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Abstract: In recent years, a rise in interest in using Unmanned Aerial Vehicles (UAV) with LiDAR
(Light Detection and Ranging) to capture the 3D structure of forests for forestry and ecosystem
monitoring applications has been witnessed. Since the terrain is an essential basis for the vertical
structure modeling of a forest, the point cloud filtering delivering a highly accurate Digital Terrain
Model (DTM) contributes significantly to forest studies. Conventional point cloud filtering algorithms
require users to select suitable parameters according to the knowledge of the algorithm and the
characteristics of scanned scenes, which are normally empirical and time-consuming. Deep learning
offers a novel method in classifying and segmenting LiDAR point cloud, while there are only
few studies reported on utilizing deep learning to filter non-ground LiDAR points of forested
environments. In this study, we proposed an end-to-end and highly-efficient network named Terrain-
net which combines the 3D point convolution operator and self-attention mechanism to capture
local and global features for UAV point cloud ground filtering. The network was trained with over
15 million labeled points of 70 forest sites and was evaluated at 17 sites covering various forested
environments. Terrain-net was compared with four classical filtering algorithms and one of the most
well-recognized point convolution-based deep learning methods (KP-FCNN). Results indicated that
Terrain-net achieved the best performance in respect of the Kappa coefficient (0.93), MIoU (0.933)
and overall accuracy (98.0%). Terrain-net also performed well in transferring to an additional third-
party open dataset for ground filtering in large-scale scenes and other vegetated environments. No
parameters need to be tuned in transferring predictions. Terrain-net will hopefully be widely applied
as a new highly-efficient, parameter-free, and easy-to-use tool for LiDAR data ground filtering in
varying forest environments.

Keywords: UAV; LiDAR; ground filtering; deep learning; forestry

1. Introduction

Forests are acknowledged to be vitally important habitats around the world because of
their biological richness and ecological functions [1]. One critical way to understand forests
is through quantifying the vertical forest structure, as it plays an increasingly important
role in making forest management decisions wisely [2]. Recently, LiDAR (Light Detection
and Ranging) technology has been widely adopted in the form of point cloud data for
forestry and ecosystem monitoring applications, especially in using Unmanned Aerial
Vehicles (UAV) with LiDAR sensors to capture the 3D forest structure [3]. UAV LiDAR is
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altering the way we research and understand terrestrial ecosystems and spearheading the
shift from 2D to 3D ecological observations because of their time efficiency, high precision,
and high spatial resolution [4]. Three-dimensional data give the possibility for a deeper
inspection of the forest environment. The obtained point cloud data are subjected to further
processing to extract useful height and structural information, and ground filtering is a key
basis for this process. Ground point filtering is a procedure of separating point cloud to
non-ground and ground points. Filtering non-ground points helps to acquire high-quality
terrain data, allowing us to obtain accurate vegetation height information and vertical
structures of canopy. However, UAV data ground point filtering can be difficult due to the
undulating terrain and spatial variety of off-ground vegetation in real forest scenes [5].

Classical ground point filtering algorithms can be divided to slope-based, morphology-
based, and surface-based methods. The slope-based method [6–8] sets a slope threshold
value to identify the non-ground points. The morphology-based [9–11] methods remove
non-ground points through typical morphology processing. Surface-based methods it-
eratively choose points from original datasets to build a ground surface which can be
constructed by Triangulated Irregular Network (TIN) [12] or interpolation methods [13].
Other representative approaches are also developed. CSF (Cloth Simulation Filtering), as
an example [14], filters non-ground points through imitating a physical procedure in which
an inverted point cloud is covered by a virtual cloth. These algorithms performed well
in many scenarios, but they also have common limitations. To use these methods, it is
prerequisite for users to have adequate knowledge of the underlying algorithms and the
characteristics of the sampled regions to select a suitable set of parameters accordingly.
It undoubtedly increases the difficulty of applying these approaches. In addition, if the
sampled region has a large scale and contains intensive terrain relief, the selected parame-
ters may not be transferable from site to site across the whole scene without introducing
classification errors.

Deep Learning (DL) is growing as the most prevailing method across a wide spectrum
of artificial intelligence (AI) applications [15–17]. Recent studies on deep learning have
been putting efforts into 3D point cloud processing and various networks emerged [18–23].
The networks are further utilized for outdoor point cloud processing in remote sensing
and photogrammetry after their impressive performance were demonstrated on indoor
point cloud datasets [24–29]. Compared to indoor point cloud or simulated point cloud,
outdoor point cloud covers larger scene scales across complex environments and contains
larger objects with possible measurement noises or occlusions with a larger data volume.
To fit the characteristics of outdoor point cloud, further improvements must be applied to
deep learning frameworks. Some studies tried to regulate point cloud so that mature 2D
Convolution Neural Networks (CNN) or 3D CNN can be applied. In early investigations on
point cloud ground filtering with neural networks, Hu et al. [5] used the height information
in the neighborhood area of points and transformed the Airborne Laser Scanning (ALS)
point cloud to height images and used a 2D CNN network to filter the non-ground points.
Rizaldy et al. [30] followed the same routine of converting point cloud into an image and
then a Fully Convolution Network (FCN) was chosen to process the image. Yang et al. [31]
used a segmentation method and a generation method of feature images to convert ALS
point cloud features to 2D images, then the semantic segmentation was performed with a
multi-scale convolutional network. These methods transfer the point cloud into 2D images,
however, they are strongly reliant upon the tangent estimate and are restricted by infor-
mation loss due to the 2D projection. To reduce the loss of information, Schmohl et al. [32]
gridded ALS point cloud into voxels for semantic segmentation tasks and applied Sparse
Submanifold Convolutional Networks to reduce the memory and computation consump-
tion. Yotsumata et al. [33] also tried to utilize the 3D CNN on voxelization to process ALS
data for ground filtering. However, the main limitation of those voxel-based methods is
that as the spatial resolution increases, computational complexity and memory occupied
increased cubically. Nurunnabi et al. [34] input handcrafted features into dense layers for
ALS point cloud ground filtering. This non-end-to-end method is time-consuming and
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quite labor-intensive. To process the point cloud directly, Janssens-Coron and Guilbert [35]
made a preliminary attempt that used PointNet [36] to process ALS points for ground filter-
ing. Jin et al. [37] implemented the ALS ground point filtering by a point-based FCN, which
directly processed point cloud and both tile-wise and point-wise features were learned.
Krisanski et al. [38] used improved PointNet++ [39] to segment point cloud obtained by
various kind of sensors in forest conditions. Compared to these pointwise multilayer
perceptron (MLP) methods, point convolution models are tailored for direct process on
point cloud, more in line with the characteristics of 3D data structure, and might have
stronger learning ability and higher computing efficiency. Studies also tried to apply the
graph convolution on outdoor point cloud. Huang et al. [40] transformed the point-cloud
data obtained by vehicle LiDAR into a superpoint graph, and a graph convolution neural
network is employed for ground filtering. Though graph convolution is useful, a point
cloud is not naturally a graph. It costs additional resources, e.g., extra computation, to turn
the point cloud into a graph. The self-attention mechanism was also investigated for 3D
deep learning. Chen et al. [41] proposed a novel double self-attention network to process
ALS point cloud for semantic segmentation. It had two self-attention blocks to capture
local and global features. Using self-attention alone may require a lot of data because the
self-attention lacks the inductive bias, and it might require more computation. Another type
of approach used the point convolution operator for point cloud process. Soilán et al. [42]
applied KPConv [43] architectures to segment point cloud of railway tunnels captured by
Mobile Mapping Systems (MMS). Kada and Kuramin [44] used KPConv to segment ALS
point cloud in the urban environment via adding two kinds of prior knowledge which
were used as extra per-point input features. In both works, KPConv was compared with
other models, such as PointNet and PointNet++, and it was found that KPConv performed
the best. To sum up, the point convolution-based method shows great potential in outdoor
point cloud data processing. However, the work on UAV and ALS point cloud data process
with point convolution are less studied. How to use point convolution to mine the features
contained in point cloud of natural environments like forests is still a question to answer.

In this paper, we proposed a highly-efficient, parameter-free and easy-to-use deep
learning network, namely the Terrain-net, to directly process UAV point cloud for ground
filtering in forested environment. Terrain-net was designed to learn the characteristics
of various forest environments from a large amount of training datasets with different
topography and vegetation coverage. Inspired by tasks on image processing [45,46], Terrain-
net combined the state-of-art point convolution KPConv for the neighborhood feature
extraction and the self-attention to capture the long-range context as complementary,
which affords Terrain-net an excellent ability to extract features in forested environments
with varying terrain and vegetation conditions and the code and model are available at
https://github.com/bjfu-lidar/Terrain-net (accessed on 11 November 2022).

The main contributions of this work to UAV LiDAR data filtering are as follows:

1. Currently, there are very few filtering algorithms that use point convolution on point
cloud. We investigated the performance of KPConv operator directly in ground
filtering and found that such general purposed point operator performed excellently.

2. To our best knowledge, the self-attention technique is still not fully investigated
for point cloud processing, especially the combination of self-attention and point
convolution. We studied the impact of their combination on ground filtering and
proposed a delicate network that can extract both local and global features.

3. Terrain-net performs well in complex forested environments, and we verified that it
has generalization ability to large scenes and other environments. This is a positive
sign that point cloud deep learning approaches are hopefully able to extend their usage
for a wider range of cross-disciplines such as vegetation or ecosystem investigations.

The rest of the paper is arranged as follows to offer a clear demonstration of the study.
Section 2 describes the experimental plots and datasets for training and testing, as well as
the details of Terrain-net. Section 3 presents the performance metrics and the results of the

https://github.com/bjfu-lidar/Terrain-net
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Terrain-net under different circumstances. Section 4 presents the discussion of the approach
and analyses of results. Section 5 ends with a conclusion and outlook for future work.

2. Materials and Methods

This part describes UAV LiDAR data collection, dataset preparation, open data from
the third-party for model transfer, and the model construction.

2.1. Study Area and UAV Data Collection

UAV LiDAR data used in this study were collected in Gaofeng Forest Farm of Nanning,
Guangxi Province, China, in July of 2021. Gaofeng Forest Farm is a managed forest farm
with dominant tree species of Eucalyptus robusta Smith, Castanopsis hystrix Miq., Cunning-
hamia lanceolata (Lamb.) Hook. and Magnolia denudata Desr., etc. The location and distribution
of the UAV sample plots are within the extent of (108.338◦–108.372◦E, 22.9727◦–22.9623◦),
as shown in Figure 1. The research area was 140–260 m above sea level with 0◦–32◦ slope.
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Figure 1. Illustration of the forest farm location (a), the distribution of the UAV LiDAR data tiles (b),
the model diagram of the UAV LiDAR scanner and the UAV platform carrying the LiDAR (c), the
picture of the real forest plots (d), and a sample of the UAV point cloud (e).

In the data collection campaign, a Genius Mini UAV LiDAR System of Beijing SureStar
Technology Cooperation (https://www.isurestar.net, accessed on 30 July 2022) was carried
by a DJI M210 multi rotor UAV platform (https://www.dji.com, accessed on 21 July
2022). The Genius Mini was set to a PRF (pulse repetition frequency) of 320 kHz and
the UAV flying altitude above ground was around 100 m. Of the whole experiment,
raw measurement data were collected, and the point cloud were processed by direct
geo-referencing with POS (position and orientation) data. Intensity data were recorded
per point.

2.2. Dataset Preparation

To generate a well-labeled training dataset and test dataset, we selected 87 tiles of
20 m × 20 m size from the UAV data which included 15,174,732 points in total. These
selected 87 high-quality tiles contain different vegetation coverage and terrain condition.
These high-quality data could help the network to learn the representative and essential
features and for making informed judgments. Detailed information about the datasets are
shown in Appendix A Table A1. The automated method in the LAStools software (https:
//rapidlasso.com/lastools/, accessed on 21 July 2022) was used to filter the unclassified
raw points to generate preliminary results, followed by further careful manual inspection.
The point cloud visualization and editing tool in CloudCompare (v. 2.10.2; http://www.
cloudcompare.org/, accessed on 20 July 2022) was used to visualize the cross section and
manually label the points.

https://www.isurestar.net
https://www.dji.com
https://rapidlasso.com/lastools/
https://rapidlasso.com/lastools/
http://www.cloudcompare.org/
http://www.cloudcompare.org/
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Then, the well-labeled data were split into the training dataset and test dataset. At
this point, the 87 tiles were not split randomly since it is important to have representative
samples that cover each kind of forest type and terrain conditions. The model was expected
to learn as much diverse forest information as possible, and the test set covers a number of
different forest environments in various situations. We follow the ratio of approximate 4:1
to divide the training (70 tiles) and test (17 tiles) sets.

Only the spatial coordinates [x, y, z] of the point cloud were preserved, and there were
no additional features such as color or intensity. The reason is that it maximizes the model’s
applicability to a wide range of sensors that may not be able to record the color or intensity,
despite that some studies have shown that more features might improve the accuracy of
recognition [44].

2.3. Additional Third-Party Dataset

We used UAV LiDAR data to train Terrain-net, while additional open datasets were
also used to evaluate the model transfer ability. OpenGF [47] is a public ground filtering
dataset which covers 47 km2 and contains nine distinct representative terrain scenes of ALS
point cloud from four different nations. We randomly selected three plots from the small
city, village and mountain categories of the datasets for they contain forested environments
in varying degrees. As shown in Table 1, the size of each plot is 500 m × 500 m, and the
land type of each plot is different.

Table 1. Details of selected plots from OpenGF.

Name Land Type Size/(m2) Terrain Features and Tree Distribution

S4_4 Small City 500 × 500 Local undulating ground with many middle-size buildings and
sparse tree distribution.

S6_23 Village 500 × 500 Natural ground with a few scattered buildings and large area of
tree distribution.

S7_4 Mountain 500 × 500 Slope ground with dense vegetation

2.4. Terrain-Net Network Establishment

Terrain-net is a deep neural network that combines point convolution operator KP-
Conv and self-attention to classify UAV LiDAR point cloud data into ground and non-
ground types. Figure 2 shows the network architecture, which contains the input layer, the
encoder, and the decoder. We briefly introduce the design of the architecture and the two
core operations used in the network in detail below.
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2.4.1. Terrain-Net Architecture

The Terrain-net architecture was based on KPConv architectures namely the KP-
FCNN [43]. We kept the design of blocks as the original version. The input is an N × 3
matrix, where N represents the number of points and 3 means only the 3D coordinates
were used.

In the encoder, Terrain-net mainly used two blocks, namely the KPConv and KPConv-
stride. The KPConv block, which is described in the following Section 2.4.2, was used to
extract pointwise features, and the KPConv-stride block was used to gradually increase
the receptive field. There were five layers in the encoder. The first layer consisted of two
KPConv blocks, and the subsequent layers consisted of a KPConv-stride block and two
KPConv blocks. A self-attention block was also added in layer2 and layer3. Like the image
networks which gradually decrease the size of the input image to expand the receptive
field, the number of points was reduced progressively in the encoder, and the number of
features increased in each layer accordingly. The dimensions of features in each layer were
128, 256, 512, 1024 and 2048, respectively.

The decoder had four layers, each one of which employs a nearest up-sampling block
and a 1D convolution block. The skip links conveyed information between the layers in
the encoder and decoder, which concatenated features to the up-sampling layer, then the
output of the up-sampling layer was processed by the 1D convolution layer. In the decoder,
the number of points increased progressively to revert to the original input shape, after
which the output was composed with a label and each of the original input points. The
dimensions of features in each layer were 1024, 512, 256, 128, respectively.

As is mentioned, KPConv can extract point-wise features well since it considers the
neighborhood information, and it adopts a bottom-up feature extraction method and
captures more information by gradually expanding its receptive field. Nevertheless, it
lacks global information in the early stage, so we introduced self-attention to form a larger
receptive field, which is further discussed in Section 2.4.3.

2.4.2. KPConv Point Convolution Operator

The KPConv operator, as one of the core techniques in Terrain-net, is a state-of-
art design of point convolution that operates on point cloud without any intermediate
representations [43]. Kernel weights of 2D image convolution are associated to the kernel
pixels which are aligned with the pixel grid, and then discrete filters can be defined. Like
2D image convolution, KPConv extracts features in a 3D spherical neighborhood. The
difference is that KPConv replaces kernel pixels by kernel points, to which the kernel
weights are associated. The positions of kernel points are formulated as an optimization
problem of the best coverage in the sphere space. Since input points are usually not aligned
with kernel points, continuous filters are defined by using the correlation function to create
a continuous domain. As a result, the feature of points is computed by multiplying all the
kernel points’ weight, with their correlation to each kernel point. Figure 3 intuitively shows
the kernel points of KPConv.

2.4.3. Self-Attention Operator

A general form of attention mechanism can be formulated as:

Attention = f (g(x) , x) (1)

where g(x) represents the adaptive weights, x represents the input, and f (g(x) , x) rep-
resents how to combine the weights with the input. By using the attention mechanism,
the adaptive weights could emphasize more important features, further improving the
learning ability of the network. In Terrain-net, we designed a scalar self-attention block as
shown in Figure 4:
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A general scalar self-attention [15] can be described as in Equations (2) and (3):

g(x)= Softmax
(

ϕ(x) ψ(x)T
)

(2)

f (g(x), x)= g(x)α(x) (3)

where ϕ , ψ, α are pointwise feature transformations, i.e., MLP. Equation (3) represents the
scalar self-attention. The scalar attention calculates the output of scalar product between
features transformed by ϕ and ψ is used as an attention weight for aggregating features
transformed by α. Due to the way of assigning weight, different feature channel shares
the same weight. Figure 4 illustrates a residual self-attention block we constructed in
Terrain-net. Its design ideas are based on [48]. The core operation of the self-attention block
is in the self-attention layer, and the operation can be represented as in Equation (4):

y = x − Softmax
(

ϕ(x) ψ(x)T
)

α(x) (4)

The input first goes through a linear projection for a better space encoding learning,
after which it goes through a self-attention layer. Finally, the input passes another linear
projection and is added with the original input. In the self-attention block, the inputs
are weighted dynamically via a similarity function. Unlike the pooling operation or the
convolutional operation, the weights used in the self-attention layer depend on the different
similarities of the inner elements of the input vector rather than predetermined by their
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relative location like in KPConv. Self-attention has a low inductive bias which constructs a
large space to freely explore the inherent characteristics of the input data, to achieve better
performance and generalization. Moreover, this dynamic weighting process can capture
the global contextual information which brings a new perspective to the feature extraction.

2.5. Model Training

In the modeling progress of Terrain-net, the number of kernel points of a rigid kernel
K = 15. The initial subsampling parameter dl0 was set to 0.08 m, the radius of influence
R = 3.0 m, based on the characteristic of UAV LiDAR point cloud. The model was trained
using the cross-entropy loss and the momentum gradient descent optimizer is used to
minimize the loss with a momentum of 0.98. The initial learning rate was set to 0.01 and
declined exponentially by dividing it by 10 for every 100 epochs.

The following data augmentation methodologies were applied before training:
Anisotropic Scaling: The input point cloud was scaled separately in each dimension.

The scaling factor was picked uniformly in [0.8, 1.2].
Vertical rotation: The point cloud was rotated with a random angle of [0, 2π], around

the vertical axis.
Noise: The point coordinates were added with a gaussian noise to perturb their

positions. To prevent losing too many details, the standard deviation of the noise was
adjusted to a value smaller than dl0.

On a desktop computer with an Intel(R) Xeon(R) Gold 6330 CPU, 160 GB of RAM, and
an NVIDIA RTX 3090 GPU with 24 GB VRAM, all training and testing were performed. It
took 300 epochs to train for converging, taking approximately 16 h. The batch size was set
to 8.

3. Results

In this part, we exhibit the performance metrics of the Terrain-net, the testing results
of our own dataset and additional third-party dataset.

3.1. Performance Metrics

Type I, Type II, and Total errors are the widely used evaluation metrics of ground
filtering [49]. These traditional measurements are replaced by comparable or similar metrics
extensively utilized in current studies. Here, the performance metrics used are per-class
recall, precision, IoU (Intersection over Union), F1-score, as well as the overall accuracy
(OA), Kappa coefficient (Kp), and MIoU (Mean IoU) based on the confusion matrix. The
computations are summarized in Appendix A Table A2, and the calculation formulas
of performance metrics are shown in Appendix A Table A3. In general, the higher the
evaluation metrics, the better the model performs.

3.2. Evaluation Results of UAV Point Cloud

In this study, we selected four representative ground filtering algorithms. The slope-
based algorithm, morphology-based algorithm and surface-based algorithm were im-
plemented in Point Cloud Magic (PCM) software (v. 2.0.0 http://www.lidarcas.cn/soft,
accessed on 20 July 2022), and the CSF algorithm was implemented in CloudCompare. In
addition, we also trained the original KP-FCNN with the same training dataset of Terrain-
net (70 tiles) and compared these methods with Terrain-net on the test dataset (17 tiles).
Table 2 shows the results of the ground filtering.

The results indicated among all sites, Terrain-net achieved the top mean Kp value
(93.0%), followed by the original KP-FCNN, the morphology-based model, the slope-
based model, CSF and the surface-based model. Meanwhile, the mean OA and MIoU of
Terrain-net in all sites were the highest. The CSF achieved the highest ground precision
and non-ground recall, while the slope-based model got the highest ground recall and
non-ground precision. Nevertheless, Terrain-net was graded the highest F1-score of both

http://www.lidarcas.cn/soft


Remote Sens. 2022, 14, 5798 9 of 17

two-point types. The highest F1-score indicated that Terrain-net performs well in both
recall and precision, and the performance is well balanced.

Table 2. Ground filtering results compared to traditional and deep learning algorithms on the
test dataset.

Method

Ground Non-Ground
Kp
(%)

MIoU
(%)

OA
(%)Precision

(%)
Recall

(%)
F1-Score

(%)
IoU
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

Slope-based 75.2 98.5 84.8 74.5 99.4 88.5 93.2 88.1 78.6 81.3 91.5
Morphology-based 80.0 95.8 86.8 77.4 98.6 91.5 94.7 94.7 81.8 83.9 93.0

Surface-based 69.2 97.7 80.4 68.2 98.8 83.8 90.0 83.2 71.5 75.7 88.3
CSF 99.7 73.6 84.0 73.5 86.8 99.8 92.2 86.8 77.1 80.2 90.5

KP-FCNN 96.0 85.9 90.7 83.6 96.9 99.2 98.0 96.1 88.7 89.6 96.7
Terrain-net 95.5 92.9 94.2 89.0 98.6 99.1 98.8 97.7 93.0 93.3 98.0

Compared with the original KP-FCNN, Terrain-net improved performance on most
metrics. In particular, the Kp was increased by 4.3%, the MIoU by 3.7% and the F1-score of
ground by 3.7%. Compared to the best performing traditional algorithms (Morphology-
based model) regarding the ground precision, Terrain-net increased the Kp by 11.2%, MIoU
by 9.4% and the F1-score of ground by 7.4%. Ground filtering results of the Terrain-net on
the test dataset are shown in Figure 5.
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vegetation with flat terrain, sparse vegetation with slope, and sparse vegetation with flat terrain.

3.3. Evaluation Results of Additional Third-Party Dataset

To examine the generalization capability of Terrain-net in large scenes and other
vegetated environments, we continued the evaluation with the OpenGF dataset and used
its performance metrics reported in [47] including the Kappa coefficient and F1-score,
excluding the Root Mean Square Error (RMSE) and approximate running time (ART). The
results are shown in Table 3.
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Table 3. Ground filtering results on third-party public dataset.

Name
Ground Non-Ground

OA
(%)

Kp
(%)IoU

(%)
F1-Score

(%)
IoU
(%)

F1-Score
(%)

S4_4 86.0 92.4 82.3 90.3 91.5 82.9
S6_23 92.8 96.3 94.6 97.2 96.6 93.5
S7_4 92.8 96.3 96.4 98.0 97.6 94.4

From the above results, it is clearly indicated that though Terrain-net was trained with
UAV LiDAR data of 20 m × 20 m tiles in varying eucalyptus and fir forests environments
with different terrain conditions, it performed quite well on ALS point cloud data in large-
scale scenes (500 m × 500 m). It should be mentioned that (1) the OpenGF dataset covers
scenarios including small cities, villages and mountain environments, the first two of which
did not appear in the training dataset of Terrain-net at all, and (2) Terrain-net used UAV
point cloud whose point density was much higher than that of ALS point cloud in OpenGF.
These facts indicated that Terrain-net has remarkable generalization and robustness in
transferring to varying sensors and data.

4. Discussion
4.1. Comparative Analyses with Traditional Methods and Models

Results in Table 2 indicated that Terrain-net performed the best regarding almost
all the metrics except the ground recall and non-ground precision comparing to other
traditional methods. The main reason may be that traditional methods are generally based
on handcraft-designed rules and criteria to distinguish the ground and non-ground points,
and the rules may not have the ability to fit the features of scenes not complied. The
approach of Terrain-net learns the discrimination rules directly from the labeled point
cloud via KPConv to capture delicate local information and combine with self-attention to
capture long range interaction information. This technique of combining local and global
feature extraction allows Terrain-net to learn more representative features. In addition, we
also applied deep learning “tricks” such as residual connection and data augmentation,
which further improved the feature extraction ability of Terrain-net.

The main errors of Terrain-net mainly concentrated in the junction part of trunks and
the ground and at low vegetation locations. This is a challenging situation for point cloud
ground filtering, and it is sometimes even difficult for humans to visually discriminate.
Nevertheless, in most cases, Terrain-net can deliver good performance. It can also handle
varying terrain conditions with steep slopes, gentle slopes or flat ground as shown in
Figure 5.

4.2. Effectiveness Verification of Self-Attention

It can be found from the results (Table 2) that after adding the self-attention mech-
anism, the performance of Terrain-net became better than the original KP-FCNN. It is a
consensus that there might be situations where deeper neural networks with more blocks
can have stronger learning abilities with increased model parameters. To determine if
the improvement came from the self-attention modification or just from the increment
of the network depth, we conducted ablation experiments on this matter, by replacing
the self-attention block in Terrain-net with old KPConv blocks. The results of ablation
experiments are shown in Table 4.
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Table 4. The effectiveness of self-attention layer.

Model
Ground Non-Ground

Kp
(%)

MIoU
(%)

OA
(%)Precision

(%)
Recall

(%)
F1-Score

(%)
IoU
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

KP-FCNN
(original) 96.0 85.9 90.7 83.6 96.9 99.2 98.0 96.1 88.7 89.6 96.7

KP-FCNN
(more
blocks)

99.1 83.6 90.7 83.0 96.1 99.8 97.9 96.0 88.7 89.5 96.6

Terrain-net 95.5 92.9 94.2 89.0 98.6 99.1 98.8 97.7 93.0 93.3 98.0

It can be observed that compared with the original KP-FCNN, the model with more
KPConv blocks did not have significant improvements in overall indicators such as the
Kp and MIoU. Although it had a significant improvement in ground precision, its ground
recall decreased contrarily. Meanwhile, a section of ground points were identified as non-
ground, which can be seen from the drop in the precision of non-ground points. Terrain-net
exhibited the highest Kp, MIoU, OA, as well as the highest F1-scores of both ground and
non-ground points. It indicated that Terrain-net had a more balanced performance in
predicting ground and non-ground points. The reason why adding self-attention block
is better than simply adding KPConv block might be that self-attention brings a new
perspective of digging out spatial context. Adding a self-attention operation can be seen
as a supplement to the convolution operation, helping to expand the receptive field of the
convolution, which may allow the network to gain better understanding of the object being
learned. In forest scenes, there are a plenty of larger objects like tall trees. Though KPConv
gradually expands the receptive field during processing, adding self-attention can help to
expand the receptive field in the early stage and capture more information of larger objects.
Moreover, unlike KPConv which uses fixed weights assigned to the data, self-attention
calculates dynamic weights to the data through the dot product from a global perspective,
and the dynamic weights vary with inputs. This technique enables Terrain-net to better
adapt to the complex and changing forest environment.

4.3. Selection of the Self-Attention Type and Variants

Section 4.2 showed that the added self-attention blocks play an indispensable role in
the performance improvement of Terrain-net. In this section, we explored the design of
different self-attention blocks and the impact of numbers of self-attention blocks on the
performance of Terrain-net.

The self-attention includes two types of implementations. The self-attention layer is a
key part of the self-attention block architecture, and its design may lead to different results.
Here we first explored the different designs of the layer. Different self-attention type and
their variants were adopted in the self-attention block. Part of their expressions are already
given in Section 2.4.3, and the rest are given as follows:

y = x + Softmax
(

ϕ(x) ψ(x)T
)

α(x) (5)

y = Softmax( ϕ(x)−ψ(x) )� α(x) (6)

y = x − Softmax( ϕ(x)−ψ(x) )� α(x) (7)

These self-attention blocks with different self-attention layers were placed in the
same position in the network, i.e., the second and third layers of the Terrain-net. The
corresponding results are shown in Table 5. Compared with Equations (3)–(5), it represents
another design of the self-attention layer. Equation (6) represents a vector self-attention [50],
and Equation (7) represents a variant of the vector self-attention. We can see that different
self-attention block designs did not bring significant differences to the final result. The
overall performance of the self-attention block using Equation (4) was slightly better than
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those of the other formulas. No matter how the self-attention block was designed, the result
was better than the original KP-FCNN. We did not add positional encoding to any design
of self-attention layer. If positional encoding is added, according to the original work [50],
the performance of blocks designed with vector self-attention may be improved.

Table 5. The effect of different self-attention block design.

Model
Ground Non-Ground

Kp
(%)

MIoU
(%)

OA
(%)Precision

(%)
Recall

(%)
F1-Score

(%)
IoU
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

Scalar
attention

(Equation (3))
96.7 91.2 93.9 88.5 98.1 99.3 98.7 97.5 92.6 93.0 96.7

Scalar
attention

(Equation (4))
95.5 92.9 94.2 89.0 98.6 99.1 98.8 97.7 93.0 93.3 98.0

Scalar
attention

(Equation (5))
95.5 92.4 94.0 88.6 98.4 99.1 98.7 97.6 92.7 93.1 97.8

Vector
attention

(Equation (6))
96.7 91.2 93.9 88.5 98.2 99.3 98.7 97.5 92.6 93.0 97.9

Vector
attention

(Equation (7))
91.7 95.5 93.5 87.8 99.1 98.3 98.7 97.5 92.2 92.6 97.9

The effect of different numbers of self-attention blocks on Terrain-net results was
analyzed. Self-attention blocks can have different placement methods and can be added to
different layers. In Table 6, the best results obtained from different positions after we fixed
the increased number of self-attention blocks were listed. As the number of layers increases,
the results did not improve significantly. This suggested the addition of two self-attention
blocks to balance the model performance with respect to the number of parameters and the
computation cost.

Table 6. The effect of the number of self-attention block.

Model
Ground Non-Ground

Kp
(%)

MIoU
(%)

OA
(%)Precision

(%)
Recall

(%)
F1-Score

(%)
IoU
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

1 self-attention
block 85.2 92.7 93.9 88.6 98.5 99.0 98.7 97.6 92.7 93.1 97.8

2 self-attention
blocks 95.5 92.9 94.2 89.0 98.6 99.1 98.8 97.7 93.0 93.3 98.0

3 self-attention
blocks 93.3 94.5 93.9 88.5 98.9 98.6 98.8 97.6 92.7 93.1 98.0

4 self-attention
blocks 94.9 93.1 94.0 88.7 98.6 98.9 98.8 97.6 92.8 93.2 98.0

8 self-attention
blocks 93.3 94.5 93.9 88.5 98.9 98.6 98.8 97.6 92.7 93.1 98.0

4.4. Model Transferring Performance

According to the results of Table 3, Terrain-net achieved the best result on site S7_4,
which is mainly with slope ground and dense vegetation. The mountainous environment
of S7_4 is the closest to our UAV data location, which could probably be the reason. Despite
that the full coverage of S7_4 is 500 m × 500 m, much larger than the area of the training
data and test data, Terrain-net can be well adapted to such large scenes. The main reason
for errors may be from the different point density and observation geometry between ALS
and UAV LiDAR. Terrain-net was not sensitive enough to the low vegetation points of
ALS, because the they are normally much sparser than UAV points. Given the fact that
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Terrain-net was never trained with ALS data, we believe that it has performed beyond our
expectations. As shown in Figure 6, the overall trend of the ground points was generally
continuous, in line with the labeled ground, and there were no obvious misclassified points.
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Compared with the excellent result of S7_4, the result of S4_4 was slightly inferior. The
small city environment of S4_4 was quite different from our training data, and it contained
local undulating ground with many middle-size buildings. According to the results, we
can see that Terrain-net was relatively capable of recognizing locally discontinuous and
undulating ground in S4_4, and it also labelled most vegetation points as non-ground very
well. The fly in the ointment is that it was not good at recognizing the roofs of buildings
which were mislabeled as ground. Since Terrain-net has not observed such small urban
environment like S4_4 yet, it is no wonder to find these errors. It reminds us that data from
more environments to be included in the training progress might expand the applicability
of Terrain-net.

The performance of Terrain-net was relatively good in site S6_23, which is mainly
located in a village environment. It had fewer buildings and more vegetation compared
with S4_4 and had flatter terrain than S7_7, but it still had discontinuous and undulating
terrain. Its errors were mainly concentrated in cases that recognize roofs as ground, and
there were misclassifications at the junction part of vegetation and ground.

In general, the results provided clear evidence that, for a deep neural network ap-
proach to classify point cloud, the raw observation is part of the key to strengthen the
transferring ability of the network. Data never being observed are not necessarily treated
with poor determination, as long as their inner characteristics have certain connections
with the ones being observed. Terrain-net transforms features of trees in UAV data to trees
in ALS data, then it can find the trees in ALS data of mountains and villages. However, it is
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not capable of transforming features from trees to buildings in its current state. Evolutions
will be possible if it is fed with more data from new environments.

5. Conclusions

In this study, we designed an end-to-end network, namely Terrain-net, for UAV
ground point filtering in forested environments. This method combines a state-of-the-art
point convolution KPConv and self-attention. It used well-labeled points which contained
varying forest environments for training and testing. Comparing to classical algorithms,
Terrain-net achieved the best performance. Furthermore, Terrain-net was evaluated with
ALS data to perform remarkably in other environments, such as a small city, a village and
a mountain, indicating good generalization ability and robustness. We believe that the
network can be a useful tool for UAV ground point filtering tasks.

In the future work we hope to further construct this point cloud deep learning tool,
by adding training data collected by multiple sensors from various terrains and scenes to
increase the model generalization capability. The current model, code and documentation
of Terrain-net is available at https://github.com/bjfu-lidar/Terrain-net (accessed on 11
November 2022). We would like to build up an open source, easy-to-use toolset for people
to use.
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Appendix A

Table A1. Description of the UAV LiDAR dataset.

Forest
Environment

Train Dataset Test Dataset

Mean Point
Density (m−2)

Number of
Tiles Tree Species Slope Range

(◦)
Mean Point

Density (m−2)
Number of

Tiles Tree Species Slope
Range/(◦)

Dense vegetation
with flat terrain 793.22 9 Eucalyptus,

Castanopsis [0, 6.5] 955.74 3 Eucalyptus
Magnolia [0,5]

Dense vegetation
with slope 684.48 35

Eucalyptus,
Magnolia,
Michelia

[10.5, 38] 610.38 8 Eucalyptus
Castanopsis [12.5, 33]

Sparse
vegetation with

flat terrain
201.01 8 Eucalyptus,

bamboo [0,7] 282.39 1 Eucalyptus [0,0]

Sparse
vegetation with

slope
290.72 18 Eucalyptus,

Chinese fir [10,36] 370.17 5 Eucalyptus
Michelia [18,32]

Table A2. Confusion Matrix.

Reference

Non-ground (0) Ground (1)

Prediction
Non-ground (0) TN (True negative) FN (False negative)

Ground (1) FP (False positive) TP (True positive)

https://github.com/bjfu-lidar/Terrain-net
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Table A3. Summary of calculation formulas for performance metrics.

Abbreviation Meaning Formula

OA overall accuracy TP+TN
TP+TN+FN+FP

RG Recall of ground points TP
TP+FN

RNG Recall of non-ground points TN
TN+FP

PG Precision of ground points TP
TP+FP

PNG Precision of non-ground points TN
TN+FN

IoUG IoU of ground points TP
TP+FN+FP

IoUNG IoU of non-ground points TN
TN+FN+FP

FG F1-score of ground points 2∗ (R G∗ PG)
(R G+PG)

FNG F1-score of non-ground points 2∗ (R NG∗ PNG)
(R NG+PNG)

MIoU Mean value of IoUG and IoUNG
(Iou G +IouNG)

2

Kp Kappa coefficient

P0 = TN+TP
TP+TN+FP+FN

Pc = ((TN+FN)∗(TN+FP)+(FN+TP)∗(FP+TP))
(TP+TN+FP+FN)2

Kp = (P0−Pc)
1−Pc
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