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Abstract: Fractional vegetation cover (FVC) products provide essential data support for ecological
environmental monitoring and simulation studies. However, the lack of validation efforts of FVC
products limits their applications. Based on Sentinel-2 data and intensive multi-scale measured FVC
data, the accuracies of two FVC products (GEOV3 and MuSyQ) in alpine grassland ecosystems were
validated through direct validation and multi-scale validation. Based on the heterogeneity of the
underlying surface (HUS) of the monitoring plots, the impact of the HUS of the monitoring plots
on the product validation was analyzed. The results showed that: (1) the measured data directly
validated that the GEOV3 FVC product performed better than the MuSyQ FVC product; (2) the multi-
scale validation method based on high-resolution reference FVC map of Sentienl-2 satellite images
validated the accuracy of these two FVC products, which was higher than the accuracy directly
validated by FVC measured data, leading to overestimation of the validation results; and (3) the HUS
of the monitored plots has a significant impact on the FVC product validation. By quantifying the
HUS of the monitored plots and removing the heterogeneous monitoring plots, the uncertainty of the
validation results can be reduced. It is necessary to consider the impact of validation methods and
the HUS on the validation results in future product validation.

Keywords: fractional vegetation cover (FVC); GEOV3 and MuSyQ; direct validation; multi-scale
validation; alpine grassland ecosystem; heterogeneity of the underlying surface (HUS)

1. Introduction

The fractional vegetation cover (FVC) refers to the percentage of the vertical projection
area of the vegetation (including branches, stems, and leaves) on the ground in the total
statistical area [1,2]. It is one of the crucial parameters used to describe the biophysical
quantity of vegetation and characterizes the growth of terrestrial vegetation. It has been
widely used in scientific research and environmental monitoring [3,4]. Therefore, the
improvement in ecological environmental monitoring and related simulation work depends
greatly on the accurate acquisition of FVC data [5].

Remote sensing technology has become the main technical means of obtaining regional
surface FVC information due to its comprehensive coverage and strong continuous obser-
vation ability [6,7]. A host of FVC products with various spatial and temporal resolutions
have currently been produced by several research teams using long time-series remote
sensing image datasets, such as the CNES/POLDER [8], LSA/SAF [9], ESA/MERIS [10],
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CYCLOPES [11], MuSyQ [12], GEOV1 [1,13], GEOV2 [14], GEOV3 [15], and GLASS [6,16].
Numerous disciplines have made extensive use of these FVC data products. However,
due to the huge differences between the inversion algorithms’ performances, input data,
inversion models, and inversion processes of the different FVC products [17], there are
certain differences and uncertainties in these FVC products [5]. Therefore, authenticity
validation is required to improve the utilization of these FVC products [18].

Currently, the commonly used validation methods for remote sensing products in-
clude the direct validation method based on in situ sites and the multi-scale validation
method based on high-resolution data [19,20]. The in situ site-based direct validation
method involves comparing the FVC product’s pixel values with field reference FVC mea-
surements [17,21]. This method is widely used to product global FVC products and is a
crucial step before distribution. Remote sensing product manufacturers provide product
quality to optimize the inversion method and model from a global perspective and to
deliver fundamental product quality information (i.e. the root mean square error (RMSE)
of the products) to global users [12,13,16]. However, producers might merely view prod-
uct validation as a pre-release step, and their products’ quality validation sites are often
considered and distributed around the world. These places typically are significant ge-
ographical areas with only one type of biological community, such as areas with sizable
tracts of crops, grass, shrub, various tree plantation types, etc. In general, due to the lack
of intensive field measurements at the regional scale, the developer teams do not conduct
in-depth assessments of the quality of remote sensing products in a specific ecosystem [17].
For instance, Ding et al. validated the GEOV1 FVC product using monitoring data from
multiple Australian ground stations and found that the accuracy of the GEOV1 in this
region was lower than expected [22].

The multi-scale validation method based on high-resolution data first establishes the
relationship between the ground elementary sampling units (ESU) and high-resolution
satellite image pixels using empirical or semi-empirical models, physical models, or ma-
chine learning models [23]. Then, the inversion of the required parameters is completed,
and upscaling is conducted (usually via pixel aggregation) to maintain the spatial resolution
consistent with the spatial resolution of the coarse resolution FVC product [24]. Finally, the
pixel values of the two images are compared to evaluate the accuracy of the remote sensing
product. This validation method is often applied in product validation activities in specific
regions. For example, Mu et al. and Jia et al. improved the spatial scale of the ground ESU
with the help of high-resolution remote sensing images in the Heihe River Basin, China,
and they validated the accuracy of the GEOV1 and GLASS FVC products, respectively, in
the Heihe farmland area. Their results showed that the GEOV1 can produce a systematic
overestimation of the FVC of up to 0.2 in farmland, while the RMSE of the GLASS FVC in
farmland is only 0.087, indicating a relatively high accuracy [25,26].

The heterogeneity of the underlying surface (HUS) of the validation sites has frequently
been disregarded in remote sensing product validation, which introduces uncertainty to
the validation [27–29]. For instance, in regions with significant spatial heterogeneity,
the ESUs that do not match the scale of satellite remote sensing pixels often have poor
spatial representation capabilities. The direct validation results of the remote sensing
products would undoubtedly be questionable if the ESUs are used directly to validate
coarse resolution products [30]. Additionally, the accuracy of the high-resolution reference
FVC is primarily impacted by the HUS in the multi-scale validation method based on
high-resolution data, and including sites with significant underlying surface heterogeneity
(USH) in the remote sensing inversion process will decrease the accuracy of the inversion
results. [31]. Furthermore, upscaling involves a complex spatial scale transformation
process [32], and the inversion errors for heterogeneous sites will be further transmitted,
resulting in unreliable validation results. Therefore, both the direct validation method
based on in situ sites and the multi-scale validation method based on high-resolution data
should consider the HUS of the validation sites.
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The alpine grassland ecosystem is distinct from other ecosystems, such as farmland
and forest ecosystems [33,34]. It is mainly located in high altitude or high latitude areas,
and its environment is jointly affected by the topography, complex hydrological responses,
and variable climate conditions, so it is a typical fragile ecosystem [35,36]. Due to the
short growing season, low temperatures, sparse population, and inconvenient regional
transportation in alpine grassland ecosystems, the collection of field data is greatly limited,
resulting in a lack of work on the validation of FVC products of the alpine grassland
ecosystem. Based on the above problems, in this study, first a large number of multi-
scale FVC field measurements were obtained, and, then, the accuracies of the GEOV3
and MuSyQ global FVC data products were evaluated using the direct validation method
and the multi-scale validation method based on high-resolution data. The uncertainty
of the validation results was also analyzed. The main objectives of this study were as
follows: (1) to evaluate the accuracies of the GEOV3 and MuSyQ FVC products in alpine
grassland ecosystems; (2) to evaluate the impact of the multi-scale validation method based
on high-resolution data on the product accuracy evaluation; and (3) to explore the influence
of the HUS of the measured sites on the accuracy validation of the FVC products.

2. Materials and Methods
2.1. Study Area

The Three-River Source Region (TRSR) (31◦39′–36◦16′N, 89◦24′–102◦23′E) is located in
the hinterland of the Qinghai–Tibet Plateau in western China (Figure 1). It is also known as
the Water Tower of China. The TRSR is the source area of the Yangtze, Yellow, and Lantsang
rivers [37]. The average altitude of the study area is 4000 m, and it has a complex hydrological
environment and rugged terrain characteristics. Alpine grassland (including alpine steppe
and alpine meadow) is the main vegetation type, covering most of the study area.
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2.2. Data Source and Pre-Processing
2.2.1. Field Data Based on UAV Imagery

We delineated 422 remote sensing monitoring plots in the TRSR from July to August
2019, and each plot was 250 m × 250 m in size. In each remote sensing monitoring plot,
we evenly delineated 16 small 30 m × 30 m plots, which were used as the ESU in this



Remote Sens. 2022, 14, 5800 4 of 21

study. At each remote sensing monitoring site, we acquired high-resolution aerial images
through aerial photography using unmanned aerial vehicles (UAVs). The UAV used in
this study was the DJI Phantom 4 Professional Edition, which uses the global positioning
system/global navigation satellite system (GPS/GLONASS) dual-satellite positioning
module and has a very high positioning accuracy (±1.5 m in the horizontal direction and
±0.5 m in the vertical direction) [38], so it can fly precisely and hover smoothly [39]. It
also carries a three-axis gimbal and a 20-megapixel light camera with a 1-inch CMOS
sensor, which can capture images of red, green, and blue band information [38]. When the
UAV is flying, the three-axis gimbal keeps the camera lens pointing straight down at all
times. During the field investigation, we set the route using a fragmentation monitoring
and analysis with aerial photography (FragMAP) system, which controlled the UAV for
autonomous flight and shooting [40]. The relative flight altitude of the UAV was set to 20 m.
The spatial resolution of the aerial images was approximately 1 cm, at which vegetation and
non-vegetation pixels can be clearly distinguished. This was conducive to the acquisition of
real FVC data. Each remote sensing monitoring plot contained a route covering the entire
plot and 16 waypoints (each waypoint corresponded to a small plot). The ground area
covered by the aerial images obtained along each flight route (i.e., the monitoring plot in
this study) matched the pixel scale of the Moderate Resolution Imaging Spectroradiometer
(MODIS) images. The ground area covered by each aerial image (i.e., the small plot in this
study, which was also the ESU) matched the spatial scale of the Landsat image pixels. The
specific field sampling plan is shown in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 

2.2. Data Source and Pre-Processing 

2.2.1. Field Data Based on UAV Imagery 

We delineated 422 remote sensing monitoring plots in the TRSR from July to August 

2019, and each plot was 250 m × 250 m in size. In each remote sensing monitoring plot, we 

evenly delineated 16 small 30 m × 30 m plots, which were used as the ESU in this study. 

At each remote sensing monitoring site, we acquired high-resolution aerial images 

through aerial photography using unmanned aerial vehicles (UAVs). The UAV used in 

this study was the DJI Phantom 4 Professional Edition, which uses the global positioning 

system/global navigation satellite system (GPS/GLONASS) dual-satellite positioning 

module and has a very high positioning accuracy (±1.5 m in the horizontal direction and 

±0.5 m in the vertical direction) [38], so it can fly precisely and hover smoothly [39]. It also 

carries a three-axis gimbal and a 20-megapixel light camera with a 1-inch CMOS sensor, 

which can capture images of red, green, and blue band information [38]. When the UAV 

is flying, the three-axis gimbal keeps the camera lens pointing straight down at all times. 

During the field investigation, we set the route using a fragmentation monitoring and 

analysis with aerial photography (FragMAP) system, which controlled the UAV for au-

tonomous flight and shooting [40]. The relative flight altitude of the UAV was set to 20 m. 

The spatial resolution of the aerial images was approximately 1 cm, at which vegetation 

and non-vegetation pixels can be clearly distinguished. This was conducive to the acqui-

sition of real FVC data. Each remote sensing monitoring plot contained a route covering 

the entire plot and 16 waypoints (each waypoint corresponded to a small plot). The 

ground area covered by the aerial images obtained along each flight route (i.e., the moni-

toring plot in this study) matched the pixel scale of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) images. The ground area covered by each aerial image (i.e., 

the small plot in this study, which was also the ESU) matched the spatial scale of the 

Landsat image pixels. The specific field sampling plan is shown in Figure 2. 

 

Figure 2. UAV route planning for each monitoring plot. 

The results of previous studies have shown that the image excess green index (EGI) 

threshold segmentation method has a high accuracy in extracting FVC information 

[41,42]. Therefore, the EGI threshold segmentation method was adopted to process the 

aerial field images and then to calculate the measured FVC data for the corresponding 

plots. The specific calculation process of the image EGI threshold segmentation method is 

as follows: (1) Calculate the EGI value of each pixel in the image. (2) The initial threshold 

value of EGI is set. If the EGI value of an image pixel is greater than the threshold value, 

it is classified as a vegetation pixel. Otherwise, it is classified as a non-vegetation pixel. (3) 

The classification result is superimposed with the original image, and the accuracy of the 

segmentation result is judged by visual interpretation. If the vegetation information of the 

Figure 2. UAV route planning for each monitoring plot.

The results of previous studies have shown that the image excess green index (EGI)
threshold segmentation method has a high accuracy in extracting FVC information [41,42].
Therefore, the EGI threshold segmentation method was adopted to process the aerial field
images and then to calculate the measured FVC data for the corresponding plots. The
specific calculation process of the image EGI threshold segmentation method is as follows:
(1) Calculate the EGI value of each pixel in the image. (2) The initial threshold value of EGI
is set. If the EGI value of an image pixel is greater than the threshold value, it is classified as
a vegetation pixel. Otherwise, it is classified as a non-vegetation pixel. (3) The classification
result is superimposed with the original image, and the accuracy of the segmentation result
is judged by visual interpretation. If the vegetation information of the two images cannot
be matched, the initial threshold of EGI needs to be adjusted repeatedly until they match.
(4) Calculate the ratio of the number of vegetation pixels to the total number of pixels, and
the obtained result is used as the measured FVC value of the image. The image processing
results of this study are presented in Figure 3, which shows the high accuracy from the
perspective of visual interpretation. To ensure the accuracy of the image processing, each
image was independently processed by two experienced researchers. If the FVC difference
obtained by the two people was greater than 0.05, a third experienced researcher repeatedly
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processed the image until the accuracy reached the standard, to minimize the influence of
human subjective factors on FVC information extraction of images [31,39,42].
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2.2.2. Remote Sensing Data
Sentinel-2 Data

Sentinel-2 data downloaded for free from the European Space Agency′s website
(https://scihub.copernicus.eu/ (accessed on 7 June 2022)) can be accessed in the Google
Earth Engine (GEE) platform, also for free [43]. A Sentinel-2 image preprocessor was
developed on the GEE platform using the JAVA Script application programming interface
for Sentinel-2 image preprocessing. GEE was used to screen the Sentinel-2 images with
cloud contents of less than 20% in the TRSR. Then, the cloud and cloud shadows in the
Sentinel-2 images were removed based on the pixel quality to create a cloud-free Sentinel-2
surface reflectance dataset from July to August 2019. Finally, the median function was
utilized to generate a single image from the image collection.

MODIS Data

The MODIS data used were the MOD13Q1 vegetation product data, which provides
normalized difference vegetation index (NDVI) data with a spatial resolution of 250 m and a
temporal resolution of 16 days. The MOD13Q1 data can be downloaded for free from the Land
Processes Distributed Active Archive Center website (https://lpdaac.usgs.gov/ (accessed on
17 June 2022)), and are freely available on the GEE platform. All of the MOD13Q1 images of
the TRSR from July to August 2019 were acquired and processed using the GEE platform.
Finally, a MODIS NDVI maximum value composite (MVC) image was created via the MVC
method, which was used to evaluate the HUS of the monitoring plots.

https://scihub.copernicus.eu/
https://lpdaac.usgs.gov/
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2.2.3. FVC Product Data
MuSyQ FVC

The MuSyQ FVC product data for July–August 2019 were obtained from the National
Earth System Science Data Center (http://www.geodata.cn/ (accessed on 1 June 2022)). The
MuSyQ FVC data were calculated based on the MuSyQ leaf area index (LAI) product and
the MODIS clumping index (CI) product data, and using gap probability theory [12]. The
temporal and spatial resolution of the MuSyQ FVC data were 4 d and 500 m, respectively.
First, we masked the pixels of non-vegetated areas, such as water and cities, according to
the quality control layer of the MuSyQ FVC product, and merely retained the pixels of high
quality for subsequent comparison between FVC products. Then, a single MuSyQ image
was obtained by the MVC method.

GEOV3 FVC

The GEOV3 FVC product data for July–August 2019 were obtained from the Coper-
nicus Global Land Service Center (https://land.copernicus.eu/global/products/fcover
(accessed on 22 April 2021)). The spatial and temporal resolutions of GEOV3 FVC products
were 300 m and 10 d, respectively, with a time range from 2014 to the present. A neural net-
work model generated GEOV3 FVC. The initial data from 2014 to 2019 were the reflectance
data of the PROBA-VEGRTATION sensor as model input data (since 2020, replaced with
Sentinel-3 observations). CYCLOPE FVC products corrected by scaling coefficients were
used as neural network model training samples [44]. A single GEOV3 image was obtained
by the MVC method, and its spatial resolution was resampled to 500 m via the bilinear
interpolation method.

2.3. Methods

The details of the research methods and processes are presented in the flowchart in
Figure 4. The direct validation of these two FVC products involved three steps. First, the
accuracy of the two products was directly validated according to the measured FVC values
of the monitored plots. Then, the HUS of each monitoring plot was quantified using the
MOD13Q1 NDVI data, the optimal threshold of the monitoring plot was adjusted and
set (0.08 in this study), and the monitoring plots exceeding this threshold were removed.
Finally, the accuracy of the two FVC products were validated again to evaluate the effect of
the HUS on the accuracy of the direct validation.

The multi-scale validation method based on high-resolution data comprised three
steps. First, Sentinel-2 remote sensing data were introduced as high-resolution remote
sensing data, the band information was extracted and combined with the ESU FVC mea-
sured data, and the random forest (RF) regression algorithm was applied to invert the
high-resolution reference FVC. Second, in order to ensure the reliability of the inversion
results, the Sentinel-2 NDVI data were used to quantify the HUS of each ESU in order to
determine and set the optimal threshold (0.10 in this study). Then, the RF regression model
was trained again using the ESU data for which the HUS did not exceed the threshold. The
accuracies of the FVC inversion for the two models were compared, and the high spatial
resolution reference FVC was inverted based on the optimal model. The coarse-resolution
reference FVC was obtained using the bilinear interpolation method. Finally, the pixel
values of the locations of the monitored plots were extracted as the FVC reference truth
values to validate the accuracy of the GEOV3 and MuSyQ FVC products. Based on the
validation results of the HUS of the monitored plots in the direct validation method, the
monitored plots exceeding the threshold were also removed to validate the accuracy of
the GEOV3 and MuSyQ FVC products again. The impact of the HUS on the accuracy of
the multi-scale validation method based on high-resolution data and the impact of the
multi-scale validation method based on high-resolution data on the accuracy of the FVC
products was evaluated according to the direct validation results. Based on the results of
this study, we provide feasible suggestions for reducing the uncertainty of FVC products
and FVC product validation results.

http://www.geodata.cn/
https://land.copernicus.eu/global/products/fcover
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Figure 4. Work flow of this study. The blue box includes the information of remote sensing data,
preprocessing methods, and further processing results. The orange box contains the FVC measured
data and preprocessing methods. The yellow box is the USH test method. The purple box shows the
FVC product data to be validated and the FVC product preprocessing method. The green box contains
various datasets via diverse validation methods to validate the accuracy of the two FVC products.

2.3.1. General Direct Validation Method

The direct validation method uses the measured values to compare the product pixel
values, and the absolute accuracy of the product can be obtained. The core of direct
validation is the acquisition of ground FVC measured data. However, due to a variety
of objective factors, the coverage of field stations is often limited, resulting in spatial
scale mismatch between the field measurement range and the satellite remote sensing
image pixels, which affects the accuracy of the direct validation. In this study, UAV
aerial photography was used to obtain the FVC data for the field monitoring plots, which
expanded the spatial scope of the field monitoring plots and reduced the spatial scale gap
with the GEOV3 and MuSyQ FVC product pixels. Therefore, the accuracy of the product
validation results was more reliable.

2.3.2. Multi-Scale Validation Method

The multi-scale validation methods based on high-resolution data usually use the field
measurement data combined with the high-resolution remote sensing image to obtain the
high-resolution reference image through inversion, and then upscale to match the scale of
the coarse resolution product, so as to complete the validation of the product. In this study,
sentinel-2 images rather than Landsat-8 images were utilized as the high-resolution remote
sensing image information to assist in the ground ESU scale upgrade. The main reason
for this choice is that, although the spatial resolution of the Landsat-8 image matched
the spatial coverage of the ESU, the central position of the ESU may not have coincided
with the central position of the corresponding Landsat-8 image pixel, which would lead
to errors in the spatial scale matching. However, the spatial resolution of the Sentinel-2
images was 10 m, and each pixel represented about one-ninth of the spatial range of the
ESU. Therefore, the ESU covered a complete pixel in the Sentinel-2 image, which eliminated
the mismatch between the ground sampling range and the satellite pixel to the greatest
extent possible. Moreover, for the purpose of eliminating the influence of the HUS on
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the matching results, we used the HUS test method (see Section 2.3.3) to eliminate the
monitoring plots with large heterogeneity before inversion was conducted to generate the
high-resolution FVC reference images in order to ensure the reliability of the inversion
results. Finally, the spatial resolution of the high-resolution FVC reference image generated
via inversion was resampled to 500 m using the bilinear interpolation method. The pixel
values of the upscaled high-resolution reference FVC image were used as the FVC reference
truth values for the monitoring plots, which were compared with the pixel values of the
GEOV3 and MuSyQ products. Thereby, the evaluation results of the product validation
using the multi-scale validation method based on high-resolution data were obtained.

2.3.3. Method of Evaluating the HUS of the Monitoring Plots and Surrounding Area

Previous studies suggest that NDVI can characterize vegetation density and is an
excellent indication of FVC [39,45]. Thus, we selected the NDVI as the index of the HUS
of the monitoring plots, summing the square of the difference between the value of the
center pixel and the value of the 8 pixels around the center pixel and then dividing the
resulting value by the number of surrounding pixels. Finally, taking the square root, the
obtained value, named H (Equation (2)), was used to quantitatively evaluate the HUS of
the monitoring plot (Figure 5). The smaller the value, the smaller the difference between
the central pixel and the surrounding pixels, indicating that the surrounding area of the
remote sensing monitoring plot was relatively homogeneous, and the spatial HUS was
relatively small. The calculation formulas of NDVI and H are as follows:

NDVI =
NIR− RED
NIR + RED

(1)

H =

√√√√( 8

∑
i=1

(NDVIi − NDVI0)
2

)
/8 (2)

where NIR and RED are the reflectance of near infrared band and red band, respectively;
H is the calculated HUS, NDVIi is the NDVI value of the eight pixels around the central
pixel, and NDVI0 is the NDVI value of the central pixel.
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Figure 5. Evaluation of the HUS of the pixels. The center pixel is labeled 0, and the pixels around the
center pixel are labeled 1–8.

2.3.4. High-Resolution Reference FVC Data Inversion Method

Previous studies have shown that the RF regression algorithm has the highest accuracy
for FVC inversion [39]. Therefore, the RF regression algorithm was used to generate high-
resolution reference FVC images. Compared with other machine learning models, the
RF regression model can efficiently and quickly process large datasets and has a high
robustness to noise [46]. The basic idea of the RF is an integrated learning method based
on bagging. Multiple decision trees are integrated into a forest, and the average of the
prediction results obtained by a single tree in the forest is taken as the final prediction
result. The SmileRandomForest classifier provided by the GEE platform was used, where
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the numberOfTrees was set to 500, the minLeafPopulation was set as one-third of the
feature number of the training samples (1 in this study), and the target data were the
measured FVC values of the ESUs. The driving data were set as the reflectance information
of the pixel bands (blue band, red band, and near infrared band) of the Sentinel-2 images.
Moreover, 70% of the samples were used to train the random forest regression model, and
the remaining 30% were used to validate the accuracy of the FVC inversion.

2.3.5. Accuracy Assessment

Four statistical indicators were selected for accuracy validation, namely, coefficient
of determination (R2), RMSE, relative RMSE (RRMSE), and relative bias (RBias), which
were respectively used to evaluate the goodness of fit, uncertainty, relative uncertainty, and
relative bias. These indicators were calculated as follows:

R2 = 1−

N
∑

i=1

(
Fi − f

i

)2

N
∑

i=1

(
Fi − f

)2
(3)

RMSE =

√√√√ 1
N

N

∑
i=1

(Fi − fi)
2 (4)

RRMSE =
RMSE

F
× 100% (5)

RBias =
f − F

F
× 100% (6)

where N is the number of samples, Fi represents the measured FVC values or the inverted
FVC reference truth values of the monitoring plots, fi represents the values of FVC product
pixels, f represents the average values of FVC product pixels, and F is the average of the
measured values or the inverted FVC reference truth values of the monitoring plots.

3. Results
3.1. Comparison of GEOV3 and MuSyQ FVC

The pixel values of GEOV3 and MuSyQ FVC products are significantly different
in TRSR (Table 1). Compared with the MuSyQ FVC product, the GEOV3 FVC product
had more pixels with FVC values of greater than 0.8 and less than 0.1. Nonetheless, the
MuSyQ FVC product had more pixels with FVC values between 0.1 and 0.7. The spatial
distribution pattern of the differences between the GEOV3 and MuSyQ FVC products
(Figure 6) revealed that the FVC values of the GEOV3 FVC product in the southern and
eastern parts of the TRSR were significantly larger than those of the MuSyQ FVC product.
The negative differences and positive differences between the two FVC products in the
western part of TRSR were widely distributed, and the FVC values of the GEOV3 FVC
product were less than or slightly more extensive than those of the MuSyQ FVC product in
this region.

Table 1. Pixel frequencies of different FVC value intervals in FVC products (%).

FVC Products
FVC Value Intervals

0.0~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0

GEOV3 9.83 11.64 10.35 9.7 8.58 8.41 8.92 8.87 9.11 14.59
MuSyQ 5.82 15.91 15.76 13.39 14.11 10.97 9.97 8.32 4.67 1.07
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3.2. Direct Validation of GEOV3 and MuSyQ FVC Products Based on the Measured Values of
Remote Sensing Monitoring Plots

The direct validation results based on the measured values of the remote sensing
monitoring plots showed that the GEOV3 FVC and MuSyQ FVC products had good
accuracies (Figure 7a,b). However, the accuracy of the GEOV3 FVC product (R2 = 0.819,
RMSE (RRMSE) = 0.127 (18.1%)) was better than that of the MuSyQ FVC product (R2 = 0.702,
RMSE (RRMSE) = 0.128 (18.3%)). For the GEOV3 FVC product, the scattered points
composed of the measured values of the remote sensing monitoring plots and the pixel
values of the corresponding product were evenly distributed around the 1:1 contour line,
but they were relatively scattered, and some of the points deviated significantly from the 1:1
contour line. For the MuSyQ FVC product, the scatter of the points composed of measured
values and pixel values of the corresponding product deviated greatly from the 1:1 contour
line. When FVC > 0.3, most of the scattered points were located below the 1:1 contour line,
exhibiting an evident underestimation phenomenon.

After removing the remote sensing monitoring plots with a large HUS, the validation
uncertainty of the GEOV3 FVC and MuSyQ FVC products was significantly reduced
(Figure 7c,d). That of the GEOV3 FVC product (R2 = 0.904, RMSE (RRMSE) = 0.088 (11.4%))
was still better than that of the MuSyQ FVC product (R2 = 0.833, RMSE (RRMSE) = 0.103
(13.3%)). For the GEOV3 FVC product, the scattered points composed of measured values
of remote sensing monitoring plots and pixel values for the corresponding product were
distributed around the 1:1 contour line, and the distance from the 1:1 contour line was
very small. For the MuSyQ FVC product, the scatter of the measured values of the remote
sensing monitoring plots and the pixel values of the corresponding product greatly deviated
from the 1:1 contour line; and when FVC > 0.3, most of the scattered points were located
below the 1:1 contour line, i.e., they still exhibited obvious underestimation.

3.3. Validation of GEOV3 and MuSyQ FVC Products with Using the Multi-Scale Validation
3.3.1. Inversion of High-Resolution FVC

The FVC inversion results of the RF regression model (Table 2) showed that the
accuracy (R2 = 0.92, RMSE = 0.079) of the RF regression model trained using the high-
quality dataset with a small HUS was better than that of the RF regression model trained
using the original dataset (test: R2 = 0.89, RMSE = 0.093). In addition, the inverse FVC values
of the RF regression model trained using the high-quality dataset was highly consistent
with the measured FVC values (Figure 8). The scattered points composed of the FVC values
retrieved using the RF model and the measured FVC values were concentrated near the 1:1
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contour line, and the percentage of the scattered points that were plotted slightly farther
away from the 1:1 contour line to the total number of test samples was small.
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Figure 7. Comparison of measured FVC value in monitored plots with the FVC product pixel value
(GEOV3 (a), MuSyQ (b)); and comparison of measured FVC value in monitored plots with small
HUS with the FVC product pixel value (GEOV3 (c), MuSyQ (d)).

Table 2. Inversion of FVC accuracies using different datasets.

Datasets Number of
Training Samples R2 RMSE Number of

Testing Samples R2 RMSE

Original 4165 0.90 0.088 1785 0.89 0.093
H < 0.10 2923 0.94 0.068 1253 0.92 0.081
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3.3.2. GEOV3 and MuSyQ FVC Validation Using a High-Resolution FVC Map

The results of the product validation using the upscaled FVC reference true values of the
monitoring plots showed that the GEOV3 and MuSyQ FVC products had higher accuracies,
and the accuracy of the GEOV3 FVC product (R2 = 0.910, RMSE (RRMSE) = 0.089 (12.7%))
was better than that of the MuSyQ FVC product (R2 = 0.794, RMSE (RRMSE) = 0.107
(15.3%)) (Figure 9a,b). For the GEOV3 FVC product, the scattered points of the upscaled
FVC reference truth values of the monitoring plots and the pixel values of the GEOV3 FVC
product were evenly distributed around the 1:1 contour line, and the number of scattered
points that were plotted slightly farther from the 1:1 contour line was very small. For the
MuSyQ FVC product, the scattered points composed of the upscaled FVC reference truth
values of the monitoring plots and the pixel values of the MuSyQ FVC product were also
relatively concentrated. When FVC < 0.3, the scattered points were concentrated around
the 1:1 contour line; however, when FVC ≥ 0.3, most of the scattered points were located
below the 1:1 contour line, exhibiting obvious underestimation.

After removing the remote sensing monitoring plots with a large HUS, the validation
uncertainty of the GEOV3 FVC and MuSyQ FVC products was further reduced (Figure 9c,d).
That of the GEOV3 FVC product (R2 = 0.954, RMSE (RRMSE) = 0.062 (8.0%)) was still better
than that of the MuSyQ FVC product (R2 = 0.872, RMSE (RRMSE) = 0.087 (11.2%)). For
the GEOV3 FVC product, the scatter points composed of the upscaled FVC reference truth
values of the monitoring plots and pixel values for the corresponding product were almost
distributed around the 1:1 contour line. For the MuSyQ FVC product, the scatter of the
upscaled FVC reference truth values of the monitoring plots and the pixel values of the
corresponding product were slightly farther from the 1:1 contour line when 0.3 < FVC ≤ 0.9;
however, the remaining scatter points were basically concentrated around the 1:1 contour line.
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Figure 9. Comparison of FVC reference truth value in monitored plots with the FVC product pixel
value (GEOV3 (a), MuSyQ (b)); and comparison of FVC reference truth value in monitored plots with
small HUS with the FVC product pixel value (GEOV3 (c), MuSyQ (d)).

3.4. Error Distribution Pattern of GEOV3 and MuSyQ FVC Products

The spatial distribution of the difference between the measured FVC values obtained
from the monitoring plots with small HUS and the pixel values of the GEOV3 and MuSyQ
FVC products (Figures 10 and 11) showed that the pixel values of the GEOV3 products
were higher than the measured FVC values of the monitored plots located in the western
and southern regions of the TRSR, and were lower than the measured FVC values of the
monitored plots in the northern and western parts of the TRSR. However, there was no
obvious pattern between the pixel values of the GEOV3 FVC product and the measured
FVC values of the monitored plots in the central region of the TRSR. For the MuSyQ FVC
product, the pixel values of the MuSyQ product were lower than the measured FVC values
of most of the monitored plots in the TRSR, except for a few plots in the central and western
parts of the TRSR.
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central and the eastern part of the TRSR, respectively.

According to the measured FVC values for the monitoring plots, five different FVC
grade intervals were defined. The average values and standard deviations of the GEOV3
and MuSyQ FVC pixels corresponding to each interval are presented in Table 3. The
average FVC value of the GEOV3 product in the low vegetation cover area (FVC ≤ 0.2)
was about 0.22, exhibiting obvious overestimation. In the medium-low vegetation cover
area (0.2 < FVC ≤ 0.8), the average values of the GEOV3 FVC product were smaller than
the average values of the measured FVC in the corresponding intervals, exhibiting obvious
underestimation and a more discrete phenomenon (standard deviation > 0.13). The average
value of the GEOV3 FVC was higher in the high vegetation cover area. For the MuSyQ
FVC product, the average value of the MuSyQ FVC in the low vegetation cover area was
about 0.20, i.e., similar to that of the GEOV3 FVC product, and it also exhibited a significant
overestimation. However, in the remaining four FVC grade intervals, the average values of
the MuSyQ FVC were lower than the average values of the measured FVC values in the
corresponding intervals, and the standard deviations were higher.

Table 3. The five FVC value intervals divided by the measured FVC values in the monitoring plots
correspond to the average ± standard deviation (A ± SD), RMSE, and RBias of the GEOV3 and
MuSyQ FVC.

FVC Value
Intervals

Samples Measured
FVC (A ± SD)

GEOV3 MuSyQ

A ± SD RMSE RBias A ± SD RMSE RBias

0.0~0.2 12 0.117 ± 0.038 0.227± 0.060 0.062 94.0% 0.211 ± 0.039 0.038 80.3%
0.2~0.4 6 0.301 ± 0.052 0.247 ± 0.030 0.030 −17.9% 0.230 ± 0.016 0.017 −23.6%
0.4~0.6 5 0.475 ± 0.064 0.373 ± 0.135 0.084 −21.5% 0.317 ± 0.117 0.060 −33.3%
0.6~0.8 14 0.742 ± 0.046 0.745 ± 0.177 0.138 0.01% 0.531 ± 0.150 0.116 −28.4%
0.8~1.0 86 0.921 ± 0.052 0.966 ± 0.069 0.061 0.05% 0.794 ± 0.104 0.088 −13.8%
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4. Discussion
4.1. Comparative Analysis of the Differences between the GEOV3 and MuSyQ FVC Products

The GEOV3 and MuSyQ FVC products have obvious spatial distribution differences in
the TRSR, and there is not a systematic underestimation or overestimation among products
(Table 1 and Figure 6). This difference may be related to the estimation accuracies of the GEOV3
and MuSyQ FVC products for different vegetation communities and different vegetation
densities, which is similar to the conclusion of Liu et al. [5]. For example, the vegetation
growth is good in the southern and eastern regions of the TRSR, where the primary vegetation
type is alpine meadow and the FVC values of the GEOV3 in this region are significantly
higher than those of the MuSyQ. Alpine steppe and alpine vegetation are the predominant
vegetation types, but there is poor vegetation growth in the western area of the TRSR. In
the western region of TRSR, the FVC values of MuSyQ may be slightly higher than those of
GEOV3, which may be due to the differences in the inversion models and algorithms, training
samples, and input data used for the GEOV3 and MuSyQ FVC products [47].

4.2. Assessment of the Uncertainty of the Direct Validation Method

The lack of field measurements that can match the spatial scale of satellite remote
sensing pixels is one of the main reasons for the uncertainty of the direct validation method.
In previous product validation studies [48,49], the spatial range of the ESU deployed on the
ground was limited by the surface environment, financial and material resources, and other
factors, resulting in the spatial scale of the ESU being much smaller than the spatial resolu-
tion of the remote sensing products [22]. Due to the HUS of the monitored plots and the
influences of other factors, direct comparison between the measured FVC values obtained
for these ESUs and the pixel values of the coarse resolution remote sensing products is a
typical comparison method for pixel values verified using a single point measurement; this
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is prone to problems, such as spatial scale mismatch error and representative error of single
point observations. As a result, the direct validation results have great uncertainty [23].
In general, the monitoring plots used for the direct validation should be located in areas
with a small HUS, such as uniform vegetation species and the same vegetation growth
conditions [30]. The monitored plots in these regions have a sufficient spatial representation
ability on the product pixel scale. Even if the spatial range is not completely consistent
with the pixel scale of the coarse spatial resolution remote sensing products, there is no
need for additional scale improvement, and the actual observed values of the monitored
plots can be directly used to directly compare the pixel values of the product data [50].
Therefore, by evaluating the HUS of the monitoring plots, in this study, the monitoring
plots with relatively large HUS were excluded, which essentially excludes the monitoring
plots with weak spatial representation at the coarse spatial resolution of the product pixel
scale. Our results show that the accuracy validation of the product is significantly impacted
by the HUS. Nonetheless, the uncertainty of the direct validation results can be signifi-
cantly reduced using the HUS test method (Figure 7), which should be used to reduce the
uncertainty of the validation results in future remote sensing product validation.

4.3. Assessment of Uncertainty of Multi-Scale Validation Method Based on High-Resolution Data

Previous studies have shown that the multi-scale validation method can effectively
reduce the impact of the mismatch between the spatial range of the ground sampling
and the scale of the coarse spatial resolution remote sensing pixels on the validation
results [17,23,28]. A host of studies have used the multi-scale validation method to validate
the accuracies of products [25,26,51]. However, the majority of these studies only reported
the validation results, and few studies have evaluated the impact of the multi-scale valida-
tion method on the validation of the remote sensing product’s accuracy [28]. Nevertheless,
evaluating the uncertainty of the multi-scale validation method for accurate validation of
remote sensing products is essential since the validation data of FVC products is the FVC
reference truth value obtained via inversion of high-resolution images and upscaling, rather
than the ground measured FVC value. The influence of the uncertainty of the upscaled
FVC reference truth value validation results of FVC products cannot be ignored [23,29,31].

First, high-resolution reference data are uncertain, which is mainly due to the limitations
of the parameter remote sensing inversion methods and the matching error between the
measured data and the high-resolution remote sensing images. At present, although machine
learning algorithms have been comprehensively utilized in remote sensing inversions [6,39],
regardless of the algorithm used, searching for unknown information from remote sensing
information that is limited and inadequate in terms of describing the complex land surface en-
vironment is an undetermined solution process. Thus, it is an ill-posed inversion problem [52],
and the retrieved land surface parameters will have certain uncertainties. The reasons for the
matching errors between the measured data and the high-resolution remote sensing images
were the HUS and the inconsistency between the spatial range of the ESU, and the pixel
scale of the high-resolution remote sensing images, which resulted in deviations between
the measured FVC values and the realistic FVC values. Chen et al. showed that, in areas
with large heterogeneity, the field measurement values obtained only via sampling within
a small range deviate significantly from the real values [31]. Using these measured values
with poor spatial representation as the real values to match satellite remote sensing pixels will
significantly increase the uncertainty of the remote sensing inversion results. However, it is
relatively difficult to obtain measured FVC values corresponding to remote sensing pixels
at present. Therefore, Zhang et al. proposed an optimization measure, in which the field
measurement range can cover at least 2 × 2 satellite remote sensing image pixels [53]. Thus,
by selecting the pixel scale of Sentinel-2 images, which was smaller than the ground ESU scale,
in this study, we essentially ensured that the measured data could match the high-resolution
remote sensing image pixels, reducing the spatial representation error of the ESU at the high-
resolution image pixel scale via the HUS test method. Our results show that the method of
combining Sentinel-2 images and the RF regression algorithm has a high accuracy in retrieving
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the FVC, but the accuracy of the inversion results will be affected by the mismatch between
the field measurement data and remote sensing image pixels. The uncertainty of the Sentinel-2
image inversion results was significantly reduced using the HUS evaluation method (Table 2
and Figure 8). In the future, in multi-scale validation of remote sensing products, selecting
remote sensing images with a higher spatial resolution and using the HUS test are practical
methods of reducing the uncertainty of the inversion results for high-resolution images.

The greater the heterogeneity of the monitoring plots, the greater the uncertainty
of the FVC reference true value obtained [54,55]. Therefore, we evaluated the HUS of
the monitoring plots and eliminated the monitoring plots with a high HUS and large
uncertainty of the FVC reference true value before conducting the validation of the remote
sensing products. Our results show that the HUS has a significant impact on the upscaling
transformation of high-resolution reference data, but the uncertainty of the upscaling
validation results can be significantly reduced using the HUS test method (Figure 9). In
this study, regardless of whether the monitoring plots had a high HUS or a relatively
low HUS, the upscaling via aggregation essentially ignored the serious impact of the
HUS on the inversion results and the spatial scale transformation [18,28], resulting in
overestimation of the actual accuracy of the remote sensing products. Therefore, it is
necessary to consider the HUS of monitoring plots, and accurately evaluate the reliability of
the multi-scale validation method in future product validation studies when the multi-scale
method is used, such as the ground measured data error, inversion model and algorithm
errors, upscaling transformation error, and high-resolution image quality [30]. A variety of
methods have been used to minimize the uncertainty [52], such as strictly implementing
the strategy of one test and two matches [53], rating the uncertainty of the pixels [23], and
other methods, in addition to trying to evaluate the reliability of remote sensing products
using the multi-scale validation method [17].

4.4. Error Analysis of GEOV3 and MuSyQ FVC Products

Compared with the FVC measurements for the monitored plots, the GEOV3 and
MuSyQ FVC products exhibited regional overestimation or underestimation to a certain
extent in the TRSR (Figures 10 and 11). In the eastern and southern regions of the TRSR,
where there was a large amount of vegetation, the monitored plots’ measured FVC values
were lower than the GEOV3 FVC pixel values (Figure 10). Our statistical results and scatter
plots also showed that, in the areas with measured FVC values of greater than 0.8, the FVC
values of the GEOV3 were significantly higher (Figure 7c and Table 3). This result is similar
to a recent GEOV3 accuracy validation study [49]. The higher estimate may be attributed
to an excessive correction factor utilized to correct CYCLOPES FVC as the GEOV3 training
sample [5]. The MuSyQ FVC product exhibited obvious underestimation in the areas
with measured FVC values of greater than 0.3, in contrast to the GEOV3 FVC product
(Figure 7d and Table 3). This may be because the MuSyQ FVC was based on gap probability
theory [12], and the exponential expression leads to the poor estimation of the FVC of the
MuSyQ product, which is low when the measured FVC is >0.3. In addition, the measured
FVC values of the monitoring plots in the low-FVC regions (such as the western and
northeastern parts of the TRSR) were all less than the pixel values of the two FVC products
(Figures 10 and 11). The reason for this may be that the FVC values in these regions are low,
and there is soil background interference. The spatial resolution of the satellite sensors that
collected the reflectance data for these two products is too low. The reflectance information
they capture is highly uncertain, and this uncertainty will be further transmitted in the
subsequent inversion process, resulting in FVC overestimation [56]. For both the GEOV3
and MuSyQ FVC products, the measured FVC values of the monitored plots in the central
region of the TRSR were lower than or higher than the FVC values of the two products
(Figures 10a and 11a). We cannot accurately judge whether this region’s GEOV3 and
MuSyQ FVC values were overestimated or underestimated. The central part of the TRSR is
a transition zone between high and low vegetation cover, and the high altitude, rugged
terrain, complicated hydrological conditions, and variable meteorological conditions impair
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the accuracy of the sensor reflectance information. Therefore, the accuracy of the remote
sensing inversion of the FVC is affected. Relevant studies have shown that considering
environmental factors and mixed water pixels can reduce the uncertainty of parameter
remote sensing inversion results [51,57]. Thus, to better predict FVC values, it may be
essential to tweak the GEOV3 and MuSyQ FVC algorithms’ parameters and increase the
product’s regional performance in combination with TRSR environmental elements [58].
In addition, the GEOV3 and the MuSyQ FVC were generated using other remote sensing
products. Detailed accuracy validations of more remote sensing products for the TRSR
are needed to improve the GEOV3 and MuSyQ FVC products. Although our validation
results showed that the accuracy of the GEOV3 FVC product is better than that of the
MuSyQ FVC product from an annual maximum perspective, the MuSyQ FVC product has
better temporal resolution than the GEOV3 FVC product, and the temporal resolution of a
product is more important for some applications. Therefore, determining how to evaluate
the two products more comprehensively in the future research needs to be further studied.

5. Conclusions

The accuracy of two global FVC products (GEOV3 and MuSyQ) in the alpine grassland
ecosystem in the TRSR was validated in this study using a large number of multi-scale
measurement FVC data and two commonly used product validation methods (i.e., the
direct validation method based on in situ site measurements and the multi-scale validation
method based on high-resolution reference images). Furthermore, the uncertainty of the
multi-scale validation method was evaluated, and the influence of the HUS of monitored
plots on product validation was revealed. We found that the accuracy of the GEOV3
FVC product is better than that of MuSyQ from the perspective of the annual maximum,
and the multi-scale validation method based on high-resolution reference images leads to
overestimation of the product’s accuracy. In addition, our study highlights the fact that the
HUS of the monitoring plots greatly affects the product validation. By removing the remote
sensing monitoring plots with large HUS, the uncertainties of the product validations using
the two validation methods were significantly reduced. Future product validation studies
should carefully evaluate and minimize the factors affecting the accuracy of the product
validation methods.
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