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Abstract: The speed and direction of a missile shifts sharply in the dive phase, making the az-
imuth frequency modulation (FM) rate change with the azimuthal position, leading to azimuth
ambiguities and image distortion. To solve this problem, a modified nonlinear chirp scaling (NLCS)
algorithm was adopted to compensate for the azimuth FM rate. First, the geometric configuration
and echo signal model of the spaceborne missile bistatic synthetic aperture radar (SAR) were built,
and then the Doppler frequency correction was performed, and the 2-D spectrum of the signal was
derived by the method of series reversion. Next, range migration correction and range compression
were finished in the 2-D frequency domain. Following this, a modified NLCS algorithm was pro-
posed to solve the space variance of Doppler phase problem. After compensating for the azimuth
FM rate, the azimuth compression focusing was completed and the imaging result was obtained.
Finally, by comparing the calculation amount, imaging effect, and performance index with the tradi-
tional NLCS algorithm, it can be concluded that the algorithm reduced the calculation amount by
1.0128 × 108 floating point operations per second (FLOPs) compared with the traditional NLCS
algorithm, and the azimuth focusing effect of the edge point was greatly improved. Its resolution,
peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) were improved by 0.87 m, 3.32 dB,
and 1.79 dB, respectively, which proved the effectiveness and feasibility of this method.

Keywords: spaceborne missile bistatic synthetic aperture radar; range migration correction; Doppler
frequency correction; nonlinear chirp scaling; series reversion

1. Introduction

The synthetic aperture radar (SAR) can penetrate through all weather conditions
and can operate all day long [1,2]. It has been widely used in combat and geological
surveys [3,4]. Compared with the traditional monostatic SAR, the new bistatic SAR has
the advantages of strong concealment, rich information acquisition, and forward-looking
imaging [5]. As the transmitting source, the satellite operates at a certain orbital altitude,
with strong anti-strike capability and wide beam coverage [6]. As the receiver, the missile
has the advantage of high resolution [7]. The new system of spaceborne missile bistatic SAR
can combine the advantages of spaceborne SAR and missile-borne SAR. It can combine the
large-scale coverage and high security of spaceborne SAR with the high resolution and high
mobility of missile-borne SAR, effectively obtaining scene targets including background,
improving the ability to strike targets, and realizing the integration of observation and
attack [8–10].

Although there are many advantages in the special geometry configuration, it also
brings about two challenges in applying the algorithm to processing the echo signal data.
First, it is difficult to obtain an accurate expression of the 2-D spectrum for spaceborne
missile bistatic SAR, which is the basis of the imaging algorithm. In a bistatic system, the
range history is the sum of two hyperbolic range equations, and therefore there is a double
square root term in the range history [11], which makes it difficult to solve the 2-D spectrum
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analytically by directly applying the stationary phase principle [12–15]. The derivations
about the spectrum of the bistatic SAR were completed in [16]. However, these derivations
only apply to some special geometric configurations (azimuth-invariant or parallel) that
do not directly obtain the analytical solution of the bistatic stationary phase leading to
a significant decrease in accuracy. For the flexible spaceborne missile bistatic system, these
approaches in [16] cannot be applied to handle it. To solve the accuracy issue, the Legendre
expansion [17] and orthogonal expansion [18] methods have been preliminarily studied,
but solving a higher-order 2-D spectrum is challenging. The 2-D spectrum was derived
in [19] using the Lagrange inversion theorem (LIT). The bistatic stationary phase can be
derived while maintaining the double square root of the slant range history. Furthermore,
its accuracy is solely determined by the number of analytical solutions retained in the
stationary phase. In this paper, we derived the 2-D spectrum of spaceborne missile bistatic
SAR by using the method of series reversion [20]. The idea is to apply Taylor expansion to
the slant range history, then determine the analytical solution of the stationary phase point
by series reversion after removing the linear range cell migration and the linear phase term.
The precision of this spectrum is controlled by the two slant range expansions as well as
the series reversion.

The second challenge comes from the space variance of the Doppler phase. The
modified Omega-K, chirp scaling algorithm, and range-Doppler algorithms reported
in [16,21–23] are the forward-looking imaging algorithms that are suited for airborne
and spaceborne bistatic SAR, but they are not suitable for missile-borne bistatic SAR.
Back-projection algorithms are capable of handling general bistatic configurations with
topographic dependences and flexible moving platforms [24–27], but the efficiency of the
algorithm is low. A nonlinear chirp scaling algorithm that is more effective for handling
data with the bistatic geometry where the transmitter or receiver is stationary has been
presented [28,29]. In these papers, the azimuth focusing depth is limited as only the sym-
metrical azimuth FM rates and the parabolic are considered. Moreover, [30] considers
the nonlinear component of azimuth FM rate, but only monostatic squinted missile-borne
SAR data can be processed by this algorithm. In [31], a frequency-domain algorithm is
proposed for curvilinear flight SAR, which compensates the spatial variation of the Doppler
frequency modulation term. However, the residual azimuth spatial variation leads to
an affect imaging focus in the azimuth direction for large scenes.

On the basis of the previous research, a modified NLCS algorithm was used to process
the data of spaceborne missile bistatic SAR. The algorithm can be divided into the following
steps. First, the echo signal and the geometric configuration of spaceborne missile bistatic
SAR were established. Then, the Doppler frequency correction operation was conducted in
range frequency and the azimuth time domain. Second, the 2-D spectrum of the spaceborne
missile bistatic SAR echo signal was successfully derived by the method of series reversion.
Following this, the range migration correction and range compression were completed in
the 2-D frequency domain, and the imaging position in the range was determined. Finally,
a modified NLCS algorithm was applied to compensate for the azimuth FM rate, eliminat-
ing the distortion of the image in azimuth, and a great imaging result was presented in
the simulation.

The rest of the paper is organized as follows. Section 2 establishes the geometry of
the spaceborne missile bistatic SAR and builds the echo signal model. As outlined in
Section 3, the Doppler frequency correction was performed in the range frequency and
azimuth time domain. What is more, the accurate 2-D spectrum of the echo signal was
derived in detail by using the method of series reversion. Moreover, Section 3 shows the
performance of the range migration correction and range compression in the 2-D frequency
domain, determining the imaging position in range of the point target and describing the
derivation of the modified NLCS algorithm in detail. Section 4 outlines the performance
of the simulated experiments and presents the simulation results, comparisons between
different algorithms, and imaging performance analysis. Finally, Section 5 concludes
this paper.
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2. Spaceborne Missile Bistatic SAR Geometry and Signal Model

The spaceborne missile bistatic SAR configuration with a moving satellite transmitter
and a moving missile receiver is shown in Figure 1. The satellite operates in the Earth
Centered Inertial coordinates, and its coordinate is determined by orbital elements. It is in
a different coordinate system from the missile, and its coordinate needs to be converted into
the local coordinate system [32]. The coordinate of the satellite in Figure 1 was converted to
the local coordinate system. The initial coordinate of the satellite after conversion was in the
same coordinate system as the missile, and corresponding calculations can be performed
directly. The initial coordinates of the satellite is (xT , yT , zT), the velocity of the satellite
along the y-axis (range) direction is vty, and the velocity of the satellite along the x-axis
(azimuth) direction is vtx. The initial coordinate of the missile is (0, yR, zR), and vy and
vz are the velocity of the missile along the y-axis (range) direction and z-axis (height)
direction, respectively. The acceleration of the missile along the y-axis (range) direction
and z-axis (height) direction are ay and az, respectively. For the convenience of calculation,
the coordinate origin O was set as the target point at the center of the scene. P(x, y, z)
represents an arbitrary point target in the imaging area. RT0 and RR0 represent the initial
distances of the satellite and missile to the origin of the coordinates at the original time,
respectively. RT(η) and RR(η) represent the instantaneous slant ranges of the satellite and
missile to the point target P at slow time η, respectively. The transmitter was a geostationary
earth orbit satellite that can be considered to be flying at a constant velocity in synthetic
aperture time due to the relatively small amount of velocity change. In the dive-down
section, the missile moved along the curve with a constant acceleration. η and τ represent
the azimuth time (slow time) and range time (fast time), respectively. Assuming the initial
moment of the system, the azimuth time η = 0, and the amplitude of the signal echo at
each target point was set as the ideal case, not varying with the bistatic slant range R(η).
Ignoring the problem of system synchronization, it was assumed that the operation of the
satellite and the missile was synchronized at all times, and the electromagnetic scattering
coefficient of the target remained unchanged [33]. Suppose that the transmitted signal was
a linear frequency modulated (LEM) signal, and the received echo after demodulation can
be written as

S(τ, η) = wr(τ − R(η)/c)wa(η − ηc) exp{−j2π fcR(η)/c} exp
{

jπKr(τ − R(η)/c)2
}

, (1)

where wa and wr represent the azimuth and range envelopes, respectively. fc represents
the carrier frequency; Kr is the range frequency modulation rate; c represents the speed of
light; and R(η) represents the bistatic range history, which is the sum of RT(η) and RR(η).
RT(η) and RR(η) can be described by

RT(η) =
√
(xT + vtxη − x)2 +

(
yT + vtyη − y

)2
+ z2T

RR(η) =

√
x2 +

(
yR + vyη + 1

2 ayη2 − y
)2

+
(

zR + vzη + 1
2 azη2

)2 , (2)

and in order to further analyze the slant ranges, RT(η) and RR(η) can be expanded to their
Taylor’s series at η = 0, and then we have{

RT(η) ≈ k0 + k1η + k2η2 + k3η3 + k4η4

RR(η) ≈ b0 + b1η + b2η2 + b3η3 + b4η4 , (3)
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where



Q = (xT − x)vtx + (yT − y)vty G = v2
tx + v2

ty

k0 = RT0

k1 = Q
RT0

k2 = G
RT0
− Q2

RT0

k3 = 3Q3

RT0
5 − 3QG

RT0
3

k4 = −15Q4

RT0
7 + 12Q2G

RT0
5 + 3GQ

RT0
5 − 3G2

RT0
3



a1 = vy(yR − y) + vzzR

a2 = v2
y + v2

z + (yR − y)ay + zRaz

a3 = vyay + vzaz

a4 = a2
y + a2

z

b0 = RR0b1 = a1
RR0

b2 = 1
2 (

a2
RR0
− a2

1
RR0

3 )

b3 = 1
2 (

a3
RR0
− a1a2

RR0
3 +

a3
1

RR0
5 )

b4 = 1
8 (

a4
RR0
− a2

2+4a1a3
RR0

3 +
6a2

1a2
RR0

5 −
5a4

1
RR0

7 )

(4)
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Figure 1. Geometry configuration of spaceborne missile bistatic SAR. 

Different from airborne vehicles that fly along a certain direction with constant ve-
locities, the missile is in the dive phase, with two-dimensional acceleration, and its veloc-
ity magnitude and direction change quickly, with the first-order to fourth-order term 
range cell migration being serious. Therefore, it is important to take the efficiency approx-
imation of each order term into account. Some simulations are presented using the pa-
rameters listed in Table 1, taking the coordinate origin O as the reference point target. The 
results are displayed in Figure 2. According to Figure 2, the fourth-order approximation 

Figure 1. Geometry configuration of spaceborne missile bistatic SAR.

Different from airborne vehicles that fly along a certain direction with constant veloci-
ties, the missile is in the dive phase, with two-dimensional acceleration, and its velocity
magnitude and direction change quickly, with the first-order to fourth-order term range
cell migration being serious. Therefore, it is important to take the efficiency approximation
of each order term into account. Some simulations are presented using the parameters
listed in Table 1, taking the coordinate origin O as the reference point target. The results are
displayed in Figure 2. According to Figure 2, the fourth-order approximation error was
only 1.313 m, while the highest approximation error when keeping the terms up to the
third-order term was around 7.125 m. The sum of higher order terms above the fourth order
was only 0.4687 m, which had little influence on the imaging effect and can be neglected.
Therefore, in order to ensure good high precision imaging, the Taylor expansion series was
taken as the fourth-order term.
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Table 1. Simulation experimental parameters of spaceborne missile bistatic SAR.

Simulation Experimental Parameters Transmitter Receiver

Velocity in x-direction 5200 m/s
Velocity in y-direction −5200 m/s 100 m/s
Velocity in z-direction −50 m/s

Acceleration in y-direction 10 m/s2

Acceleration in z-direction −10 m/s2

Initial coordinate (280, 280, 755) km (0, 10, 5) km
Signal bandwidth 80 MHz

Pulse width 10 µs
Carrier frequency 5.4 GHz

Azimuth sampling interval 0.001 s
Synthetic aperture time 5 s

Range sampling frequency 160 MHz
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3. The Specific Steps of the Algorithm

The imaging method proposed in the paper was divided into the following four
main steps. First, the Doppler frequency correction was performed in the range frequency
azimuth time to obtain a corresponding spectrum in the next calculation. Second, the 2-D
spectrum of spaceborne missile bistatic SAR echo signal was derived. Third, the operations
in range complete range cell migration correction, range compression and determine the
range direction position of the imaging scene. Finally, a modified NLCS algorithm was
introduced to compensate for the azimuth FM rate, complete azimuth compression, and
obtain the final image. According to Figure 3, the flowchart for the proposed algorithm was
summarized to make each step of the process clear (the steps of algorithm improvement
are marked with yellow boxes). The specific operations and derivations for each step are
described in detail below.

3.1. Doppler Frequency Correction

Applying the range Fourier transform (FT) to (1) yields

S( fr, η) = wr( fr)wa(η) · exp
(
−j

π f 2
r

kr

)
· exp

(
−j2π

( fr + fc)

c
· R(η)

)
(5)

where fr represents the frequency domain variable corresponding to τ. Due to factors such
as the missile’s own acceleration and forward-looking imaging that cause Doppler central
frequency deviation, for later calculation in the two-dimensional spectrum, the spectrum
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needs to be shifted to the zero-frequency position. It is assumed that the motion parameters
of the satellite and missile can be calculated accurately during operation. According to
Formula (6), the Doppler central frequency is calculated as

fd = − 2
λ

dR(η)
dη

∣∣∣∣
η=0

= − 2
λ

(
b1 + k1 −

xTvtx + yTvty

RT0
−

vyyR + vzzR

RR0

)
(6)Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 25 

 

 

 
Figure 3. Flow chart of the proposed algorithm. 
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The Doppler frequency deviation term − xTvtx+yTvty
RT0

− vyyR+vzzR
RR0

needs to be corrected,
and the Doppler frequency correction factor is

H1 = exp
(
−j2π

( fr + fc)

c

(
−

xTvtx + yTvty

RT0
−

vyyR + vzzR

RR0

)
η

)
, (7)
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multiplying (7) and (5) in the range frequency and azimuth time domain yields

S1( fr, η) = wr( fr)wa(η) · exp
(
−j π f 2

r
kr

)
·

exp
[
−j2π

( fr+ fc)
c ·

(
(k0 + b0) + (k1 + b1)η

+(k2 + b2)η
2 + (k3 + b3)η

3 + (k4 + b4)η
4

)] . (8)

3.2. Derivation of the Signal 2-D Spectrum

Application of the azimuth Fourier transform to (8) needs to use the method of series
reversion [20].

Assuming

SA( fr, η) = wr( fr)wa(η) · exp
(
−j

π f 2
r

kr

)
exp

[
−j2π

( fr + fc)

c
· R1(η)

]
, (9)

where
R1(η) = (k0 + b0) + (k2 + b2)η

2 + (k3 + b3)η
3 + (k4 + b4)η

4. (10)

Then, applying the azimuth Fourier transform to (9) yields

SA( fr, fa) = wr( fr)wa( fa) · exp
(
−j

π f 2
r

kr

)
· exp

{
−j2π

[
fc + fr

c
R1(η) + faη

]}
, (11)

where fa represents the frequency domain variable correspond to η. Substituting (10) into
(11), assuming

Q(η) = −2π
( fc + fr)

c

(
(k2 + b2)η

2 + (k3 + b3)η
3 + (k4 + b4)η

4
)
− 2π faη, (12)

then

dQ
dη

= −2π
( fc + fr)

c
[2(k2 + b2)η + 3(k3 + b3)η

2 + 4(k4 + b4)η
3]− 2π fa = 0 (13)

From (13), we have

− c
( fc + fr)

fa = 2(k2 + b2)η + 3(k3 + b3)η
2 + 4(k4 + b4)η

3, (14)

applying the series reversion to (14) and inverting the power series yield

η = A1

(
− fac

fc + fr

)
+ A2

(
− fac

fc + fr

)2
+ A3

(
− fac

fr + fr

)3
, (15)

where

A1 =
1

2(k2 + b2)
, A2 = − 3(k3 + b3)

8(k2 + b2)
3 , A3 =

9(k3 + b3)
2 − 4(k2 + b2)(k4 + b4)

16(k2 + b2)
5 . (16)

Substituting (15) into (11), we obtain the 2-D spectrum of SA(τ, η).

SA( fr, fa) = wr( fr)wa( fa) · exp
(
−j π f 2

r
kr

)
·

exp{−j2πϕ0( fr, fa)}
, (17)
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where

ϕ0( fr, fa) = fc+ fr
c R0 +

A2
1(k2+b2)c−A1c

fc+ fr
f 2
a

+
−(−A2+2A1 A2(k2+b2)+A3

1(k3+b3))c2

( fc+ fr)
2 f 3

a

+
(−A3+2A1 A3(k2+b2)+A2

2(k2+b2)+A4
1(k4+b4)+3A2

1 A2(k3+b3))c3

( fc+ fr)
3 f 4

a

(18)

According to the shift properties and FFT skew, we have

f (τ, η)↔ F
(

fτ , fη

)
f (τ, η) exp{−j2π fκη} ↔ F

(
fτ , fη + fκ

)
f (τ − κη, η)↔ F

(
fτ , fη + κ fτ

) , (19)

then, we obtain the original 2-D point target spectrum

S2( fr, fa) = SA

(
fr, fa + ( fc + fr)

k1+b1
c

)
= wr( fr)wa( fa) · exp[jϕ( fr, fa)]

, (20)

where

ϕ( fr, fa) = −π f 2
r

Kr
− 4π( fr+ fc)(RT0+RR0)

c

+2π c
8b2( fr+ fc)

(
fa +

2( fr+ fc)
c (b1 + k1)

)2

+2π
(b3+k3)c2

32(b2+k2)
3( fr+ fc)

2

(
fa +

2( fr+ fc)
c (b1 + k1)

)3

+2π

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

c3

512(b2+k2)
5( fr+ fc)

3

(
fa +

2( fr+ fc)
c (b1 + k1)

)4

. (21)

According to the properties of series convergence [34]

1
fc+ fr

≈ 1
fc

(
1− fr

fc
+ f 2

c
f 2
c
− f 3

r
f 3
c

)
1

( fc+ fr)
2 ≈ 1

f 2
c

(
1− 2 fr

fc
+ 3 f 2

r
f 2
c
− 4 f 3

r
f 3
c

)
1

( fc+ fr)
3 ≈ 1

f 3
c

(
1− 3 fr

fc
+ 6 f 2

r
f 2
c
− 10 f 3

r
f 3
c

)
, (22)

substituting (22) into (21) and expanding (21) into its Taylor series of fr at fr = 0 yields

ϕ( fr, fa) = ϕ0( fa) + ϕ1( fa) fr + ϕ2( fa) f 2
r + ϕ3( fa) f 3

r , (23)



Remote Sens. 2022, 14, 5770 9 of 23

where

ϕ0( fa) = 2π fc
c


RT0 + RR0 −

(b1+k1)
2

4(b2+k2)
− (b1+k1)

3(b3+k3)

8(b2+k2)
3

−
(

9(b3+k3)
2−4(b2+k2)(b4+k4)

)
(b1+k1)

4

64(b2+k2)
5



+2π


b1+k1

2(b2+k2)
+

3(b1+k1)
2(b3+k3)

8(b2+k2)
3

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)

3

16(b2+k2)
5

 fa

+2π


c

4(b2+k2) fc
+ 3(b1+k1)(b3+k3)c

8(b2+k2)
3 fc

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3(b1+k1)c

32(b2+k2)
5 fc

 f 2
a

+2π

(
(b3+k3)c2

8(b2+k2)
3 f 2

c
+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)c2

16(b2+k2)
5 f 2

c

)
f 3
a

+2π

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

c3

64(b2+k2)
5

f 3
c

f 4
a

(24)

ϕ1( fa) ≈ 2π
c


−(RT0 + RR0) +

(b1+k1)
2

4(b2+k2)
+

(b1+k1)
3(b3+k3)

8(b2+k2)
3

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)

4

64(b2+k2)
5



−2π


c

4(b2+k2) f 2
c
+ 3(b1+k1)(b3+k3)c

8(b2+k2)
3 f 2

c

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3(b1+k1)
3c

32(b2+k2)
5 f 2

c

 f 2
a

−2π

(
(b3+k3)c2

4(b2+k2)
3 f 3

c
+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)c2

16(b2+k2)
5 f 3

c

)
f 3
a

−2π

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3c3

64(b2+k2)
5 f 4

c
f 4
a

, (25)

ϕ2( fa) ≈ − π
Kr

+ 2π


c

4(b2+k2) f 3
c
+ 3(b1+k1)(b3+k3)c

8(b2+k2)
3

f 3
c

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3(b1+k1)
3c

32(b2+k2)
5 f 3

c

 f 2
a

+2π

(
3(b3+k3)c2

8(b2+k2)
3 f 4

c
+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3(b1+k1)c2

16(b2+k2) f 4
c

)
f 3
a

+2π

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

3c3

64(b2+k2)
5 f 5

c
f 4
a

, (26)
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ϕ3( fa) ≈ − πc f 2
a

2 f 4
c (k2+b2)

− 3πc(k3+b3)(k1+b1) f 2
a

4 f 4
c (k2+b2)

3

−
3πc

(
9(k3+b3)

3−4(k2+b2)(k4+b4)
)
(k1+b1)

2 f 2
a

16 f 4
c (k2+b2)

5

−
πc2

(
9(k3+b3)

2−4(k2+b2)(k4+b4)
)
(k1+b1) f 3

a

2 f 5
c (k2+b2)

5

−πc2(k3+b3) f 3
a

f 5
c (k2+b2)

3 −
5πc3

(
9(k3+b3)

2−4(k2+b2)(k4+b4)
)

f 4
a

16 f 6
c (k2+b2)

5

(27)

Inspecting (23), ϕ0( fa) represents the azimuth modulation, which has no correlation
with range variables. ϕ1( fa) is the range frequency linear term coefficient, which is related
to large range cell migration and can be matched with the corresponding filter to achieve
linear range migration correction. The first component in ϕ2( fa) represents the range
modulation, and the remainder of components are the secondary range compression (SRC)
terms that represent the range–azimuth coupling. ϕ3( fa) is the cubic term of the range
frequency, which represents the rate of change of the range chirp rate. Because of the
range-dependent characteristic of the above formula, it is difficult to figure out an accurate
compensation for all targets at different ranges. To solve this problem, it is necessary to
analyze the range-dependent characteristic of the residual range cell migration (RCM) and
SRC. Because the effect of higher order terms above, the third order is very small, and only
the third term coefficients were considered.

The three points, T1, T6, and T16, are located at the position of range directions 0,
150 m, and 300 m, respectively, as shown in Figure 4. The range-dependent characteristic
evaluation of the SRC and the residual RCM are shown in Figure 5. Observing the images,
it can be seen that the SRC phase error and the residual RCM error were smaller than π/4
and one range resolution cells, respectively. Thus, the imaging results would not be affected
by those effects of the range dependence of the residual SRC and RCM.
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3.3. The Operations in Range

In order to keep the range migration error within 1/4 range sampling, we performed
bulk range cell migration correction in the 2-D frequency domain by multiplying with the
conjugate of ϕ1( fa), setting the scene center as the reference point target. The factor was
given by

H21 = exp(−jϕ1( fa) fr). (28)

The range compression term is exp(−jϕ2( fa) f 2
r ). Because the missile was in the high-

frequency band, only the first component term in ϕ2( fa) was kept, and the remainder terms
in ϕ2( fa). were ignored, having little impact on range compression. The range compression
factor is expressed as

H22 = −π
(

f 2
r /Kr). (29)

The echo signal of any point target in the scene will become a vertical line in the azimuth
after range migration correction and range pulse compression. The linear term was elim-
inated after the range migration correction. In order to determine the range direction
position of the imaging scene, the function was multiplied by

H23( fr) = exp

−j
2π fr

c


RT0 + RR0 −

(b1+k1)
2

4(b2+k2)
− (b1+k1)

3
(b3+k3)

8(b2+k2)
3 −

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)

4

64(b2+k2)
5


. (30)

Multiplying (20) with (28), (29), (30) and transforming the result into range time azimuth
frequency domain by the range inverse Fourier transform, the range focused signal can be
written as

S3(τ, fa) = sin c[Br(τ − RTR/c)]wa( fa) exp[jϕ0( fa)], (31)

where

RTR = RT0 + RR0 −
(b1 + k1)

2

4(b2 + k2)
−
(
b1 + k1

)3
(b3 + k3)

8(b2 + k2)
3 −

(
9(b3 + k3)

2 − 4(b2 + k2)(b4 + k4)
)
(b1 + k1)

4

64(b2 + k2)
5 .
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To illustrate the range processing of the aforementioned algorithm, some simulations
on the echo trajectories and 2-D spectrum of the simulated targets are presented before and
after the range operation, and the results are shown in Figure 6. The simulation parameters
are shown in Table 1. Figure 6a shows the original signal in the time domain, Figure 6b
represents the original signal in the two-dimensional frequency domain, Figure 6d is the
image of the signal after range compression, Figure 6e is the image of the signal after range
compression and migration correction, and Figure 6c shows the two-dimensional spectrum
after range migration correction. Combined with the original signal echo in Figure 6a,d, the
original signal echo was compressed into nine slanted straight lines after range compression,
and then the slanted lines were straightened by range migration correction, as shown in
Figure 6e. The spectrum was also corrected accordingly, as shown in Figure 6b,c.
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Figure 6. Illustration of the range operation in the proposed algorithm. (a) The original signal
in the time domain; (b) the original signal in the two-dimensional frequency domain; (c) the
two-dimensional spectrum after range migration correction; (d) the image of the signal after range
compression; (e) the image of the signal after range compression and migration correction.

3.4. Azimuth Compression by a Modified Bistatic Azimuth NLCS Algorithm

Different from the bistatic configuration with constant speed [28–30], after range pulse
compression and range migration correction, the azimuth FM rate of the targets located
in different azimuth directions of the same range unit changed significantly and could
not be regarded as a constant (specific simulation analysis was conducted later). If the
azimuthal direction is compressed directly by the azimuthal matching filter function, which
is constructed by the azimuth FM rate of the azimuthal center, the edge target points
of the imaging scene will be difficult to focus. Therefore, before the azimuth compres-
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sion, the variation of azimuth FM rate along the azimuth direction must be compensated.
The azimuth nonlinear scaling algorithm was introduced here to improve the effect of
azimuth focusing.

The linear term coefficient of the azimuth frequency in the signal can be written as
g(y), which represents the azimuthal position of the target point.

g(y) =
b1 + k1

2(b2 + k2)
+

3(b1 + k1)
2(b3 + k3)

8(b2 + k2)
3 +

(
9(b3 + k3)

2 − 4(b2 + k2)(b4 + k4)
)
(b1 + k1)

3

16(b2 + k2)
5c

(32)

Expanding (32) into its Taylor series of y at y = 0 and keeping up to the first-order
term yield

g(y) ≈ g0 + ρy, (33)

where

g0 = g(y)
∣∣y=0

=

(
b1+k1

2(b2+k2)
+

3(b1+k1)
2(b3+k3)

8(b2+k2)
3 +

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)

3

16(b2+k2)
5c

)∣∣y=0

(34)

ρ =
dg(y)

dy
∣∣y=0 , (35)

g0 represents the whole azimuth displacement, which is easily corrected by multiplying
with its conjugate. ρy reflects the compression or stretching of the image along the azimuth
direction, which is caused by the acceleration and height speed. Due to the acceleration of
the missile, the speed changes rapidly, making ρy 6= y/vy. In order to correct ρy and make
ρy = y/vy, the nonlinear chirp scaling method proposed later was adopted to eliminate
the influence on the image. First, the whole azimuth displacement g0 was corrected by its
conjugate factor as follows.

H3( fa) = exp(−j2πg0 fa), (36)

multiplying (31) and (36) yields

S4(τ, fa) = sinc
[

Br

(
τ − RT0+RR0

c

)]
wa( fa) exp[j(θ + 2π∆η fa)]

· exp(−jπ f 2
a

Ka
) exp(j2πZ1 f 3

a ) exp(j2πZ2 f 4
a )

, (37)

where

θ = 2π


− 2 fcRT0

c +
(b1+k1)

2 fc
2(b2+k2)c

+
(b1+k1)

3(b3+k3) fc

4(b2+k2)
3c

+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)

4 fc

32(b2+k2)
5
c



∆η =

 b1 + k1

2(b2 + k2)
+

3(b1 + k1)
2(b3 + k3)

8(b2 + k2)
3 +

(
9(b3 + k3)

2 − 4(b2 + k2)(b4 + k4)
)
(b1 + k1)

3

16(b2 + k2)
5c

− g0

Ka =
−32(b2 + k2)

5 fc

8(b2 + k2)
4c + 12(b1 + k1)(b2 + k2)

2(b3 + k3)c+
3(b1 + k1)

2c
(

9(b3 + k3)
2 − 4(b2 + k2)(b4 + k4)

)

Z1 =
(b3 + k3)c2

32(b2 + k2)
3 f 2

c
+

(
9(b3 + k3)

2 − 4(b2 + k2)(b4 + k4)
)
(b1 + k1)c2

64(b2 + k2)
5 f 2

c
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Z2 =

(
9(b3 + k3)

2 − 4(b2 + k2)(b4 + k4)
)

c3

512(b2 + k2)
5 f 3

c

Due to the influence of missile-borne acceleration, the azimuth FM rate mentioned
above will change with the azimuth position y, as shown in Figure 7a. Considering
the azimuth FM rate in the center of the scene as the whole azimuthal FM rate, it will
dramatically affect the imaging focus on both sides of the scene edges. Therefore, it is very
essential to perform a deep analysis in the azimuth-dependent characteristic of the azimuth
FM rate. Expanding Ka into its Taylor series of ∆η at ∆η = 0 yields

Ka = Ka0 + Ka1∆η + Ka2∆η2 + O(∆η), (38)

where

Ka0 = Ka|∆η=0, Ka1 =
dKa

d∆η

∣∣∣∣
∆η=0

=
dKa

dy

∣∣∣∣
y=0

dy
d∆η

=
1
ρ

dKa

dy

∣∣∣∣
y=0

Ka2 =
1
2

d2Ka

d(∆η)2

∣∣∣∣∣
∆η=0

=
1

2ρ

d
d∆η

(
dKa

dy

)∣∣∣∣
∆η=0

=
1

2ρ

d2Ka

dy2

∣∣∣∣
∆η=0

dy
d∆η

=
1

2ρ2
d2Ka

dy2

∣∣∣∣
y=0
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The third- and fourth-term coefficients Z1 and Z2 of fa in (37) had a small effect with
the change of azimuth, as shown in Figure 7b, and for the convenience of calculation, the
amplitude of variation can be ignored. Therefore, the coefficient amplitude of the whole
azimuthal direction can be considered as the coefficient amplitude of the azimuthal center.
Before the azimuth FM rate compensation and nonlinear chirp scaling operation, in order
to eliminate the influence of the third-order and fourth-order terms of azimuth frequency
fa, it is necessary to introduce the third-order and fourth-order filters in the range time
azimuth frequency domain. The third-order and fourth-order were are as follows:

H41( fa) = exp(j2πA f 3
a )

H42( fa) = exp(j2πB f 4
a )

, (39)

where A and B are the uncertain parameters, which were calculated later.
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Multiplying (37) with (39) yields

S5(τ, fa) = sinc
[

Br

(
τ − RT0+RR0

c

)
/c
]
wa( fa)

exp(jθ) exp

j

 2π∆η fa − π f 2
a /Ka+

2πA1 f 3
a + 2πB1 f 4

a

 , (40)

where

A1 = A + (b3+k3)c2

32(b2+k2)
3 f 2

c
+

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)
(b1+k1)c2

64(b2+k2)
5 f 2

c

B1 = B +

(
9(b3+k3)

2−4(b2+k2)(b4+k4)
)

c3

512(b2+k2)
5 f 3

c

. (41)

Applying the principle of stationary phase (POSP) to (40) and transforming (40) into
the azimuth time domain yields

S6(τ, η) = sinc
[

Br

(
τ − RT0+RR0

c

)]
wa(η) exp

 jπKa(η − ∆η)2+

j2πA1K3
a(η − ∆η)3


exp

[
j2πB1K4

a(η − ∆η)4
] . (42)

The next step is to compensate the azimuth FM rate so that the azimuth FM rate of
each target point is equal to the azimuth FM rate of the scene center. According to the
algorithm of nonlinear chirp scaling, a fourth-order chirp scaling factor H5 was constructed
to multiply the above formula to meet the above requirements.

H5(η) = exp
(

jπl2η2 + j2πl3η3 + j2πl4η4
)

, (43)

where l2, l3, l4 are the uncertain coefficients. Multiplying (42) with (43) and transforming
the result into the azimuth frequency domain by applying the azimuth Fourier
transform yields

S7(τ, fa) = wa( fa)sinc
[

Br

(
τ − RT0 + RR0

c

)]
exp[jφ( fa)], (44)

expressing the φ( fa) as a power series of ∆η and fa yields

φ( fa) = c1
(

f 2
a , f 3

a , f 4
a
)
+ c2 fa∆η + c3 fa∆η2 + c4 f 2

a ∆η

+c5 f 2
a ∆η2 + c6 f 3

a ∆η + c7( f n
a ∆ηm)

, (45)
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where 

c1 = − π
Ka0+l2

f 2
a + 2π

A1K3
a0+l3

(Ka0+l2)
3 f 3

a ++2π
B1K4

a0+l4
(Ka0+l2)

4 f 4
a

c2 = −2πKa0
Ka0+l2

c3 = 2π

[
− Ka1

Ka0+l2
+ Ka0Ka1

(Ka0+l2)
2 +

3A1K3
a0l2

2+3K2
a0l3

(Ka0+l2)
3

]

c4 = π Ka1
(Ka0+l2)

2 + 6π
−A1K3

a0l2+Ka0l3
(Ka0+l2)

3

c5 = π Ka2
(Ka0+l2)

2 + π
6Ka1l3−K2

a1
(Ka0+l2)

3

− 18π
Ka0Ka1l3+A1K2

a0Ka1l2
2

(Ka0+l2)
4 + 12π

K2
a0l4+B1K4

a0l2
2

(Ka0+l2)
4

c6 = 6π
A1K2

a0Ka1l2
2−Ka1l3+

(Ka0+l2)
4 + 8π

Ka0l4−B1K4
a0l2

(Ka0+l2)
4

(46)

As can be seen from (45), the first term contained only azimuth frequencies, which
can be removed directly by constructing a conjugate-matching filter function during
azimuth compression, while the second term is a linear term of azimuthal frequency,
which contains the position information of the target imaging azimuth and cannot be
removed. The remaining items represent the azimuth-dependent terms that degrade
the effect of azimuth focusing. To compensate for the azimuth FM rate and eliminate
azimuth-dependent modulation, making its value not change with azimuth position, we set
c2(l2) to −2π/α(α = ρvy) and c3, c4, c5, c6, c7 to 0. The formulas can be solved as follows.

A1 = Ka1(α−0.5)
3K3

a0(α−1)
, l2 = Ka0(α− 1)

B1 =
−2αKa0Ka2+(10α−5)K2

a1
24K5

a0(α−1)
, l3 = Ka1(α−1)

6

l4 =
−2αKa0Ka2+(7α−5)K2

a1
24Ka0

, (47)

substituting (47) into (44) yields

S8(τ, fa) = wa( fa)sinc
[

Br

(
τ − RT0+RR0

c

)]
· exp

(
−j2π

∆η
α fa − jπ 1

Ka0+l2
f 2
a

)
· exp

[
j2π

A1K3
a0+l3

(Ka0+l2)
3 f 3

a + j2π
B1K4

a0+l4
(Ka0+l2)

4 f 4
a

] . (48)

Inspecting (48), The second, third, and fourth term coefficients of azimuth frequency
are constant and no longer vary with azimuthal change, and thus the compensation cor-
rection was completed and the azimuth-dependent characteristic of the azimuth FM rate
was removed entirely. Therefore, the azimuth direction can be compressed directly, and the
azimuth matching filter function can be written as

H6( fa) = exp

[
jπ

1
Ka0 + l2

f 2
a − j2π

A1K3
a0 + l3

(Ka0 + l2)
3 f 3

a − j2π
B1K4

a0 + l4
(Ka0 + l2)

4 f 4
a

]
, (49)

multiplying (48) with (49) yields

S9(τ, fa) = sinc
[

Br

(
τ − RT0 + RR0

c

)]
wa( fa) exp

(
−j2π

∆η

α
fa

)
. (50)
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Transforming (50) into the range time azimuth time domain by azimuth inverse FT
yields the final SAR image.

4. Experimental Simulations and Discussion
4.1. Simulation Results by the Proposed Algorithm

As shown in Figure 4, the simulations chose an array of 5 × 5 point targets at intervals
of 100 m and 150 m in the azimuth and range axes, respectively. T1 is the target point at the
center of the scene, and T5 is the edge point with the most severe azimuthal variation. The
system parameters used in the simulation are shown in Table 1. The results of the point
target imaging simulation are shown in Figure 8a. Due to the influence of forward-looking
imaging, there was a certain geometric distortion in the range and azimuth direction, which
was not consistent with the real target position. The results of the distortion correction are
shown in Figure 8b.
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4.2. Comparison of Algorithm Efficiency

As can be seen from the flow chart, the increase in the computation of the algorithm
mainly came from the azimuth nonlinear scaling operations, including one FFT, one IFFT,
and five times phase multiplication (as shown in the azimuth-processing section of the flow
chart). According to [6], a complex phase multiplication takes six FLOPs, and an N-point
FFT or IFFT takes 5N log2(N) FLOPs [35]. In the simulation experiment, the number of
sampling points in the range direction was N f ast = 2048, the number of sampling points
in the azimuth direction was Nslow = 512, and the number of output points selected after
range compression was Nr = 1856. It can be calculated that the added floating point
arithmetic amount after the azimuth nonlinear operation was

∆Q = 2× 5Nr Nslow log2(Nslow) + 5× 6Nr Nslow

= 0.950272× 106(FLOPs)
(51)

Although the calculation amount was slightly increased compared with that without
considering the space variance of azimuth FM rate, the azimuthal focusing was obviously
improved and the image effect was better.

The computational complexity of the traditional NLCS algorithm in [36] was (setting
the interpolation kernel value to 6)
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Q1 = 20NslowNr logNr
2 +20NslowNr logNslow

2 +30NaNr + 2(2Nk − 1)NaNr
= 4.26824171× 108(FLOPs)

,

the total computation of the proposed algorithm in this paper is

Q = 2× 5Nr Nslow log2(Nr) + 4× 5Nr Nslow log2(Nslow) + 9× 6Nr Nslow
= 3.25544181× 108(FLOPs)

It can be seen that the computational amount of the algorithm proposed in this paper
was better than the traditional NLCS algorithm in [36], and the algorithm in this paper
had no time-consuming interpolation operation, and thus its processing efficiency was
higher. Moreover, the azimuth focusing was significantly improved, and the image effect
was better (a detailed comparison is made in the next section).

4.3. Comparison of Imaging Effects

In order to evaluate the imaging performance of the proposed method, the traditional
azimuth NLCS algorithm in [36] was introduced here to process the same simulated data,
which solely considered the linear component of azimuth FM rate and disregarded the
effects of residual RCM. Figure 9b shows the imaging result obtained by the traditional
azimuth NLCS algorithm. By comparing Figure 9a,b, it can be seen that the traditional
azimuth NLCS algorithm failed to achieve the same focus on the azimuth direction as
the proposed azimuth NLCS algorithm because of the mismatched azimuth FM rate. The
imaging result of point 1, point 3, and point 5 that were positioned at the same range but
in different azimuth directions are shown in Figure 9a,b by using the traditional azimuth
NLCS algorithm and the proposed azimuth NLCS algorithm, respectively. By comparing
Figure 9a,b, it can be seen that in Figure 9a, the imaging effect was good with the change of
azimuth distance from the center of the scene to the edge of the scene, while in Figure 9b,
the image quality in the azimuth direction decreased rapidly. The specific performance
comparison of imaging results is shown in Figure 10. Furthermore, Table 2 shows the
calculated PSLR and ISLR for the corresponding targets in order to evaluate the imaging
performance of the proposed NLCS algorithm. According to the Table 2, the proposed
NLCS algorithm achieved nearly theoretical PSLR and ISLR, whereas the traditional NLCS
was only able to achieve focused performance in the range direction, and in azimuth
direction, the measured parameters were poorer than the theoretical values.

Table 2. The imaging performance index of different algorithms.

Method
Azimuth Range

Target Resolution(m) PSLR(dB) ISLR(dB) Resolution(m) PSLR(dB) ISLR(dB)

Modified
NLCS

algorithm

T1 1.09 −13.55 −9.61 1.83 −13.21 −10.34
T3 1.12 −13.26 −9.52 1.86 −13.12 −10.21
T5 1.21 −12.96 −9.48 1.88 −13.18 −10.03

Traditional
NLCS

algorithm

T1 1.13 −12.98 −9.50 1.84 −12.96 −10.10
T3 1.52 −10.87 −8.52 1.88 −12.87 −9.97
T5 2.08 −9.64 −7.69 1.90 −12.90 −9.89
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Figure 10. Detailed imaging results by the traditional NLCS and modified algorithm. (a) Contour
plot of target 1 focused by the modified algorithm. (b) Azimuth impulse responses of target 1
by the modified algorithm. (c) Range impulse responses of target 1 by the modified algorithm.
(d) Contour plot of target 1 focused by the traditional NLCS algorithm. (e) Azimuth impulse
responses of target 1 by the traditional NLCS algorithm. (f) Range impulse responses of target 1
by the traditional NLCS algorithm. (g) Contour plot of target 3 focused by the modified algorithm.
(h) Azimuth impulse responses of target 3 by the modified algorithm. (i) Range impulse responses
of target 3 by the modified algorithm. (j) Contour plot of target 3 focused by the traditional NLCS
algorithm. (k) Azimuth impulse responses of target 3 by the traditional NLCS algorithm. (l) Range
impulse responses of target 3 by the traditional NLCS algorithm. (m) Contour plot of target 5 focused
by the modified algorithm. (n) Azimuth impulse responses of target 5 by the modified algorithm.
(o) Range impulse responses of target 5 by the modified algorithm. (p) Contour plot of target 5 focused
by the traditional NLCS algorithm. (q) Azimuth impulse responses of target 5 by the traditional
NLCS algorithm. (r) Range impulse responses of target 5 by the traditional NLCS algorithm.

5. Conclusions

In this paper, a modified NLCS algorithm for the spaceborne missile bistatic SAR data
processing is presented. Firstly, the system configuration and signal model were established,
and then the Doppler frequency correction was carried out to eliminate Doppler center
frequency deviation, which was caused by the acceleration of the missile itself and the
forward-looking imaging. Next, the two-dimensional spectrum expression was derived
by the method of series reversion, and range migration correction and range compression
were performed in the two-dimensional frequency domain. Then, a modified azimuth
NLCS operation was applied to eliminate the azimuth dependence of Doppler parameters
through the use of a higher order approximation to the cubic phase term and azimuth
FM rate. The modified azimuth NLCS operation equalized the azimuth FM rate so that
azimuth compression can be achieved. Finally, the high efficiency and feasibility of the
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algorithm were proved by comparing the imaging effect, computational efficiency, and
performance analysis between different algorithms.
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