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Abstract: Global warming has made the Arctic increasingly available for marine operations and
created a demand for reliable operational sea ice forecasts to increase safety. Because ocean-ice
numerical models are highly computationally intensive, relatively lightweight ML-based methods
may be more efficient for sea ice forecasting. Many studies have exploited different deep learning
models alongside classical approaches for predicting sea ice concentration in the Arctic. However,
only a few focus on daily operational forecasts and consider the real-time availability of data needed
for marine operations. In this article, we aim to close this gap and investigate the performance of
the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days. We show
that this deep learning model can outperform simple baselines by a significant margin, and we can
improve the model’s quality by using additional weather data and training on multiple regions
to ensure its generalization abilities. As a practical outcome, we build a fast and flexible tool that
produces operational sea ice forecasts in the Barents Sea, the Labrador Sea, and the Laptev Sea regions.

Keywords: data-driven models; short-term sea ice forecasting; deep learning; computer vision;
U-Net; remote sensing; satellite imagery analysis; Arctic sea ice

1. Introduction

Temperature increases in the Arctic [1] are twice as high as the global mean [2–4].
According to the ERA5 reanalysis data, the annual Arctic warming trend from 1979 to
2020 is estimated to be 0.72 ◦C/decade [5]. Rapid Arctic warming is closely associated
with an unprecedented decline of the extent of sea ice by more than 30% over the last four
decades [6,7] as well as a decrease in sea ice thickness [8]. These changes allow for faster
and cheaper sea routes such as the Northeast Passage [9]. Sea ice jams are some of the
most critical problems in marine navigation security. Accurate operative forecasts of sea
ice properties and dynamics can mitigate that problem by allowing ships to adjust their
routes to avoid regions of ice accumulation. At the same time, new routes through the
Arctic will cause an increase in ocean and atmospheric pollution risks, primarily due to
fishing, oil/gas extraction, and transportation. For the delivery of natural gas and oil to
long-distance destinations, transport by deep-sea vessels is more economical compared
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to offshore pipelines [10]. To decrease ocean pollution and the carbon footprint [11,12]
caused by transportation, gas/oil companies must optimize the routes [13] to make
them faster and to reduce the associated ecological risks (for example, reduce the use of
atomic icebreakers).

Coupled ocean-ice numerical modeling is the evident source of a reliable forecast of sea
ice conditions. The newest sea ice models, such as NextSim [9,14] demonstrate fascinating
results for sea ice concentration, thickness, and drift vector representations when com-
pared to the observational data (OSI SAF SSMI-S [15], AMSR2 [16], and GloblICE dataset,
available online: http://www.globice.info (accessed on 1 November 2022)). NextSim is
a fully-Lagrangian finite-element model, making it tough to couple with Euler method-
based ocean models. Eulerian sea ice models have been evolving for the last two decades
and can reproduce some aspects of sea ice and its recent changes. However, detailed
comparisons between satellite remote sensing data with Eulerian-model results reveal big
differences in certain aspects of the sea ice cover, e.g., for fracture zones and small-scale
dynamic processes [17,18]. It seems increasingly evident that current model physics (elastic–
viscous–plastic rheology) is not suitable for reproducing these observed sea-ice deformation
features [19–23] and, therefore, can not provide a reliable forecast. Furthermore, coupled
ocean-ice numerical modeling requires significant computational resources.

Statistical or data-driven machine learning approaches, on the other hand, are more
flexible and lightweight. That makes them popular in various research applications, even
those distant from explicit computer simulations [24–26]. At the same time, when dealing
with the weather and sea ice modeling, they do not need a complex physical model of
processes going on in the ocean and atmosphere to work. Once trained, such a model only
needs appropriate recent observations and comparatively little computational resources to
make a forecast. However, the training part in this case is quite difficult for several reasons.
First, most of the input data used for training (including sea ice concentration) is presented
as 3d or even 4d spatiotemporal maps with a huge amount of highly correlated input
channels. It has been found that usage of modern convolutional [27–31], recurrent [32,33]
or attention-based [34,35] architectures can overcome difficulties associated with exploding
number of trainable parameters and overfitting. Second, the model’s output is expected
to be a consistent SIC forecast retaining the same spatiotemporal nature, which is hard
to guarantee when training on a limited amount of data. In order to overcome these
difficulties, one can train a model not to predict the data itself but to compensate for the
errors of simple baselines, such as climatology mean, persistence, or cell-wise linear trends.
Finally, operative climate and sea ice characteristics data have their peculiarities. It is usually
mosaicked, i.e., consists of several patches obtained at different times each day; thus, it
should be combined and averaged daily. SIC can only be measured in the sea, leaving the
land cells blank. Measurements can be based on different sources inheriting different biases,
making the signal-to-noise ratio lower than expected. Furthermore, the actual changes in
the sea ice condition occur in limited periods in the fall and spring, which makes more than
half of the data barely usable. Considering these factors, one must be very thoughtful when
designing training and testing pipelines and choose proper metrics to assess the obtained
solutions adequately.

Many studies are dedicated to sea ice forecasting in the Arctic region. However,
research in this field mainly focuses on climate studies rather than operative sea ice forecasts
for practical use. Fully-connected multilayer perceptron (MLP) is often used either as the
primary method for predicting monthly-averaged sea ice concentration [36] or as one of
the benchmarks [37,38]. NSIDC Nimbus-7 SMMR and DMSP SSMI/SSMIS data are used
there as SIC maps. Other approaches exploit CNN applied on patches cropped out of ice
maps [38], or RF with an additional set of weather input features from ERA-Interim [39].
Deep learning methods are compared with simpler baselines in these works and are
reported to perform significantly better in standard metrics such as RMSE. Refs. [40,41] are
of particular interest, as they consider more advanced deep learning models that seem more
suitable for sea ice forecasting. In [40], the authors consider the ConvLSTM [42] model,
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which can fully make use of spatial-temporal structure of the climatological data. However,
they use weather maps (predictors) from ERA-Interim and ORAS4 NEMO reanalysis data
for training, thus limiting the model’s applicability for operational sea ice forecasts. They
evaluate the performance of ConvLSTM on a weekly-averaged and monthly-averaged scale
and obtain results comparable in terms of RMSE to those of the ECMWF numerical climate
model only for short lead times. The authors of [41] deal with the U-Net [30] model and
train it to predict probabilities for the next 6 months for monthly-averaged SIC values in
each cell to belong to each of three classes: open water, marginal ice, and packed ice. They
thoroughly investigate the model’s properties and compare it with SEAS5, a numerical
ocean-ice model with state-of-the-art sea ice prediction skills. However, the paper does not
consider possibilities for operating at the daily temporal resolution.

In this article, we focus on the operative daily sea ice forecasting and imply corre-
sponding restrictions on the weather and sea ice data we use—it should be available for the
desired regions in an appropriate resolution in the near real time for automatic download-
ing from a reliable source. To our knowledge, only a few papers consider this type of setting.
However, all these studies either use nonoperative reanalysis data or perform experiments
with one or two currently outdated machine learning methods. For example, ref. [23]
demonstrates the potential of machine learning in sea ice forecasting by comparing a nu-
merical ocean-ice model with simple CNN and cell-wise k-NN method. Unlike previous
works, it focuses on short-term predictions with a length of 1–4 weeks. Ref. [43] assesses
the ability of different cell-wise GRU networks equipped with feed-forward encoder and
decoder to forecast SIC for up to the next 15 days. To overcome the limitations of locality
in this setting, the authors incorporate global statistics in the network inputs and report
significant improvement in the prediction accuracy. The authors of [44] demonstrate the
superiority of ConvLSTM over CNN when forecasting SIC data in a patch-wise manner
with patches of size 41 by 47 pixels. They only use NSIDC Nimbus 7 and DMSP SMMR SIC
data—which is available operatively but has too low of a low resolution (25 × 25 km) to be
of actual use in navigation—and forecast daily-averaged SIC for the next 10 days. In [45],
the authors investigate variations of relatively modern PredRNN++ [46] architecture for SIC
forecasting for the next 9 days and compare it to the ConvLSTM network, demonstrating
the superiority of the former. However, their model depends on ECMWF ERA5 reanalysis
data, which is not available in real-time and thus limits the model’s practical value.

In this study, we conducted thorough research on the prospects of machine learning
in sea ice forecasting in a few regions in the Arctic: the Barents and Kara Seas (Barents),
the Labrador Sea (Labrador), and the Laptev Sea (Laptev). These three regions demon-
strate varying SIC interannual dynamics and allow for the investigation of the model’s
performance in different conditions. We deal with SIC and weather data that is available in
real-time and can be used in practice to obtain operational SIC forecasts for marine naviga-
tion. A single simple yet effective classical U-Net neural architecture is chosen as such a
model. It is lightweight, thus not prone to overfitting, and well suited for image-to-image
tasks, such as sea ice forecasting. We treat JAXA AMSR-2 Level-3 imagery as the ground
truth of sea ice concentration maps and train, validate, and test our models using this
data. As a result, we not only obtain a trained U-Net model for the operational sea ice
forecasts but also provide the datasets we used for benchmarks and future comparisons
for the research community. All similar works test their models with different satellite
data in different regions during different periods over varying baselines and usually re-
port improvement in MAE in the range 25–50% over considered baselines. Although the
comparison with them hardly makes sense, we obtain a similar daily improvement over
persistence of around 25% in all three regions.

The main contributions of our work are the following:

1. We collect JAXA AMSR-2 Level-3 SIC data and GFS analysis and forecasts data,
process it, and construct three regional datasets, which can be used as benchmark
tasks for future research.
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2. We conduct numerous experiments on forecasting SIC maps with the U-Net model
in two regimes and provide our findings on the prospect of this approach, including
comparison with standard baselines, standard metric values, and model generaliza-
tion ability.

3. We build a fast and reliable tool—trained on all three regions of the U-Net network
that can provide operational sea ice forecasts in these Arctic regions.

4. We compare U-Net performance in forecasting in recurrent (R) and straightforward
(S) regimes and highlight the strength and weaknesses of both.

2. Data
2.1. Sea Ice Data (JAXA AMSR-2 Level-3)

Plenty of sea ice concentration products are available, which cover a period from the
very beginning of the satellite era to the present [47–49]. However, passive microwave
sea ice concentration products are a good proxy for a large-scale ice condition assessment
and assimilation in a high-resolution ocean-sea ice model. Unfortunately, they cover any
specific area only once or twice a day and with data of a too low resolution (10–50 km [47])
to be of any use for the end users’ requirements [50–52]. We were looking for a higher
resolution satellite product to provide a forecast comparable to high-resolution (in terms
of Rossby deformation radius) ocean sea ice modeling. However, even a 3 km resolution
is insufficient for solving tactical planning problems [50]. We present our analysis of the
sea ice conditions based on JAXA (https://earth.jaxa.jp (accessed on 1 November 2022))
as a High-Resolution Sea Ice Concentration Level-3 from Advanced Microwave Scanning
Radiometer-2 (AMSR2 hereafter) from the GCOM-W satellite. AMSR2 L1B brightness
temperature retrieved from antenna temperature L1A is then resampled to the pixel center
points (i.e., L1R) and processed into the product (L2). The gridded L3 results from spatial
and statistical temporal processing [53]. Daily sea ice concentration has been available
since 2 July 2012, with a spatial resolution of 5 km on the regular grid, which is the highest
resolution compared to other SIC datasets that we could find in any openly available
products (SSMI, SSMIS, and other). SIC data is given in percentages (%) from 0 to 100. We
used data from 2 July 2012 to 20 January 2022, i.e., 6970 days. AMSR2 L3 research product
of SIC is distributed in two daily entities corresponding to the composites combined from
the data acquired during ascending and descending satellite passes. In our study, we use
the mean between these two daily snapshots as the ones statistically closer to ground truth
compared to individual composites.

Monthly statistical distributions of SIC are presented in Figure 1 and its climatological
anomalies are presented in Figure 2 (see Section 3.2 for details of its computation). Changes
in sea ice are present only in about half of the months during the year. In the remaining
time, the regions are fully melted (Barents and Labrador) or fully frozen (Laptev).
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Figure 1. Box and whisker plots of SIC data distribution in JAXA for different months of 2021,
aggregated for all the cells in each region. The box extends from the 25th percentile to the 75th
percentile; whiskers extend the box by 1.5× of its length. The orange line is the median (50th
percentile); outliers are omitted in order not to clutter the plot.
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Figure 2. Box and whisker plots of SIC climatological anomaly distribution in JAXA for different
months of 2021, aggregated for all the cells in each region. Climatological anomaly is the difference
between the data and the climatology of the respective channel (see Section 3.2). The box extends from
the 25th percentile to the 75th percentile; whiskers extend the box by 1.5× of its length. The orange
line is the median (50th percentile); outliers are omitted in order not to clutter the plot.

2.2. Weather Data (GFS)

While sea ice concentration describes its condition and dynamics, there is an opportu-
nity for potential improvement of a statistical model using additional variables correlated
with sea ice dynamics. For example, surface winds influence sea ice drift, especially in
shallow seas. Surface air temperature may also impact sea ice dynamics through ice melting
or growth. Our study explored the potential for improving data-driven SIC forecast by
extending input features with atmospheric properties such as 2 m temperature, surface
pressure, and u vs. components of wind and its absolute speed.

We used NCEP operational Global Forecast System (GFS) for atmospheric and ice
condition data. The GFS core is based on coupled atmospheric–ocean-ice models and
provides an analysis and forecast globally at 0.25◦ horizontal resolution and 127 vertical
levels (for atmosphere) [54]. Model forecast runs up to 16 days in advance at a 3 hourly
time steps interval at 00, 06, 12, and 18 UTC daily. The output is available with no delay
and a minimal number of temporal gaps, making it the best choice between the weather
data sources for a reliable operative forecasting system.

2.3. Regions

We conduct experiments on three regions with varying SIC interannual dynamics
(Figure 3). This allows us to enlarge the dataset and to adjust the model for different sea ice
conditions. The Labrador Sea presents the Atlantic type of ice regime, characterized by the
shortest period of pack ice in the basin (1–3 months) with mean SIC below 50% during the
coldest month in a year. High interannual variability of the SIC in the Labrador Sea is caused
by the sea ice fragmentation observed in the marginal ice zone (15–80%, MIZ hereafter) due
to the ocean-wave–ice–atmosphere interaction. The Laptev Sea shows the typical inner-
Arctic icing: SIC is above 90% spanning 7–9 months in the annual sea ice duration with
strong sea ice freeze-up and slight sea ice freeze-up. The highest interannual variability
is observed in summer, resulting in large open-water areas (SIC� 80%). The Barents Sea
and the Kara Sea regions are a mixture of these two types. The Barents Sea is an ice-free
region due to the influence of intense warming from the North Atlantic Current. On the
other hand, the Kara Sea is separated by the island of Novaya Zemlya and is similar to the
Laptev Sea.

To prepare the dataset, we projected the regions of interest onto the new grids, which
are the same except for the center points. The projection is described in Table 1. Center
points are described in Table 2.
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Figure 3. Regions definitions. (a) Arctic with colored boxes indicating the three regions: (b) the
Barents and Kara Seas, (c) the Labrador Sea, and (d) the Laptev Sea. In Barents and Labrador regions,
sea ice concentration is depicted for 1 April 2021, and in the Laptev region for 1 October 2021, since
on 1 April 2021 the region is almost frozen. The area between the green (15%) and red (80%) isolines
is the marginal ice zone for these dates.

Table 1. Grid parameters are the same for all the regions.

Parameter Name Value Unit

Projection Lambert Azimuthal Equal
Area -

Grid step 5 km

Grid Height 360 knot
1800 km

Grid Width 500 knot
2500 km

Table 2. Central points of projections. The presentation percentage is a fraction of satellite data
present in each region relative to the region’s size (in cells). The lack of data is due to recognition
errors and the presence of land (where SIC does not make sense).

Region Central Point (Lat, Lon) Presentation Percentage

Barents 73°, 57.3° 56.82%
Labrador 61°, −56° 47.84%

Laptev 76°, 125° 51.53%

3. Methods
3.1. Data Split

For all the regions, we used data up to the year 2019 for training, the year 2020 for
validation, and the year 2021 for testing. So, for models trained just on JAXA, this means
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around 7.5 years are in the training set (since mid-2012); for models trained on both JAXA
and GFS, this means around 5 years are in the training set (since 2015).

3.2. Data Preprocessing

It is well known that artificial neural networks train more stably when fed with
normalized data [55]. We compute and use the climatological anomalies instead of raw data
for input channels with a strong seasonal cycle, such as GFS temperature and pressure. First,
for every channel for every day in a year, we compute the climatology. It is an averaged
map for that day over all the years in the training set. The averaging is performed within
a window size of 3 days for further noise reduction. Then we obtain the climatological
anomaly for each date by subtracting the climatology of the corresponding day from the
raw data. Next, all the channels fed to the model are standardized by linear rescaling;
the same is performed for every pixel (but different for different channels). The mean and
variance of this transformation are computed over the training set and kept the same for
validation and testing sets. Finally, the network outputs (JAXA SIC for all the cases) are
rescaled by the inverse transform corresponding to the forecasted channel to be back in the
desired range (0–100%).

3.3. Baselines

We consider three types of baselines: persistence, climatology, and trends. Persistence
is a constant forecast—for any day in the future, the value of a parameter in each point is
equal to that of today. The climatology baseline forecasts the historical average of a channel
for that date over available observations in previous years (see Section 3.2 for details on
its computation). Trends are cell-wise polynomial trends (mean, linear, quadratic, and so
on) for values of a parameter for the last Din days. We consider trends up to cubic. Only
persistence and a 3-day linear trend showed competitive results with the U-Net model.
Thus, we will report only their metrics for comparison.

3.4. Models

We use the U-Net network [30] in all our experiments. U-Net was originally designed
for image segmentation tasks. However, by not applying softmax to the last layer outputs
but pixel-wise clipping them to be in the desired range, we adjust it to predict sea ice
concentration in the range [0, 1] instead of the logits of the classes probabilities. We exploit
the same classical architecture from https://github.com/milesial/Pytorch-UNet (accessed
on 1 November 2022) for all the experiments. We only adjust the amount of input and
output channels to fit the chosen subsets of the variables (sea ice and weather maps).

3.5. Metrics and Losses

There are three classical metrics in sea ice forecasting, which differ by cell-wise statistic
they aggregate: mean absolute error:

MAE =
1
S ∑

i,j∈A

∣∣∣cpred
ij − cgt

ij

∣∣∣dSij, (1)

root mean square error:

RMSE2 =
1
S ∑

i,j∈A

(
cpred

ij − cgt
ij

)2
dSij, (2)

and integrated ice edge error [56]:

IIEE =
1
S ∑

i,j∈A

[
θ(cpred

ij ) 6= θ(cgt
ij )
]
dSij. (3)

https://github.com/milesial/Pytorch-UNet
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Here, indices i, j run over all cells in active subdomain A of sea ice change. Our study
treats all cells with present SIC data as active subdomain cells. Next, dSij is the area of the
respective cell, their sum

S = ∑
i,j∈A

dSij (4)

is a full area of active subdomain, and θ(c) = [c > c0] is a threshold function that binarizes
SIC value c with threshold c0 and maps it onto one of two classes: full ice (1) or open
water (0).

Our primary metric is MAE or pixel-wise `1 loss, which is perfectly differentiable. That
is why we chose to minimize it during training explicitly. For the RMSE metric, minimizing
`2 loss can be better. In our experiments, these two losses performed on par. We also
considered segmentation setting with two standard classes: open water with SIC ≤ 15%
and packed ice with SIC > 15%. For this setting, we computed the IIEE metric.

3.6. Augmentations

It is well known that augmentations make training more stable, prevent overfitting,
and improve the generalization ability of a model [57]. We perform only geometrical
transformations: random horizontal flips with a probability of 0.5; rotations on a random
angle, uniformly sampled from range [−30◦, 30◦] (with NaN padding); and translations,
uniformly sampled for both vertical and horizontal shifts in the range [−10%,+10%] of each
dimension relative to map size (with NaN padding). We apply the same transformation to
each channel on each input day and compare the model’s output with similarly transformed
target SIC maps.

3.7. Regimes

Classical U-Net from the box is ideally suited to capture spatial correlations in the
data but not temporal correlations. In order to overcome this limitation and to avoid
the complication of the architecture of the network, we consider two possible regimes to
process sequential data with U-Net: a straightforward (S) and a recurrent (R) (see Figure 4).

(a) (b)
Figure 4. Schematic representation of the basic principles of the two U-Net regimes. Blue rods
represent blocks of historical data (stacked SIC or weather maps), one for each day in the past.
The leftmost is 6 days old, and the rightmost is for today (for 7-day historical input). Red, orange,
and yellow rods represent model forecasts of SIC maps for the first, second, and third days in the
future, respectively, (for a 3-day forecast). All the forecasts are made simultaneously in S-regime,
while in the R-regime they are made one by one, and the model’s inputs are updated on each step.
(a) S-regime scheme. (b) R-regime scheme.

When constructing the network input, we concatenate on channels (regional maps of
different scalar parameters) from the past (SIC history for the last Din days), channels from
the future (GFS forecasts for Dout days), and channels with auxiliary information (latitude,
longitude, harmonics of the first date of the forecast, and land map). In the straightforward
regime, there are Dout output channels—one for SIC of each forecast day. In the recurrent
mode, we only predict the SIC for the next day and use it iteratively as an input along with
other channels in a recurrent fashion for Dout times to construct a forecast for Dout days.
However, training that way seems to be subject to the same limitations as any RNN [58]
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and does not go well. Therefore, first we pretrain U-Net to make a forecast for Dout = 1
day and then finetune for Dout > 1 in the described fashion. This approach is inspired by
ideas of curriculum learning [59] and improves the results significantly compared with no
finetuning or no pretraining and allows one to make stable forecasts further into the future.

3.8. Implementation

We implemented a training and testing pipeline in Python using the popular machine
learning framework PyTorch. We used an Adam optimizer with a learning rate 10−4,
learning rate decay rate 10−2, and batch sizes of 16 in the S-regime and 8 in the R-regime.
We conducted each experiment on a single NVIDIA A100 40 GB GPU, requiring from 1 to
12 h for training depending on the number of input channels, number of involved regions,
and the training regime.

4. Results

As was mentioned in Section 3.7, we consider two regimes for time series forecasting
using the U-Net backbone: straightforward (S), when the number of output channels is set
equal to the number of output days, and recurrent (R), when the number of output channels
is set to 1 and the model is iteratively applied for the number of output days times in
recurrent fashion. In this section, we will provide the results of the conducted experiments
for both regimes in different settings and compare them. We conduct experiments on all
three regions (Barents, Labrador, and Laptev) and present the results as well. The scales of
the same diagrams and plots for different regions may vary depending on the specifics of
geographical features and sea ice dynamics in each region.

4.1. Inputs Configuration

There is a vast number of combinations of possible inputs for the model. JAXA data
has just one channel—SIC—but we cannot vary only the number of previous days we stack
for the model but also the channel’s preprocessing. One can compute climatology and the
climatological anomaly (see Section 3.2) and pass it as well, just for the last day or for all
of the input days. The same goes for GFS data, from which we could use five channels
(temperature, pressure, u, and vs. components of wind and its module) and four forecasts
with a different lead time for each day. On top of that, one can suggest several general
channels that can be useful. Firstly, one should consider the harmonics of the current day
phase in the year. That is cos ϕ and sin ϕ for ϕ = 2π D

DY
, where D is a number of a current

day from the start of the current year and DY ≈ 365.2425 is the average number of days
in a year. It is natural to assume the dynamics of sea ice are different in different seasons,
and that input will allow a model to capture these dependencies. Secondly, the binary
segmentation map of sea and land may be useful. The region of interest is entirely in the
sea, so it can be useful for the model to treat weather data from the land differently if it
falls in the perception core of the convolutions. Thirdly, one can use a map of areas of the
grid cells. In our case, all the grid cells are almost the same area due to the choice of the
projection type (see Section 2.3). Finally, the grid cells’ longitudes and latitudes might also
be useful. They can be used for a model trained to perform on one region to better fit parts
of it with different climatological properties. On the other hand, they can harm the model’s
generalization ability and drop its performance in other regions if the values are out of the
neural network domain.

It is worth mentioning that stacking all the available channels into the model’s input is
not the best solution since many of them are highly correlated and some of them may have
no relevant signal for the model. We considered the nature of each channel and conducted
many experiments. This allowed us to choose a single configuration of inputs for both
regimes that includes all the available and useful channels. The configuration is described
in Table 3. For the experiments with no GFS data, we omitted all the channels with
source GFS.
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Table 3. Chosen configuration of the inputs for the experiments. “Data” in preprocessing means that
no preprocessing except standardizing was performed. “Past” time interval means stacking all the
specified maps for all the days in the past, including the last observable day (“Today”). “Future”—
stacking all the forecasts for the output days (3 for S-regime and 1 for R-regime). In R-regime, the
corresponding forecasts from the last observable day replace data and forecasts of the coming days,
so that no yet unobserved data or forecasts leak to the model from the future.

Source Channel Preprocessing Time Interval

JAXA SIC Data Past

GFS

Temperature Climatology Today
Temperature Clim. Anomaly Today
Temperature Clim. Anomaly Future

Pressure Climatology Today
Pressure Clim. Anomaly Today
Pressure Clim. Anomaly Future

Wind (u) Data Today
Wind (u) Data Future

Wind (v) Data Today
Wind (v) Data Future

Wind (module) Data Today
Wind (module) Data Future

General
Date (cos) Data Today
Date (sin) Data Today

Land Data Today

4.2. Predicting Differences with a Baseline

The SIC map by itself is quite a complex image. Although U-Net architecture is
well-suited for predicting local changes on an image, it may still struggle to reproduce
the whole input, which may be similar to the desired output with some local changes or
require additional training time. In order to alleviate the problem for the model and to
accelerate its training, we do not make it predict the SIC data and instead use it to predict
the differences with a baseline. Since the persistence baseline performed best, we used it as
the base B and computed the model’s forecast F by using the formula:

F = B + αM. (5)

Here, M is the backbone’s (U-Net) output, and we chose α = 0.1 so that backbone
outputs M have approximate unit variance (which is the best for the default weights
initialization [60]). We investigate the effect of this decision when we do ablations in
Section 4.6.

4.3. Pretraining in R-Regime

In R-regime, we recurrently make the next-day SIC forecast by using all the previous
predictions as inputs (see Section 3.7). The gradients flow through the backbone for Dout
times in this setting. We discovered that training from scratch in this regime proceeds very
slowly and falls to nonoptimal solutions that perform much worse than models trained
in the S-regime. The reason may be that the R-regime is much more sensitive to proper
initialization. To solve this problem, we divide the whole training set into two parts:

1. Pretraining the model in S-regime with Dout = 1;
2. Initializing the model with the pretrained checkpoint and tuning it in R-regime for

Dout days.

The pretraining is conducted as usual for 100 epochs, and the tuning is only conducted
for 20 epochs, which we found to be sufficient.
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4.4. 3 Days Ahead Forecast

In this subsection we will describe results of the experiments conducted for Din = 7
input days and Dout = 3 output days for the general model (trained on all three regions)
with GFS data. This number of input days was chosen from these theoretical considerations:
the model should require appropriate computational and memory resources for training
yet be able to catch all the necessary trends and dynamics in the data. The number of
output days is thought to be sufficient to investigate the model’s forecast properties and
compare the model’s abilities in different settings. On the performance of the model with
different numbers of input days see Section 4.6 and for the longer forecasts see Section 4.5.
All the metric values for our best models and baselines are collected in Table 4.

Table 4. JAXA SIC metrics averaged over 3 forecast days and over 2021 for baselines and our best
U-Net configurations (general with GFS). IIEE is computed for SIC classes with a 15% binarization
threshold. For the models, we report mean and unbiased std of 3 independent runs with random
seeds 0, 1, and 2. The best mean value in the each row is printed in bold.

Linear Trend Persistence U-Net (S) U-Net (R)
Region Metric

Barents
IIEE 2.96 2.46 1.48 ± 0.02 1.41 ± 0.009
MAE 3.25 2.67 1.78 ± 0.01 1.73 ± 0.004
RMSE 9.8 8.44 5.68 ± 0.05 5.51 ± 0.05

Labrador
IIEE 1.82 1.54 0.905 ± 0.004 0.871 ± 0.01
MAE 1.66 1.41 0.966 ± 0.003 0.939 ± 0.009
RMSE 6.59 6.02 3.96 ± 0.03 3.88 ± 0.05

Laptev
IIEE 2.03 1.7 1.11 ± 0.03 1.05 ± 0.02
MAE 3.7 3.03 2.22 ± 0.02 2.16 ± 0.007
RMSE 8.87 7.61 5.1 ± 0.06 4.98 ± 0.05

Since the forecasts with longer lead times (that are further in the future) are more
challenging due to accumulating uncertainty, the error rate should increase as the number
of lead-time days increases. This dependence is depicted in Figure 5. U-Net in both regimes
outperforms both baselines by a significant margin. Interestingly, the linear trend performs
noticeably worse than persistence, which we associate with the high nonlinearity of the SIC
dynamics in each cell along with measurement errors. U-Net (R) performs slightly better
than U-Net (S) in all the cases, and the difference tends to increase with an increase in the
forecast lead time. That might indicate that the U-Net (R) model is more suitable for longer
forecasts as it is trained in a way that mitigates its errors when receiving the outputs as the
next day’s inputs. Examples of forecasts for fixed dates with 1, 2, or 3 lead-time days with
the best configuration of U-Net (R) are presented in Figure 6. The green lines depicted in
Figure 6 contour the MIZ and when overlaid with the error (red–blue) it shows that, like in
numerical models, the most considerable discrepancies are contained inside it. One can see
that most of the errors are accumulated near the edge of the ice, where most of the daily sea
ice changes take place.

More informative are Figure 7a,b, where absolute improvements of the model over per-
sistence are presented separately for each month and color-coded. The similarity between
Barents and Labrador regions, where the most improvement is obtained during winter
and spring, and their distinction from the Laptev region, where the most improvement is
obtained during summer and fall, are apparent.
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Figure 5. Dependence of JAXA SIC MAE (lower is better) on the different forecast horizons (in days)
for all three regions. MAE is averaged over the whole 2021 year. The linear trend is computed
cell-wise over 3 previous days; U-Net (S) and U-Net (R) are trained on all three regions merged and
shuffled, with 7 days history (past) and best inputs configuration, as presented in Table 3.

Figure 6. U-Net (R) best configuration forecasts examples for fixed dates and varying forecast lead
time. For Barents and Labrador, the date is 1 April 2021, and for Laptev the date is 1 October 2021,
since on 1 April 2021 the region is almost frozen. Black–white color map shows the values of JAXA
SIC, and the semitransparent red–blue color map shows the difference between model predictions
and actual values of SIC. MIZ is not shown for readability of the maps, but it is located predominantly
along the sea ice edge and occupies approximately 10% of the respective sea area for the selected
dates. For more forecast visualizations, please refer to the supplementary material.

As was mentioned earlier, U-Net (R) performs slightly better than U-Net (S). This
improvement is shown in Figure 7c. U-Net (R) enhances the solution mostly during the
generally challenging seasons: autumn/spring (due to icing/melting) like it was with the
persistence baseline. Changing the ice regime from winter to summer is accompanied by
enlarging the marginal ice zone—the area with the highest sea ice activity. This activity
can be evaluated using statistical analysis of the distribution of cells’ SIC climatological
anomalies for each month, such as those depicted in Figures 1 and 2. Another way to
estimate the impact of MIZ area on the solution quality is to compute the relative area (%)
of the marginal ice zone in the ocean domain (orange plot in Figure 8). In Figure 8, we see
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that the correlation between the MAE and MIZ relative areas almost equals 1. The high
correlation means that even not rheology-dependent ML models face the same problem as
numerical models [61].
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Figure 7. Improvement of JAXA SIC MAE (in percentage points, higher is better) for different models
compared to the other models or baselines for different months of 2021 and days of the forecast. The
matrix for each region and subfigure is color-coded independently in a red-blue scheme to provide a
better perception of the relative improvement for each month and forecast day in the corresponding
region. The numbers in each cell are rounded and should be used to estimate the overall improvement
scale in the regions. Improvement is computed in absolute percentage points and tends to be higher
for months with active sea ice change. (a) General U-Net (S) with GFS over persistence. (b) General
U-Net (R) with GFS over persistence. (c) General U-Net (R) with GFS over general U-Net (S) with GFS.
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Figure 8. General U-Net (R) with GFS: distribution of JAXA SIC MAE (lower is better) for different
months of 2021 and days of the forecast. The orange line shows the marginal ice zone area relative to
the region’s sea area.

All the results above are given for the general models. That means that both U-Net
(S) and U-Net (R) were trained on three regional datasets merged into one and shuffled.
One can expect that more diverse data will be helpful for the model to perform better.
To demonstrate this, we conducted experiments and compared the general model with all
three regional ones in both S- and R-regimes. The performances of all the settings are shown
in Figure 9. The most boost is achieved by including GFS fields in the inputs; switching
between general and regional settings helps most in the Laptev region, does not change
in the Barents region, and gives a nonsignificant decrease in performance in the Labrador
region. The change when switching from regional models to the general model is shown
in Figure 10 for U-Net (R) (for U-Net (S) it looks almost the same). In Figure 11, regional
models are also tested on the other two unseen regions and compared to the general model.
In both cases, the upper 3× 3 square diagonal is dark blue because the models are tested on
their native regions, and the bottom row depicts the general model’s results. We prefer the
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general model to regional models because of its universality, and we expect it to generalize
better when analyzing previously unseen regions.
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Figure 9. JAXA SIC MAE averaged over 3 days of forecast and over 2021 (lower is better) for baselines
and different configurations of U-Net. Colors denote model groups (baselines, U-Net (S), and U-Net
(R)), configuration of each model within a group is specified below each bar. For U-Net regional and
general configurations were trained with or without GFS. The best configurations from each group
are presented separately on the right of each region plot for comparison.
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Figure 10. Improvement of JAXA SIC MAE (in percentage points, higher is better) for general U-Net
(R) with GFS over regional U-Net (R) with GFS for different months of 2021 and different days of
the forecast. The matrix for each region and subfigure is color-coded independently in a red-blue
scheme to provide a better perception of the relative improvement for each month and forecast day in
the corresponding region. The numbers in each cell are rounded and should be used to estimate the
overall improvement scale in the regions. Improvement is computed in absolute percentage points
and tends to be higher for months with active sea ice change.
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Figure 11. JAXA SIC MAE averaged over 3 days of forecast and over 2021 (lower is better) for
different train-test region configurations. The models trained in any region are expected to perform
best in this region, and the general model (trained in all three regions) is expected to perform well
in all of them. Each column of both matrices is color-coded independently in a white-blue scheme
so that lesser MAE values correspond to a darker shade. Independent coloring provides a better
perception of the best training setting for each testing region.

4.5. 10 Days Ahead Forecast

We also trained U-Net (S) to make a forecast for Dout = 10 days and tested U-Net (R)
trained with Dout = 3 for 10 output days. We did not train U-Net (R) with Dout = 10 days
because of memory and computational requirements, which, in this case, were too big. We
also trained the U-Net (R) model without GFS channels since we only had GFS forecasts for
the next 3 days. The results are depicted in Figure 12. To better understand the influence of
the presence of GFS channels in the inputs, we also conducted experiments for U-Net (S)
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with GFS data and computed relative improvement over persistence for all three settings.
The results are presented in Figure 13. One can see an improvement of 5–15% for the first
3–4 days for the U-Net (S) with the GFS setting in the Barents and Laptev regions compared
to U-Net (S) without the GFS setting. For the Labrador region, the improvement is smaller
but persists for all 10 days of forecast, which is the same for the Barents region. U-Net (R)
without GFS generally performs better for the first half of the forecast days than U-Net (S)
without GFS. Its performance deteriorates as the forecast lead time increases. This fact is
general knowledge about RNNs, whose performance usually deteriorates when the depth
of recurrence increases.
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Figure 12. Dependence of JAXA SIC MAE (lower is better) on the number of forecast day in the
future (lead time of the forecast) for all three regions. MAE is averaged over the whole year 2021.
U-Net (S) and U-Net (R) are trained on all three regions merged and shuffled with 7 days history
(past) and best inputs configuration, as presented in Table 3.
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Figure 13. Dependence of JAXA SIC MAE relative improvement over persistence (higher is better)
on the different forecast horizons (in days) for all three regions. MAE is averaged over the whole
year 2021. U-Net (S) and U-Net (R) are trained on all three regions merged and shuffled with 7 days
history (past) and best inputs configuration, as presented in Table 3.

4.6. Ablation Studies

In Section 3.6, we introduced the set of augmentations that we used. In Section 4.2,
we described how we did not predict raw SIC data but rather the difference with the
persistence baseline to alleviate the problem for U-Net. In Figure 14, we demonstrate the
influence of both these factors on the model’s accuracy for our best configuration (general
U-Net (R) with GFS). They boost MAE in the Barents and Laptev regions and do not make
any significant difference in the Labrador region.

We also investigated the influence of including the GFS channels in the model and
dissected the improvement over months. The results for U-Net (R) are presented in
Figure 15 and are similar to those for U-Net (S). In both cases, these channels proved to be
very useful for the model, especially during the months with an active change of sea ice.
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Figure 14. JAXA SIC MAE averaged over 3 forecast days and over all of 2021 for different ablations
of general U-Net (R) configuration with GFS. From left to right on each diagram, we first turn on
augmentations and then add persistence base to the predictions (as in Equation (5)) and report the
model’s metric.
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Figure 15. Improvement of JAXA SIC MAE (in percentage points, higher is better) for general U-Net
(R) with GFS over general U-Net (R) without GFS for different months of 2021 and different forecast
horizons (in days). The matrix for each region and subfigure is color-coded independently in a
red-blue scheme to provide a better perception of the relative improvement for each month and
forecast day in the corresponding region. The numbers in each cell are rounded and should be used
to estimate the overall improvement scale in the regions. Improvement is computed in absolute
percentage points and tends to be higher for months with active sea ice change.

5. Discussion

In short-term predictions (for 3 days), U-Net (R) slightly outperformed U-Net (S),
and both of them outperformed baselines by a significant margin (Table 4), thus demon-
strating high prospects of machine learning methods for sea ice forecasting. For longer lead
times (10 days ahead forecasts), U-Net (R) quality deteriorates as anticipated, and it usually
yields to U-Net (S) starting from the second half of the forecast (Figure 13). Extra weather
forecast channels improve forecasts quality noticeably for the days when the weather
forecast is provided and to some extent for subsequent days (Figure 13). The marginal
ice zone stands as the most challenging part of a region, and the months of most active
ice change stand as the most challenging part of a year for forecasting (Figures 6 and 8).
Finally, training not only on the region of interest but also on more diverse data improves
the overall performance of the model and its generalization abilities (Figure 11).

We utilized U-Net architecture for our experiments, and it performed well. It is
lightweight, thus not prone to overfitting, yet well suited for image-to-image tasks, such as
sea ice forecasting. However, there are a few more specialized neural network architectures
used mainly in video prediction tasks (PredRNNs [46,62,63], E3D-LSTM [64], CrevNet [65])
that are closely related to sea ice forecasting. One possible direction for future work can be
embedding these backbones into the pipeline and comparing their performance. Another
important extension is to compare the performance of numerical ocean-ice models, such as
GLORYS12-V1, TOPAZ4, or SODA3.3.1, with our developed data-driven approach. One
should also consider exploring more advanced approaches to measure the quality of the
forecasts in terms of their value for marine operations. Ref. [61] showed that the ten most
modern ocean reanalyses systematically underestimate the area of MIZ during spring
and autumn even with data assimilation. Finally, one can try to fuse these approaches
and train statistical models to compensate for errors of the numerical models or use them
in any other more intricate way. These may include more flexible sparse data assimila-
tion (e.g., from buoys), incorporating physics into data-driven models via NeuralODE
approaches [66], or exploiting advances in other machine learning fields. For example, one
can try various optimal transport methods [67,68] for the prediction of the sea ice drift.
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Adding extra data, particularly data that represents types of sea ice and sea ice thickness,
may also significantly boost the forecasting quality. The main difficulty here may be to
locate reliable and complete sources of these operative data.

6. Conclusions

Data-driven models based on machine learning are gaining popularity as fast and
robust alternatives for numerical ocean-ice models in short-range weather forecasting.
We investigated their efficiency in sea ice forecasting in several Arctic regions. First, we
collected JAXA AMSR-2 Level-3 SIC data and GFS analysis and forecasts data, processed
it, and then constructed three regional datasets, which can be used as benchmark tasks in
future research studies. Second, we conducted numerous experiments on forecasting SIC
maps with the U-Net model in two regimes and provided our findings on the prospect
of this approach, including comparison with standard baselines, standard metric values,
and model generalization ability. That allowed us to build a fast and reliable tool—trained
on all three regions U-Net network—that can provide operational sea ice forecasts in
any Arctic region. Finally, we compared U-Net forecasting performance in recurrent (R)
and straightforward (S) regimes and highlighted the strengths and weaknesses of both
these regimes.
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