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Abstract: Sonar image is the main way for underwater vehicles to obtain environmental information.
The task of target detection in sonar images can distinguish multi-class targets in real time and accu-
rately locate them, providing perception information for the decision-making system of underwater
vehicles. However, there are many challenges in sonar image target detection, such as many kinds
of sonar, complex and serious noise interference in images, and less datasets. This paper proposes
a sonar image target detection method based on Dual Path Vision Transformer Network (DP-VIT)
to accurately detect targets in forward-look sonar and side-scan sonar. DP-ViT increases receptive
field by adding multi-scale to patch embedding enhances learning ability of model feature extraction
by using Dual Path Transformer Block, then introduces Conv-Attention to reduce model training
parameters, and finally uses Generalized Focal Loss to solve the problem of imbalance between
positive and negative samples. The experimental results show that the performance of this sonar
target detection method is superior to other mainstream methods on both forward-look sonar dataset
and side-scan sonar dataset, and it can also maintain good performance in the case of adding noise.

Keywords: sonar target detection; vision transformer; transformer; convolutional neural network;
AUV environment awareness

1. Introduction

Autonomous underwater vehicle (AUV) is a kind of equipment that can explore for a
long time without human operation. Because of its deep working depth, high efficiency, and
long endurance, it has become a research hotspot in various countries. Due to the turbidity
and darkness in the underwater environment, the optical image is affected by the color cast,
blur, and low line of sight, and the performance is greatly limited. Therefore, the perception
system of AUV is mainly completed by sonar. Forward-look sonar can assist AUV to
complete oil pipeline inspection, threat detection, mine hunting, and other tasks [1–3]. Side-
scan sonar can help AUV find the location of wrecked ships and planes [4,5]. Therefore, the
forward-look sonar and side-scan sonar are the most commonly used image sonar carried
by AUV. The key technology to accomplish the above tasks is to detect targets in sonar
images. Due to the complexity of underwater acoustic channels and the propagation loss of
the sound wave itself, sonar images are often characterized by low contrast, serious noise
interference, and blurred target contours. Traditional target detection methods are difficult
to extract the feature contour of the target accurately. In the AUV submarine pipeline
tracking task, if the forward-look sonar image generates false alarms during pipeline
detection, the operation efficiency will be reduced. If the target detection accuracy of the
side-scan sonar image is low during the USV’s search for the wrecked ship, it may lead to
missed detection, which may lead to mission failure.
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At present, the methods based on deep learning proposed by many researchers can
achieve very high target detection efficiency and accuracy in complex scenes. The cur-
rent mainstream CNN-based target detection networks can be roughly divided into two
categories: two-stage and one-stage. Two-stage-based target detection networks such as
SPP-Net [6], Faster R-CNN [7], FPN [8], Mask R-CNN [9], R-FCN [10], and so on. The
accuracy of target detection is greatly improved, but the detection speed is relatively poor.
A one-stage-based network such as SSD [11], CornerNet [12], YOLOV7 [13], etc, May be
used. Although the accuracy of this kind of algorithm is lower than that of the two-stage,
the real-time detection is very good.

However, in natural language processing (NLP) [14] Transformer, which works very
well, was first applied to the computer vision community in 2020, and it has been proved
that it still has amazing performance in the CV field. With ViT [15], DETR [16], Swin
Transformer V2 [17] Network, the object detection network based on Transformer has
been widely used. However, the target detector of the Transformer needs a large number
of datasets for training, and it is not suitable for sonar image processing because of its
high computational complexity and slow convergence speed. Next-ViT [18] combining
CNN with ViT, has achieved very good results in coco dataset. However, there are some
problems in sonar images, such as low contrast, loud noise, blurred outline, fewer data,
and smaller targets, so the detection accuracy of Next-ViT directly applied in sonar image
target detection is not ideal.

Referring to the network structure of Next-ViT, we put forward the Dual Path ViT
(DP-VIT) method based on VIT to solve the above problems, which is suitable for target
detection in forward-look sonar and side-scan sonar images. In this work, we will propose
Dual-Scale Patch Embedding(DSPE), which is subject to Next-ViT [18]. Inspired by the
combination of ViT and CNN, the Dual Path transformer Block (DPTB) is proposed, which
fully combines the sequence coding ability, global information perception ability of Trans-
former and generalization ability of CNN. We found that this design can not only keep the
translation and rotation invariance of CNN, but also keep the advantages of transformer.
The experimental results show that DP-ViT proposed in this paper has better performance
than other mainstream target detection methods in side-scan sonar and forward-look sonar
target detection tasks, and greatly reduces the influence of low contrast of sonar image and
large interference noise on detection tasks. Compared with the single transformer method,
it has more obvious advantages in the case of fewer samples. The contributions of this
work can be summarized as follows:

Firstly, we propose a new sonar target detection network, called Dual Path ViT, which
is suitable for the target detection tasks of side-scan sonar and forward-look sonar. It
can reduce the network training parameters on the premise of ensuring the detection
accuracy and has a faster convergence speed than the Next-ViT network. It can have better
performance on a sonar dataset with fewer samples.

Secondly, Dual-Scale Patching Embedding is adopted instead of the original Patching
Embedding. tokens of different scales will be sent to Transformer Encoder in parallel,
and Transformer Encoder with different patch sizes will execute global self-attention. The
proposed DSPE can effectively enlarge the receptive field and reduce the influence of noise
on the accuracy of the target detection task.

Thirdly, refer to Next-ViT [18], according to DSPE, the Dual Path Transformer Block
is designed, which connects the transformative local features to the transformer global
features and connects the local features with the global features. The proposed DPTB can
better obtain the global and local feature information of images and can obtain higher
detection accuracy in complex sonar images.

Fourthly, the sonar target image dataset of forward-look sonar and side-scan sonar are
constructed respectively, and the advanced performance of DP-ViT in sonar image target
detection is verified on this dataset.

The rest of the paper is organized as follows: in Section 2, which briefly introduces the
frontier work done by other researchers in this field. In Section 3, the principles of DSPE
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and DPTB and other structures of DP-ViT are introduced. In Section 4, the training results
of DP-ViT are given, compared and discussed with other methods. Finally, the conclusion
and pointing-out of future directions are given in Section 5.

2. Related Works

Sonar Target Detection. Sonar image has serious noise interference and complex back-
ground, which will affect the target detection algorithm to some extent. Many researchers
have proposed many different sonar image target detection algorithms, among which it is
difficult to effectively and accurately detect targets in sonar images based on traditional
machine learning frameworks and traditional image processing methods. For example,
in [19,20], traditional methods are used to detect underwater targets, in terms of detection
accuracy and real-time, traditional target detection methods are inferior to depth learning
methods [21], and the detection speed can not meet the real-time requirements.

Other researchers have also proposed and improved many sonar target detection
methods based on deep learning. Kim and Yu [22], applying the deep learning object
detection model YOLO to the detection and tracking of sonar targets. Kong et al. [23]
improved on YOLOv3 by proposing YOLOv3-DPFIN (Dual-Path Feature Fusion Neural
Network) for real-time object detection of sonar images. Fan [24] proposed Detection
and segmentation of underwater objects from forward-look sonar modified Mask RCNN.
However, in the above methods, they only studied the detection of side-scan sonar or
foresight sonar, and real-time and accuracy were not well balanced.

Convolutional Networks. In the past few years, Convolutional Networks (CNNs)
have played a leading role in computer vision tasks, including image classification, object
detection, semantic segmentation, and image enhancement. MobileNetV1 [25] first pro-
posed depthwise separable filters to build lightweight Convolutional Neural Networks.
ShuffleNet [26] proposes a pointwise group convolution and channel shuffle that can
achieve a significant reduction in the amount of computation at the same precision and
further reduce the cost of computation. Although ConvNeXt [27] did not have much
innovation in the overall network framework and construction ideas, he introduced part
of the transformer idea into the network of CNNs, and still ensured the simplicity and
efficiency of the CNN structure while improving accuracy. The Sparse R-CNN [28] network
structure is extremely simple, eliminating the need for dense anchors, RPNs, and complex
post-processing and NMS, with fast convergence and efficient detection efficiency.

The Vision Transformer. Transformer was first applied to natural language processing
(NLP). ViT [15] is the first method of transformer to be applied in the field of computer
vision, and it proves that transformers have more powerful global information perception
capabilities than CNNs. DeiT [29] introduced a distillation token to implement a teacher-
student strategy that does not require external data. Deformable DETR [30] introduces
the Deformable Attention Module compared to DETR, which solves the problems of long
training cycles and slow convergence in DETR. Li et al. [31] first applied ViT as a backbone
to the field of object detection with good results. Next-ViT [18] strikes a balance between
real-time and accuracy.

3. Method

In the process of sonar image target detection, whether it is side-scan sonar or forward-
look sonar, it is necessary to extract the features of the target area in the sonar image to
determine the position and category of the target. Although the above methods based
on CNN and Transformer have a good performance in the task of target detection. How-
ever, there are few sonar image datasets, and the strong noise of sonar echo results in low
image SNR, the above network has some problems, such as high computational complex-
ity, poor generalization, low detection accuracy, slow convergence speed, and difficulty
insufficient training.

Inspired by the multi-scale task, we propose a Dual-Scale Patch Embedding to replace
the Patch Embedding module in Next-ViT. Different from the existing multi-scale tasks,
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DSPE can have better feature extraction and feature fusion capabilities at the same sequence
length and can pass the two-scale Receptive Field Acquisitions Global Context Information.
This design can better improve the generalization ability of the model and is more conducive
to the application of small target detection in sonar images with low signal-to-noise ratio
and few samples.

Compared with the coco dataset, both the forward-look sonar dataset and the side-
scan sonar dataset are simpler in terms of the number and size of target objects. Therefore,
we think that the design of NCB and NTB in Next-ViT is complicated in sonar image
detection. In order to save the cost of computing resources, this paper combines NCB
and NTB modules into Dual Path Transformer Block (DPTB) and improves it accord-
ing to the proposed DSPE module. This design can reduce the computational complex-
ity of the model, improve the convergence speed, and is more suitable for sonar image
target detection.

In this section, firstly, the DP-ViT proposed in this paper is introduced. Then, some
special designs in DP-ViT will be discussed, including dual-scale patching embedding
(DSPE), Dual Path Transformer Block (DPTB), and Loss Function.

3.1. Overview

We present the DP-ViT as illustrated in Figure 1. Same as most other networks, DP-
ViT follows the hierarchical pyramid architecture equipped with a Dual-Scale Patching
Embedding layer and a Dual Path Transformer Block in each stage. Similar to the overall
structure design of Next-ViT, the spatial resolution will be progressively reduced by 32×
while the channel dimension will be expanded across different stages. In this chapter, we
first discuss deeper designing the core blocks for information interaction and elaborate on
the proposed DSPE and DPTB. At the same time, Transformer (global information) and
CNN (local information) also perform information fusion in DPTB. Finally, due to the linear
complexity of the Dual-Path structure, it requires more resources for computation. We use
factorized self-attention as done in CoaT [32] and generalized focal loss as done in GFL [33].

3.2. Dual-Scale Patching Embedding (DSPE)

There are four stages in our network, and each stage includes DSPE and DPTB.
Because of the Dual-scale structure, Conv-stem was designed before the first stage, and the
dimension was reduced by two downsamplings. This operation can not only reduce the
amount of calculation and the length of the sequence but also will not cause the sequence
length to be too short, as in ViT, which is not conducive to feature extraction.

We designed a Dual-Scale Patch Embedding (DSPE) layer, which independently inputs
dual-scale tokens into DPTB by embedding patches at the same time. We introduce over-
lapping matches, similar to TransFG [34]. Given the input image size is H ×W × 3, stagei.
The input of is Xi ∈ RHi−1×Wi−1×Ci−1 , then the output token map Fk×k(Xi) ∈ RH×W×C Has
height and width are as follows:

Hi =
Hi−1 − k + 2p

s
+ 1 (1)

Wi =
Wi−1 − k + 2p

s
+ 1 (2)

In which kernel size k, stride s, and padding p. According to the above formula, the
sequence length of tokens can be changed by adjusting stride and padding. That is to say,
the same size output features can be generated by different patch sizes. So we use 3×3 and
5×5 Double kernel sizes, to generate the convolutional patch embedding layers in parallel,
such as Figure 2 shown. By embedding a patch of the same size at the same time, tokens
of different scales are input into DPTB through independent paths, so as to achieve rough
and fine feature representation on the same level of features. Using stacking consecutive
convolution operations, you can use fewer parameters to obtain the larger receptive field,
we use two consecutive 3×3 convolutions with the same padding, stride, and channel
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size instead of a 5×5 Convolutions S. due to the dual-path architecture adopted, DP-ViT
will have more embedding layers. We adopt 3×3 depthwise separable convolutions [35]
to reduce model parameters and reduce computation. Finally, the double sizes token
embedding is sent to the DPTB separately.
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3.3. Dual Path Transformer Block (DPTB)

In some classical structural designs of CNN and Transformer block, such as Resnet [36],
eliminates the problem of “degradation”, that is, the difficulty of training neural networks
with excessive depth, and guides scholars to develop neural networks to “depth”. However,
Neck Block is still low in effectiveness compared to Transformer Block. ConvNeXt [27]
improved Neck Block and improved network performance, the low-efficiency modules
such as GELU and LayerNorm are used, which makes it impossible to complete real-time
target detection. Transformer has made great achievements in all major visual tasks, but its
complicated attention mechanism and sequence expansion seriously affect the reasoning
speed. Next Evolution Block (NCB) and Next Transformer Block (NTB) are introduced in
Next-ViT [18]. Next-ViT proves that this design has both excellent performance and good
real-time performance. Because the number of classes in the sonar image target detection
task is small and the background noise of the image does not change much, we believe
that this design is redundant in the sonar image target detection task and does not perform
well in the detection task of smaller targets. In order to solve the above problems, we
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introduced the Dual Path Transformer Block (DPTB) and fused local information with
global information, which further improved the generalization of the model, reduced the
required computing resources, and improved the reasoning speed.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

3 3×  and 5 5×  Double kernel sizes, to generate the convolutional patch embedding lay-
ers in parallel, such as Figure 2 shown. By embedding a patch of the same size at the same 
time, tokens of different scales are input into DPTB through independent paths, so as to 
achieve rough and fine feature representation on the same level of features. Using stacking 
consecutive convolution operations, you can use fewer parameters to obtain the larger 
receptive field, we use two consecutive 3 3×  convolutions with the same padding, stride, 
and channel size instead of a 5 5×  Convolutions S. due to the dual-path architecture 
adopted, DP-ViT will have more embedding layers. We adopt 3 3×  depthwise separable 
convolutions [35] to reduce model parameters and reduce computation. Finally, the dou-
ble sizes token embedding is sent to the DPTB separately. 

 
Figure 2. The dual path structure shows that each embedded patch will enter an independent trans-
former block. 

3.3. Dual Path Transformer Block (DPTB) 
In some classical structural designs of CNN and Transformer block, such as Resnet 

[36], eliminates the problem of “degradation”, that is, the difficulty of training neural net-
works with excessive depth, and guides scholars to develop neural networks to “depth”. 
However, Neck Block is still low in effectiveness compared to Transformer Block. Con-
vNeXt [27] improved Neck Block and improved network performance, the low-efficiency 
modules such as GELU and LayerNorm are used, which makes it impossible to complete 
real-time target detection. Transformer has made great achievements in all major visual 
tasks, but its complicated attention mechanism and sequence expansion seriously affect 
the reasoning speed. Next Evolution Block (NCB) and Next Transformer Block (NTB) are 
introduced in Next-ViT [18]. Next-ViT proves that this design has both excellent perfor-
mance and good real-time performance. Because the number of classes in the sonar image 
target detection task is small and the background noise of the image does not change 
much, we believe that this design is redundant in the sonar image target detection task 
and does not perform well in the detection task of smaller targets. In order to solve the 
above problems, we introduced the Dual Path Transformer Block (DPTB) and fused local 
information with global information, which further improved the generalization of the 
model, reduced the required computing resources, and improved the reasoning speed. 

Figure 2. The dual path structure shows that each embedded patch will enter an independent
transformer block.

3.3.1. Transformer Encoder

In the field of target detection, Transformer block has high precision, and its ability
to capture global information is unique. For example, it has a strong ability to capture
low-frequency signals of global shapes and global structures. However, due to its complex
attention mechanisms, its real-time performance and reasoning speed have been seriously
affected. In order to overcome the above shortcomings, we developed a Tranformer Encoder
to capture the shape and structure information in sonar images, and further enhanced the
modeling capability. Although depthwise separable convolutions are used in the DSPE
structure, it will still increase the training parameters and calculation amount of the model.
In order to solve the above problems and reduce the impact of DSPE on model training,
the method shown in Figure 3 is proposed. Firstly, the efficient Factorized MHSA is used
to replace the original Self Attention. CoaT designed the Factorized Attention Block in a
convolution-like way, introduced co-scale and designed Conv-Attention, and embedded
the relative position in the factored attention. Through multi-scale modeling, the learning
ability of the model was improved and the parameters were greatly reduced [32]. The
Conv-Attention mechanism can keep the integrity of Transformer Encoder at all scales and
can add multi-scale information and context modeling functions. Factorized self-attention
proposed in CoaT:

FactorAtt(Q, K, V) =
Q√
C
(so f tmax(K)TV) (3)
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Among Q, K, V ∈ RN×C is the queries, keys, and values of the linear projection. N
and C represent the number and embedded dimension of tokens, respectively. If there is no
convolution position coding, the Transformer is only composed of the self-attention module,
which will result in the model being unable to obtain the difference of local features, and this
feature cannot be applied to the sonar image target detection task with large background
noise. In order to be able to better integrate CoaT into DP-ViT, according to the class token
and image token in ViT [15]. We use 2-D depthwiseconv convolution, which is only used
to calculate image token (i.e., Qimg, Vimg ∈ RH×W×C from Q, V respectively):

ConvAtt = FactorAtt(Q, K, V) + concat(Qimg◦DepthwiseConv2D(P, Vimg), 0) (4)

Among them, ◦ is Hadamard product. At the same time, replacing LN and GELU in a
traditional transformer with BN and ReLU not only speeds up the calculation speed but
also improves the model performance.

3.3.2. Feature Interaction

A related study [37] shows that transformer block will worsen high-frequency informa-
tion such as local textures information to some extent, ignoring the structural information
and local relationship in each patch. However, this information is indispensable in sonar
image target detection. To avoid the loss of local features caused by the above problems,
the Convective Local Feature is introduced into DPTB. The local connectivity in translation
invariance and rotation invariance of CNN is used to compensate for the influence of Trans-
former on the model. To represent local features XLi−1 ∈ RHLi−1

×WLi−1
×CLi−1 , we construct a

Depth wise residual bottleneck block, including 1×1 convolution, 3×3 depth convolution,
1×1 convolution, and residual connection. DPTB connects CNN and Transformer in a
complementary way. Therefore, we introduced a global feature and local feature fusion
module, which fused the global feature and local feature together by aggregation and
series connection.

3.4. Loss Function

There are some problems in the sonar image dataset, such as unbalanced positive and
negative samples, a small number of samples, and more image noise. So that a part of the
scores in the training process is low, and the quality prediction which is actually a positive
sample but is judged as a “negative sample” cannot be defined in the training process. As a
result, it is likely that a real negative sample (such as noise in the image) will be predicted
as a high-quality score, which will lead to the problem that the predicted score of the real
target that should be identified and detected in the sonar image is lower than that of the
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negative sample such as noise. Therefore, we introduce Generalized Focal Loss (GFL) [33]
to solve the above problems. The formula of GFL is:

GFL = −
∣∣y− (yl Pyl + yrPyr )

∣∣β((yr − y) log
(

Pyl

)
+ (y− yl) log(Pyr )

)
(5)

Among them, y ∈ {1, 0} specifies the ground truth classes, p ∈ [0, 1] is the estimated
probability, γ is a parameter.

4. Experiment
4.1. Model Training

In order to verify the effectiveness and superiority of DP-ViT, this paper conducts
experimental comparative analysis and verification on the datasets of forward-look sonar
and side-scan sonar respectively. The original images of forward-look sonar are generally
presented in the form of acoustic reflection, which are all grayscale images [38,39]. The
forward-look sonar dataset used in this paper was collected using AUV-R in Changling
Lake, Harbin, China, and the sonar equipment used is M1200D forward-look sonar. Figure 4
shows the AUV-R. The dataset includes eight kinds of objects (cube, sphere, cylinder, human
body, tire, annular cage, and iron barrel). The images in the dataset are the original echo
images of the forward-look sonar after gain and coloring, but without polar coordinate
transformation, which not only helps to keep more details of sound waves, but also
facilitates the annotation and manual interpretation of the dataset. This dataset consists of
1650 training images and 350 test images, and the labeling format is VOC.
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Figure 4. AUV-R physical picture and experimental picture.

The dataset of side-scan sonar images is publicly available on the Internet, includes
three kinds of graph-free (human, ship, aircraft), which are composed of 650 training images
and 250 test images, and the annotation format is VOC. This dataset has serious seabed
noise and reverberation interference. Aiming at the problems of complex background and
loud noise of sonar images, this paper adds Gaussian noise, salt and pepper noise, and
Rayleigh noise to the test sets of two datasets, respectively, to verify that DP-ViT algorithm
still has good performance in the case of loud noise, which proves that the model has
good generalization.

In this paper, a small batch gradient descent algorithm is used to optimize the parame-
ters. The small batch gradient descent method is a compromise between the batch gradient
descent method and the random gradient descent method. The gradient is used to deter-
mine the direction of the parameter update. In the process of each iteration, "batch size"
samples are used to update the parameters, and the parameters of the objective function
are updated repeatedly, so that the objective function gradually approaches the minimum
value. Small batch gradient descent can be accelerated by matrix and vector calculation,
and the variance of parameter update can be reduced to obtain more stable convergence.
When the batch size is selected reasonably, the small batch gradient descent method can
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improve the memory utilization, reduce the iteration times of each epoch, further accelerate
the convergence speed and reduce the training shock. Specific process reference Figure 5.
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Albumentations are used in sonar dataset training [40]. The input image trained by
the model is randomly rotated, flipped, translated, scaled, and other image transformation
operations to prevent the occurrence of over-fitting.

In order to test the target detection performance of the network and compare it
with other networks, we use Precision, Recall, Mean Average Precision (mAP), GFLOPS
and FPS to quantitatively evaluate the target detection performance of DP-ViT and other
networks on the sub-test set. GFLOPs is Giga Floating-point Operations, which is used to
quantitatively measure the complexity of the model. FPS is used to evaluate the speed of
the target detection model, that is, the number of images that can be processed per second
or the time required for one image. Precision and recall are calculated as follows:

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

where TP is the real positive samples predicted by the model as positive samples. FP is
a negative sample predicted to be positive by the model. FN is a positive sample with
a negative model prediction. The mAP is equal to taking the area under the precision-
recall curve. The paper uses the mAP calculation standard in VOC2012. The AP and mAP
calculation formula is as follows:

AP =
1

∑
r=0

(rn+1 − rn)Pinterp(rn+1) (8)

mAP =

∑
N

n = 1
APn

N
(9)

All the models in this paper are built on the mature mmdetection framework using
Python. The operating system of the platform is Ubuntu18.04, computer memory is
32 GB, Nvidia RTX3090 graphics card is used as hardware, and Intel Core i9-10900 CPU
is equipped.

4.2. Experiments on Forward-Look Sonar

In order to verify the performance of DP-ViT network, we compare DP-ViT with
other detection methods on the forward-look sonar image dataset, including some general
target detection methods such as Faster R-CNN [7], YOLOX [41], Sparse R-CNN [28],
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Next-ViT [18], and the sonar target detection model YOLOv3-DPFIN [23]. The test results
are shown in Figure 6. The confidence levels of each method are described in Table 1. The
training results of each detection method in the forward-look sonar dataset are as shown in
Table 2.
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Figure 6. Comparison of DP-ViT and other methods in forward-look sonar dataset (a) real sonar
image (b) true sonar image target (c) our method: DP-ViT (d) Faster R-CNN (Resnet50) (e) Faster R-
CNN (Resnet101) (f) Sparse R-CNN (resnet50) (g) Sparse RCNN (resnet101) (h) Next ViT (i) YOLOX-s
(j) YOLOv3 DPFIN.

Table 1. Figure 6 Schematic test results.

Fig Method Actual Sonar Targets True Sonar Targets Detected Confidence (AP)

(c) DP-ViT 3 3 0.90; 0.94; 0.82

(d) Faster R-CNN
(Resnet50) 3 3 0.85; 0.96; 0.38

(e) Faster R-CNN
(Resnet101) 3 3 0.97; 0.94; 0.61

(f) Sparse R-CNN
(Resnet50) 3 3 0.77; 0.86; 0.57

(g) Sparse R-CNN
(Resnet101) 3 3 0.80; 0.74; 0.84

(h) Next-ViT 3 3 0.88; 0.88; 0.94
(i) YOLOX-s 3 3 0.64; 0.80; 0.71
(j) YOLOv3 DPFIN 3 3 0.87; 0.74; 0.84

It can be seen from Figure 6 and Table 1 that DP ViT has the highest confidence level of
0.90, 0.94 and 0.82 in the forward look sonar image target detection task. Table 2 shows that
DP-ViT has a relatively small model size of 59.82 M (Param), a small parameter quantity
of 145.23 G (FLOPs), a higher detection accuracy of 89.2% (mAP) and a better real-time
performance of 43.9 (FPS).As the mAP and Confidence of YOLOX-s in sonar image target
detection task are poor, the comparison result of the loss curve is not included in YOLOX,
and the comparison chart of LOSS is shown in Figure 7.

4.3. Experiments on Side-Scan Sonar

In order to further verify the performance of the proposed DP-ViT in target detection
on other types of sonar images, we verify the DP-ViT on the side scan sonar dataset. The
test results are shown in Figure 8. The confidence of each method is described in Table 3.
The training results of each detection method in the forward look sonar dataset are shown
in Table 4.
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Table 2. Detection Build on Forward-Look Sonar, training and testing on the forward-look sonar
dataset and evaluating each algorithm on RTX3090 using CUDA11.3 and CUDNN8.2.1.

Method mAP APs Stop (M) FLOPs (G) FPS Precision Recall

DP-ViT 89.2 87.8 59.82 145.23 43.9 92.4 91.1
Faster R-CNN

(Resnet50) 82.4 81.3 60.15 201.95 37.1 86.5 83.5

Faster R-CNN
(Resnet101) 86.1 85.5 81.1 282.77 26.5 85.9 89.0

Sparse R-CNN
(Resnet50) 79.7 77.4 105.95 169.9 40.8 77.8 77.4

Sparse R-CNN
(Resnet101) 88.6 86.5 124.95 225.97 33.6 87.9 86.3

Next-ViT 81.2 83.1 61.28 159.05 41.5 83.7 84.4
YOLOX-s 72.2 71.3 25.28 91.9 68.6 73.9 72.5

YOLOv3 DPFIN 84.8 79.4 43.4 105.5 56.2 83.9 80.5
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Figure 8. Comparison of DP-ViT and other methods in side-scan sonar dataset (a) our method:DP-ViT
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Table 3. Figure 7 Schematic test results.

Method DP-ViT Faster R-CNN
(Resnet50)

Faster R-CNN
(Resnet101)

Sparse R-CNN
(Resnet50)

Confidence (AP)
human: 0.87
Aircraft: 0.84

Ship: 0.90

human: 0.83
Aircraft: 0.73

Ship: 0.82

human: 0.86
Aircraft: 0.80

Ship: 0.97

human: 0.84
Aircraft: 0.76

Ship: 0.85

Method Sparse R-CNN
(Resnet101) Next-ViT YOLOX-s YOLOv3 DPFIN

Confidence (AP)
human: 0.91
Aircraft: 0.81

Ship: 0.89

human: 0.73
Aircraft: 0.63

Ship: 0.79

human: 0.70
Aircraft: 0.59

Ship: 0.74

human: 0.72
Aircraft: 0.70

Ship: 0.82

Table 4. Detection Build on Side-Scan Sonar, training and testing on Side-Scan Sonar dataset and
evaluating each algorithm on RTX3090 using CUDA11.3 and CUDNN8.2.1.

Method mAP APs Stop (M) FLOPs (G) FPS Precision Recall

DP-ViT 85.6 85.4 59.82 145.23 43.4 85.4 85.7
Faster R-CNN

(Resnet50) 79.1 79.5 60.15 201.95 37.6 78.6 79.0

Faster R-CNN
(Resnet101) 83.3 83.5 81.1 282.77 27.1 82.3 83.2

Sparse R-CNN
(Resnet50) 80.4 81.1 105.95 169.9 42.1 79.7 79.6

Sparse R-CNN
(Resnet101) 84.2 85.5 124.95 225.97 34.6 82.3 83.4

Next-ViT 76.2 77.5 61.28 159.05 41.7 77.1 77.5
YOLOX-s 72.4 73.1 25.28 91.9 67.9 73.2 72.1

YOLOv3 DPFIN 79.4 78.7 43.4 105.5 56.5 78.3 79.2

In the side scan sonar dataset test, it can be seen from Figure 8 and Table 3 that DP-
ViT has the highest confidence level of 0.87, 0.84 and 0.90. Table 4 shows that DP ViT has
the highest detection accuracy of 85.6% (mAP).As the mAP and Confidence of YOLOX-s in
the target detection task of side scan sonar image are poor, the comparison result of the
loss curve is not included in YOLOX-S, and the comparison chart of LOSS is shown in
Figure 9 below.

4.4. Experiments with Different Noise

Because sonar will attenuate, reverberate and scatter when propagating in water, there
are usually a lot of different types of noises in sonar images. According to different noise
sources, they can be divided into three categories: (1) Because the environmental noise
caused by the movement of marine medium, the change of water body characteristics
and the sound emitted by marine organisms will affect the propagation of sound waves
in the water, thus affecting the accuracy of sonar images, this paper uses Gaussian noise
simulation. (2) Because there are a large number of suspended solids and scatterers in the
marine environment, which interfere with the real target echo, this paper adopts salt and
pepper noise simulation. (3) Reverberation noise is the most important interference signal of
sonar image, and even covers the real target when it is serious. According to Middleton [42],
based on the proposed seabed reverberation model, it can be considered that the phase of
reverberation obeys uniform distribution, and the amplitude characteristics conform to the
Rayleigh distribution. Rayleigh noise can be realized according to the following formula.

X = η +
√
−µ ln[1−U(0, 1)] (10)
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where η and µ represent noise intensity and spot size, respectively. In order to further
verify the anti-noise ability of the algorithm in this paper, Rayleigh noise, Gaussian noise,
and salt and pepper noise transform are respectively carried out on the image. The sonar
images with different noises are shown in Figure 10, where the first three columns are side
scan sonar images and the last three columns are forward look sonar images. Under the
condition of increasing noise, the network model trained by a training set without noise
is adopted to test the sonar image of DP-ViT with noise, and the test results are shown in
Table 5.
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Table 5. Test results of DP-ViT, YOLOv3 DPFIN, and Sparse R-CNN (Resnet101) in different noise
environments (FLS Dataset: Forward-Look Sonar Dataset, SSS Dataset: Side-Scan Sonar Dataset).

Method mAP APs Precision Recall

DP-ViT

FLS Dataset
Gaussian noise 87.1 86.9 88.2 87.9
Rayleigh noise 80.3 79.5 80.6 80.4

Salt and pepper noise 88.2 87.3 89.4 89.1

SSS Dataset
Gaussian noise 81.3 80.3 80.2 80.7
Rayleigh noise 71.5 70.8 70.7 71.3

Salt and pepper noise 84.1 85.0 84.7 84.9

YOLOv3
DPFIN

FLS Dataset
Gaussian noise 82.5 81.7 80.1 79.8
Rayleigh noise 78.3 79.1 76.3 76.0

Salt and pepper noise 81.6 82.5 79.4 80.1

SSS Dataset
Gaussian noise 74.2 73.5 74.6 73.9
Rayleigh noise 72.4 72.1 71.7 71.7

Salt and pepper noise 73.9 73.5 73.4 73.0

Sparse-
RCNN

(Resnet101)

FLS Dataset
Gaussian noise 87.7 86.8 85.3 86.9
Rayleigh noise 84.2 83.0 81.7 82.5

Salt and pepper noise 87.1 88.4 87.5 88.3

SSS Dataset
Gaussian noise 82.3 82.9 81.5 81.8
Rayleigh noise 75.3 75.6 73.7 73.9

Salt and pepper noise 81.5 80.7 79.5 80.2

From the data in Table 5, it can be found that noise interference has a greater impact
on the detection accuracy of side-scan sonar images and has less impact on the detection
accuracy of forward-look sonar images. From the experimental results, Sparse R-CNN
is less affected by noise interference. Our analysis suggests that Proposal Boxes and
Proposal Features play a significant role in anti-noise interference, but their complex
network structure cannot realize real-time target detection task on AUV. DP-ViT still has
high accuracy under strong noise interference condition, and has good regression accuracy
and robustness in a low-SNR environment.

4.5. Experiments with Fewer Sonar Samples Dataset

In order to verify the performance of DP-ViT in the few-sample sonar data set, a
small number of images were randomly selected as the training set in the forward-looking
sonar data set and the side-scan sonar data set to test the detection accuracy of the DP-
ViT network in the case of few samples. The constructed forward-looking sonar dataset
includes 160 images as training set and 40 images as test set. The side-scan sonar dataset
includes 80 images as training set and 20 images as test set. The test results are shown in
Figure 11 and Table 6 below.
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Table 6. Test results of DP-ViT on Sonar Images with Few Samples (FLS Dataset: Forward-Look
Sonar Dataset, SSS Dataset: Side-Scan Sonar Dataset).

Dataset mAP APs Precision Recall

FLS Dataset 70.9 71.3 71.7 73.8
SSS Dataset 68.5 67.8 69.1 69.8

From the experimental results, DP-ViT has a good performance in the case of small
sample training. Although the confidence has decreased, it can still complete the target
detection task.

4.6. Ablation Study

In order to verify the influence of the four transformation methods on the training
model, this paper adopts the control variable method, which changes the Dual Scale Patch
Embedding into Patch Embedding, removes the Convolution Local Feature in the Dual Path
Transformer Block, and removes the Generalized Focal Loss. MAP and APs are obtained
by verification in the forward look sonar dataset, and the experimental results are shown in
Table 7. In addition, it can be found that when Dual Scale Patch Embedding is removed
and replaced with ordinary Patch Embedding, it will have a greater impact on target
detection accuracy.

Table 7. Effectiveness of Various Designs.

Method DP-ViT

Dual Scale Patch Embedding?
√ √ √

Convolution Local Feature?
√ √ √

Generalized Focal Loss?
√ √ √

mAP 89.2 82.4 87.9 85.3
APs 87.8 79.1 85.6 84.0

4.7. Qualitative Assessment

The DP-ViT method proposed in this paper has good performance in target detection
tasks of both forward-look sonar and side-scan sonar, and its performance in mAP, APs,
and other indicators is superior to other mainstream target detection networks. On the
convergence speed of the training model, because the network based on Transformer has
some disadvantages, such as difficult training, slow convergence and large dataset, etc.,
by using Dual Scale in DPTB to expand the receptive field, DSPE combines CNN with
Transformer, which solves the above problems well. In addition, DP-ViT also maintains
good detection accuracy, regression accuracy and robustness both in the case of adding
noise and in the case of small sample datasets.

5. Conclusions

In this research, we propose a new DP-ViT network based on VIT, which can complete
the target detection task for different types of sonar images. Referring to the Next-ViT
structure, the Dual Scale Patch Embedding is innovatively introduced, which can effectively
extract the local and global information from sonar images, enlarge the receptive field,
and obtain richer multi-scale information. Dual Path Transformer Block combines the
information of CNN and Transformer in a complementary way and introduces Conv-
Attention to reduce the training parameters of the model, which improves the generalization
of the model and reduces the required computing resources. In addition, Generalized Focal
Loss is used to solve the problem of imbalance between positive and negative samples.
The experimental results on the forward-look sonar dataset and the side-scan sonar image
dataset show that DP-ViT has higher detection accuracy, faster detection speed, and anti-
noise interference performance of the model, and solves the problems of many parameters,
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slow convergence, and requires a large number of datasets caused by the Transformer
structure. In the future, we will focus on reducing the parameters required for model
training and deploy them on underwater vehicles to realize real-time sonar detection and
improve the environmental awareness of AUV and USV.
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5. Grządziel, A. Application of Remote Sensing Techniques to Identification of Underwater Airplane Wreck in Shallow Water
Environment: Case Study of the Baltic Sea, Poland. Remote Sens. 2022, 14, 5195. [CrossRef]

6. He, K.; Zhang, X.; Ren, S.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [CrossRef]

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015.

8. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society:
Washington, DC, USA, 2017.

9. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

10. Ma, L.; Zhao, D.; Li, S.; Yu, D. End-to-End Denoising of Dark Burst Images using Recurrent Fully Convolutional Networks. In
Proceedings of the 15th International Conference on Computer Vision Theory and Applications, Valetta, Malta, 27–29 February 2020.

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 21–37.

12. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

13. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

14. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding with Unsupervised Learning; Open AI:
San Francisco, CA, USA, 2018.

15. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T. An Image is Worth 16 × 16 Words:
Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, Virtual
Event, Austria, 3–7 May 2021.

http://doi.org/10.1016/j.apor.2022.103128
http://doi.org/10.1007/s11804-022-00276-9
http://doi.org/10.1109/JOE.2021.3103269
http://doi.org/10.3390/rs14205195
http://doi.org/10.1109/TPAMI.2015.2389824


Remote Sens. 2022, 14, 5807 17 of 17

16. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 213–229.

17. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12009–12019.

18. Li, J.; Xia, X.; Li, W.; Li, H.; Wang, X.; Xiao, X. Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic
Industrial Scenarios. arXiv 2022, arXiv:2207.05501.

19. Cho, H.; Gu, J.; Yu, S.C. Robust sonar-based underwater object recognition against angle-of-view variation. IEEE Sens. J. 2015, 16,
1013–1025. [CrossRef]

20. Abu, A.; Diamant, R. A statistically-based method for the detection of underwater objects in sonar imagery. IEEE Sens. J. 2019, 19,
6858–6871. [CrossRef]

21. Neupane, D.; Seok, J. A review on deep learning-based approaches for automatic sonar target recognition. Electronics 2020, 9, 1972.
[CrossRef]

22. Kim, J.; Yu, S.C. Convolutional neural network-based real-time ROV detection using forward-looking sonar image. In Proceedings
of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016; pp. 396–400.

23. Kong, W.; Hong, J.; Jia, M.; Yao, J.; Cong, W.; Hu, H.; Zhang, H. YOLOv3-DPFIN: A dual-path feature fusion neural network for
robust real-time sonar target detection. IEEE Sens. J. 2019, 20, 3745–3756. [CrossRef]

24. Fan, Z.; Xia, W.; Liu, X.; Li, H. Detection and segmentation of underwater objects from forward-looking sonar based on a modified
Mask RCNN. Signal Image Video Process. 2021, 15, 1135–1143. [CrossRef]

25. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv 2017, arXiv:1704.04861.

26. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

27. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022; pp. 11976–11986.

28. Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W. Sparse r-cnn: End-to-end object detection with learnable proposals. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 14454–14463.

29. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 10347–10357.

30. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

31. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring plain vision transformer backbones for object detection. arXiv 2022, arXiv:2203.16527.
32. Xu, W.; Xu, Y.; Chang, T.; Tu, Z. Co-scale conv-attentional image transformers. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 9981–9990.
33. Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J. Generalized focal loss: Learning qualified and distributed bounding boxes for

dense object detection. Adv. Neural Inf. Process. Syst. 2020, 33, 21002–21012.
34. He, J.; Chen, J.N.; Liu, S.; Kortylewski, A.; Yang, C.; Bai, Y.; Wang, C. Transfg: A transformer architecture for fine-grained

recognition. Proc. AAAI Conf. Artif. Intell. 2022, 36, 852–860. [CrossRef]
35. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
36. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
37. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces. In Proceedings of the 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
38. Wang, X.; Wang, G.; Zhang, W. Pseudo-color processing of forward looking sonar image: An adaptive hot metal coding algorithm.

In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 394–399.
39. Zhang, J.; Sohel, F.; Bian, H.; Bennamoun, M.; An, S. Forward-looking sonar image registration using polar transform. In

Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6.
40. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image

augmentations. Information 2020, 11, 125. [CrossRef]
41. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
42. Gensane, M. A statistical study of acoustic signals backscattered from the sea bottom. IEEE J. Ocean. Eng. 1989, 14, 84–93.

[CrossRef]

http://doi.org/10.1109/JSEN.2015.2496945
http://doi.org/10.1109/JSEN.2019.2912325
http://doi.org/10.3390/electronics9111972
http://doi.org/10.1109/JSEN.2019.2960796
http://doi.org/10.1007/s11760-020-01841-x
http://doi.org/10.1609/aaai.v36i1.19967
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.3390/info11020125
http://doi.org/10.1109/48.16818

	Introduction 
	Related Works 
	Method 
	Overview 
	Dual-Scale Patching Embedding (DSPE) 
	Dual Path Transformer Block (DPTB) 
	Transformer Encoder 
	Feature Interaction 

	Loss Function 

	Experiment 
	Model Training 
	Experiments on Forward-Look Sonar 
	Experiments on Side-Scan Sonar 
	Experiments with Different Noise 
	Experiments with Fewer Sonar Samples Dataset 
	Ablation Study 
	Qualitative Assessment 

	Conclusions 
	References

