment 4 with different window sizes showed that the erroneous
segmentation was gradually reduced with the increase of the window sizes.

The method of water merging only based on the contour distance may incorrectly
merge some low-scattering regions. The error can be eliminated by a fusion of merging
by the polarization similarity parameter and contour distance. The bridge ROI detected
by water merging may be natural terrains and coastal farming regions. By a statistical
measurement of the polarization entropy and scattering angle parameters, the false alarms
can be effectively eliminated. The comparison results between the proposed method and
the spatial method in Experiment 5 demonstrated the phenomenon.

Assuming that the size of the image is n× n, when performing the sea–land segmen-
tation, if the number of iterations of level set segmentation is k, then the time complexity of
the traditional level set algorithm is O

(
kn2), while using the windowed level set segmenta-

tion algorithm, if the window size is w× w, the algorithm time complexity is O
(
kw2n2).

According to Equation (12), considering that the average coherent matrix of each pixel
window region can be calculated and stored in advance, the windowed level set segmenta-
tion algorithm’s time complexity is still O

(
kn2). When performing water merging, if the

number of water branches is Nc, the time complexity of Algorithm 1 is O(n). Because the
number of the main water regions is limited, the time complexity of Algorithm 2 is also
O(n). When performing the bridge detection, since there is a double loop for Algorithm 3,
the time complexity of the ROI extraction is O

(
n2). When performing the ROI recognition

using the H/α parameter, only the H/α of the pixels in the ROI need to be calculated,
so the computation time can be neglected. In summary, the main computation time of
the proposed method is focused on the windowed level set segmentation, and the time
complexity is O

(
kn2).

5. Conclusions

From the perspective of improving the performance of sea–land segmentation and
fusing the polarization scattering features of bridges, this paper proposed a polarimet-
ric SAR image detection method for sea-crossing bridges based on windowed level set
segmentation and polarization parameter discrimination. The single-pixel probability
distribution was replaced by the multi-pixel joint probability distribution in a window
region to avoid the erroneous segmentation of the two-region level set segmentation based
on the single-pixel distribution. Through the water merging by fusing the polarization
similarity parameters and contour distances, the sea–land segmentation result related to
the sea-crossing bridge detection was refined and the wrong segmentation result was elimi-
nated. Based on the segmented sea regions, the ROIs of the bridges were simply extracted
by merging the close water regions by distance. By the distribution of the polarization
entropy and scattering angle parameters of the extracted candidate ROIs, the false alarm
targets formed by natural terrains and farming regions were eliminated. The experimental
results of multiple polarimetric SAR data from the San Francisco, Singapore, and Fuzhou
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and Zhanjiang coastal regions in China demonstrated the effectiveness of the proposed
method. The proposed method can achieve 100% correct detection of sea-crossing bridges
with different scenes and different morphologies in different bands with a false alarm rate
of 0, and the bridge recognition IoG index was higher than 85%, while the IoU index was
around 70%.

Author Contributions: Conceptualization, C.L. (Chun Liu) and C.L. (Chao Li); methodology, C.L.
(Chun Liu); software, C.L. (Chun Liu) and C.L. (Chao Li); validation, C.L. (Chun Liu) and C.L. (Chao
Li); formal analysis, J.Y.; investigation, L.H.; resources, J.Y.; data curation, L.H.; writing—original
draft preparation, C.L. (Chun Liu); writing—review and editing, J.Y.; visualization, C.L. (Chun Liu);
supervision, J.Y.; project administration, C.L. (Chun Liu); funding acquisition, C.L. (Chun Liu) and
J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(NSFC) (Nos. 62101456 and 62171023), in part by the Open Fund of Science and Technology on
Electromagnetic Scattering Key Laboratory under Grant 622202Y040104, in part by the Doctoral Mass
Entrepreneurship and Innovation in Jiangsu Province (JSSCBS20220936), and in part by the 2022
Suzhou innovation and entrepreneurship leading talents program (Young innovative leading talents)
under Grant ZXL2022459.

Data Availability Statement: Please contact Chun Liu (liuchun@nwpu.edu.cn) for access to the data.

Acknowledgments: The authors would like to thank the Reviewers for their valuable comments and
suggestions. The data were provided by the laboratory of polarimetric radar and remote sensing
applications of Tsinghua University and the China National Satellite Ocean Application Service.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Luo, J.; Ming, D.; Liu, W.; Shen, Z.; Wang, M.; Sheng, H. Extraction of bridges over water from IKONOS panchromatic data. Int. J.

Remote Sens. 2007, 28, 3633–3648. [CrossRef]
2. Chaudhuri, D.; Samal, A. An automatic bridge detection technique for multispectral images. IEEE Trans. Geosci. Remote Sens.

2008, 46, 2720–2727. [CrossRef]
3. Wang, W.; Sun, J.; Hu, R.; Mao, S. Knowledge-based bridge detection from SAR images. J. Syst. Eng. Electron. 2009, 20, 929–936.
4. Chen, C.; Fu, J.; Gai, Y. Damaged bridges over water: Using high-spatial-resolution remote-sensing images for recognition,

detection, and assessment. IEEE Geosci. Remote Sens. Mag. 2018, 6, 69–85. [CrossRef]
5. Chen, Y.; Chen, J.; Yang, J. Novel method for SAR image segmentation with application to bridge detection. In Proceedings of the

IEEE 8th international Conference on Signal Processing, Guilin, China, 16–20 November 2006; p. 819.
6. Yu, D.; Zhou, L.; Yang, J.; Peng, Y. Highway bridge detection based on polarimetric SAR data. J. Tsinghua Univ. 2005, 45, 888–891.
7. An, C.; Wang, W.; Xin, Y.; Chen, Z. Recognition of Bridge in Medium-Low Resolution SAR Image. Radar Sci. Technol. 2011, 8,

510–515.
8. Song, W.; Rho, S.; Kwag, Y. Automatic bridge detection scheme using CFAR detector in SAR images. In Proceedings of the 2011

3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; pp. 1–4.
9. Wang, G.; Huang, S.; Jiao, L. An automatic bridge detection technique for high resolution SAR images. In Proceedings of the 2009

2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 26–30 October 2009; pp. 498–501.
10. Liu, C.; Yang, J.; Ou, J.; Fan, D. Offshore Bridge Detection in Polarimetric SAR Images Based on Water Network Construction

Using Markov Tree. Remote Sens. 2022, 14, 3888. [CrossRef]
11. Chen, L.; Weng, T.; Xing, J.; Pan, Z.; Yuan, Z.; Xing, X.; Zhang, P. A New Deep Learning Network for Automatic Bridge Detection

from SAR Images Based on Balanced and Attention Mechanism. Remote Sens. 2020, 12, 441. [CrossRef]
12. Sheng, G.; Yang, W.; Deng, X.; He, C.; Sun, H. Coastline detection in synthetic aperture radar (SAR) images by integrating

watershed transformation and controllable gradient vector flow (GVF) snake model. IEEE J. Ocean. Eng. 2000, 37, 375–383.
[CrossRef]

13. Silveira, M.; Heleno, S. Separation between water and land in SAR images using region-based level sets. IEEE Geosci. Remote Sens.
Lett. 2009, 6, 471–475. [CrossRef]

14. Shu, Y.; Li, J.; Gomes, G. Shoreline extraction from RADARSAT-2 intensity imagery using a narrow band level set segmentation
approach. Mar. Geod. 2010, 33, 187–203. [CrossRef]

15. Liu, C.; Yang, J.; Yin, J.; An, W. Coastline detection in SAR images using a hierarchical level set segmentation. IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens. 2016, 9, 4908–4920. [CrossRef]

http://doi.org/10.1080/01431160601024226
http://dx.doi.org/10.1109/TGRS.2008.923631
http://dx.doi.org/10.1109/MGRS.2018.2852804
http://dx.doi.org/10.3390/rs14163888
http://dx.doi.org/10.3390/rs12030441
http://dx.doi.org/10.1109/JOE.2012.2191998
http://dx.doi.org/10.1109/LGRS.2009.2017283
http://dx.doi.org/10.1080/01490419.2010.496681
http://dx.doi.org/10.1109/JSTARS.2016.2613279


Remote Sens. 2022, 14, 5856 24 of 24

16. Liu, C.; Xiao, Y.; Yang, J. A Coastline Detection Method in Polarimetric SAR Images Mixing the Region-Based and Edge-Based
Active Contour Models. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3735–3747. [CrossRef]

17. Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method.
Int. J. Remote Sens. 2017, 38, 355–370. [CrossRef]

18. Modava, M.; Akbarizadeh, G.; Soroosh, M. Integration of spectral histogram and level set for coastline detection in SAR images.
IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 810–819. [CrossRef]

19. Zhu, Z.; Tang, Y.; Hu, J.; An, M. Coastline Extraction from High-Resolution Multispectral Images by Integrating Prior Edge
Information with Active Contour Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4099–4109. [CrossRef]

20. Lee, J.; Krogager, E.; Ainsworth, T.; Boerner, W. Polarimetric analysis of radar signature of a manmade structure. IEEE Geosci.
Remote Sens. Lett. 2006, 3, 555–559. [CrossRef]

21. Chen, J.; Chen, Y.; Yang, J. Ship detection using polarization Cross-Entropy. IEEE Geosci. Remote Sens. Lett. 2009, 6, 723–727.
[CrossRef]

22. Yang, J.; Zhang, H.; Yamaguchi, Y. GOPCE-Based approach to ship detection. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1089–1093.
[CrossRef]

23. Yang, J.; Peng, Y.N.; Lin, S.M. Similarity between two scattering matrices. Electron. Lett. 2001, 37, 193–194. [CrossRef]
24. Yang, J.; Dong, G.; Peng, Y.; Yamaguchi, Y.; Yamada, H. Generalized optimization of polarimetric contrast enhancement. IEEE

Geosci. Remote Sens. Lett. 2004, 1, 171–174. [CrossRef]
25. Liu, C.; Yang, J.; Ou, J.; Fan, D. Offshore Oil Platform Detection in Polarimetric SAR Images Using Level Set Segmentation of

Limited Initial Region and Convolutional Neural Network. Remote Sens. 2022, 14, 1729. [CrossRef]
26. Moriyama, T.; Uratsuka, S.; Umehara, T.; Satake, M.; Nadai, A.; Maeno, H.; Nakamura, K.; Yamaguchi, Y. A study on extraction of

urban areas from polarimetric synthetic aperture radar image. In Proceedings of the 2004 IEEE International Geoscience and
Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; p. 706.

27. Ainsworth, T.L.; Schuler, D.L.; Lee, J.S. Polarimetric SAR characterization of man-made structures in urban areas using normalized
circular-pol correlation coefficients. Remote Sens. Environ. 2008, 112, 2876–2885. [CrossRef]

28. Wang, N.; Shi, G.; Liu, L.; Zhao, L.; Kuang, G. Polarimetric sar target detection using the reflection symmetry. IEEE Geosci. Remote
Sens. Lett. 2012, 9, 1104–1108. [CrossRef]

29. Kajimoto, M.; Susaki, J. Urban-area extraction from polarimetric SAR images using polarization orientation angle. IEEE Geosci.
Remote Sens. Lett. 2013, 10, 337–341. [CrossRef]

30. Liu, C.; Yang, J.; Zheng, J.; Nie, X. An Unsupervised Port Detection Method in Polarimetric SAR Images Based on Three-
Component Decomposition and Multi-Scale Thresholding Segmentation. Remote Sens. 2022, 14, 205. [CrossRef]

31. Chan, T.; Vese, L. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [CrossRef]
32. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci.

Remote Sens. 1997, 35, 68–78. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2017.2679112
http://dx.doi.org/10.1080/01431161.2016.1266104
http://dx.doi.org/10.1109/TAES.2018.2865120
http://dx.doi.org/10.1109/JSTARS.2019.2939297
http://dx.doi.org/10.1109/LGRS.2006.879564
http://dx.doi.org/10.1109/LGRS.2009.2024224
http://dx.doi.org/10.1109/LGRS.2012.2191611
http://dx.doi.org/10.1049/el:20010104
http://dx.doi.org/10.1109/LGRS.2004.830127
http://dx.doi.org/10.3390/rs14071729
http://dx.doi.org/10.1016/j.rse.2008.02.005
http://dx.doi.org/10.1109/LGRS.2012.2189548
http://dx.doi.org/10.1109/LGRS.2012.2207085
http://dx.doi.org/10.3390/rs14010205
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1109/36.551935

	Introduction
	The Proposed Method
	Sea–Land Segmentation
	Level Set Segmentation
	Windowed Level Set Segmentation

	Water Merging
	The Water Merging Algorithm
	Water Merging Algorithm Fusing Polarization Similarity Parameter

	Bridge Detection
	Extraction of Bridge Regions of Interest
	ROI Censoring by Polarization Parameters


	Experimental Results and Analysis
	Parameters Setting
	Example Results
	Performance Comparison under Different Regions
	Performance Comparison under Different Bands
	Performance Comparison under Different Parameters
	Comparison with the Spatial-Based Method

	Discussions
	Conclusions
	References

