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Abstract: This paper aims to develop a multi-rotor-based visual tracker for a specified moving object.
Visual object-tracking algorithms for multi-rotors are challenging due to multiple issues such as
occlusion, quick camera motion, and out-of-view scenarios. Hence, algorithmic changes are required
for dealing with images or video sequences obtained by multi-rotors. Therefore, we propose two
approaches: a generic object tracker and a class-specific tracker. Both tracking settings require the
object bounding box to be selected in the first frame. As part of the later steps, the object tracker uses
the updated template set and the calibrated RGBD sensor data as inputs to track the target object
using a Siamese network and a machine-learning model for depth estimation. The class-specific
tracker is quite similar to the generic object tracker but has an additional auxiliary object classifier.
The experimental study and validation were carried out in a robot simulation environment. The
simulation environment was designed to serve multiple case scenarios using Gazebo. According to
the experiment results, the class-specific object tracker performed better than the generic object tracker
in terms of stability and accuracy. Experiments show that the proposed generic tracker achieves
promising results on three challenging datasets. Our tracker runs at approximately 36 fps on GPU.

Keywords: visual odometry; single-object tracking; deep learning; robotics; unmanned aerial vehicles;
high-accuracy positioning

1. Introduction

Multi-rotor aerial vehicles equipped with cameras are capable of covering large areas
dynamically, which is why they are valuable for many applications, such as tracking
moving objects. When objects in the scene are isolated and distinct from the background,
tracking is geneally an achievable task. However, despite decades of research, visual
tracking remains a challenging problem in real-world applications due to factors such
as partial occlusion, quick and abrupt object motion, lighting changes, and substantial
variations in the view point and pose of the target object.

Single-object tracking (SOT) is a fundamental computer vision problem that has
several applications, including autonomous vehicles [1–3] and surveillance systems [4].
The objective of SOT is to track a defined target within a video sequence using its initial
state (position and appearance). SOT approaches [5–9] that utilize the Siamese paradigm
are commonly used in 2D and 3D SOT as the Siamese paradigm provides a compromise
between performance and speed. Using an appearance-matching strategy, the Siamese
model tracks the target in the candidate region using features from the target template and
the search area retrieved by a shared backbone.

Since there is no pre-trained object detector involved, single-object trackers are fre-
quently referred to as “generic object trackers” or “model-free trackers” [10–12]. From
a learning standpoint, model-free visual object tracking is a difficult problem given that
there is only one instance of the target in the first frame, and the tracker has to learn the
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target appearance in the following frames. In our proposed system, we tried to avoid this
issue by replacing the template frame with a template set which remains updated based on
proposed simple heuristic rules.

The fundamental distinction between detection and tracking is the application of
dynamics. During detection, the object is detected independently in each frame. In tracking,
we predict the new location of the object in the next frame using estimated dynamics,
and then we detect that object. Based on the measurements, we update the estimated
dynamics and iterate.

Even while the results of the appearance matching for 3D SOT on the KITTI dataset
are decent [13], Zheng et al. [7] noted that KITTI has the following characteristics:

(i) The subject moves very slightly between two successive frames, preventing a signifi-
cant change in appearance;

(ii) There are few or no distractions in the target’s environment.

The aforementioned qualities are not applicable in natural situations. As objects move
quickly or the hardware can only handle a limited frame sampling rate, self-occlusion
may cause dramatic changes in successive LiDAR views. Additionally, negative samples
increase dramatically in scenes where heavy traffic is present. Even humans may find it
difficult to identify a target based on its appearance in these situations.

As shown in Figure 1, ourfocus is to track single objects by utilizing only a single
RGBD camera rather than the use of other sensors, such as LiDARs, for multiple reasons,
such as the use of cameras is cheaper than LiDARs; cameras are lighter in weight than
LiDARs, which is very important in the case of multi-rotors; and both sensors cannot see
through obstacles, such as heavy rain, snow, and fog.

Based on the above observations, we propose to tackle 3D SOT from a different perspec-
tive using the simplicity of a Siamese paradigm [5] with the power of robust monocular depth
estimation [14]. The main contributions of the proposed system are as follows:

1. Utilize a monocular-based hybrid-depth estimation technique to overcome the limita-
tions of sensor depth maps.

2. Employ the template set to cover the target object in a variety of poses over time.
3. Introduce the auxiliary object classifier to improve the overall performance of the

visual tracker.

Figure 1. The visual tracker in the simulation environment. (a) The bounding-box area defines the
target object for the tracker, (b) the single-object tracker is tracking the target, (c) the hybrid-depth map
is generated in real time to supply the path planner with the position of the target each time step in the
3D space, and (d) the quadrotor moves toward the target until the quadrotor reaches to the object.



Remote Sens. 2022, 14, 5756 3 of 21

2. Related Work

In recent years, visual object tracking has been a prominent research field [15,16].
Due to its necessity and numerous applications, such as autonomous vehicles, robotics,
and surveillance, more tracking algorithms are introduced each year [15,16]. Here, we
examine the current advancements in the field of visual tracking. To do that, we compare
various approaches in terms of the main technique (estimation-based tracking, feature-
based tracking, and learning-based tracking); in our comparison, we will consider the
advantages, disadvantages, and other details such as the number of tracked objects (single
or multiple objects), and whether the tracker works in 2D or 3D space, etc. By the end of
this section, we will have outlined a comparison between state-of-the-art deep-learning
single-object Trackers.

There are many challenges in object tracking [17,18], such as background clutter, scale
variation, occlusion, and fast motion, etc. Figure 2 shows some examples from the OTB
dataset [18], with each example depicting one of the main challenges. In recent years, many
approaches have been proposed to tackle each of the problems; here, we will discuss the
state-of-the-art algorithms based on the used tracking techniques.

Figure 2. Each case illustrates one of the main challenges in object tracking. (a) The ground truth is
moving quickly, (b) the object is partially or completely hidden, (c) the background around the target
object has the same color or texture as that object, and (d) the illumination in the target area has been
dramatically affected.

Estimation-based tracking: To use the Kalman filter [19] in object tracking [20], a dy-
namic model of the target movement should be designed. A Kalman filter could be used
to calculate the position in the case of linear systems with Gaussian errors. For nonlinear
dynamic models, other suitable methods are used, such as the extended Kalman filter [21].

Tracking can benefit from the main properties of the Kalman filter [19], which include:

• Predicting the future location of the object.
• Forecast correction based on current measurements.
• Noise reduction caused by incorrect diagnosis.

The vast majority of tracking problems are non-linear. As a result, particle filters
have been investigated as a possible solution to such problems. The particle filter is a
non-Gaussian-noise measurement model that employs a statistical calculation method
known as recursive Monte Carlo. The main concept of the particle filter is to represent
the distribution of a set of particles. Each particle is assigned a probability weight, which
represents the probability of sampling that particle using the probability density function.
One disadvantage of this method is that the particles with the highest probability are
selected multiple times, which is overcome by resampling [22].
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The JPDA multi-object tracker [23–25] is a tracker that can process numerous target
detections from multiple sensors. To assign detections to each track, the tracker employs
joint probabilistic data association. With a soft assignment, the tracker allows numerous
detections to contribute to each track. Tracks are initialized, confirmed, corrected, predicted,
and deleted by the tracker. The tracker receives detection reports from the object detector
and sensor fusion as inputs. For each track, the state vector and the state estimate-error
covariance matrix are estimated by the tracker. Each detection has at least one track
associated to it. The tracker creates a new track if the detection cannot be assigned to an
existing track.

Feature-based tracking: Using extracted attributes such as texture, color, and optical
flow, this category of visual tracker identifies the most similar objects over the upcoming
frames. Here, we discuss some of the most important algorithms associated with feature-
based trackers. Lucas–Kanade template tracking [26] is one of the first and most popular
trackers, originally designed to be able to monitor the optical flow of the image pixels and
to determine how they move over time. The problem with this approach was the inaccurate
assumption of a constant flow (pure translation) for all pixels in a bigger window for
long periods of time. Zhao et al. [27] used local binary patterns (LBP) to describe moving
objects and also used a Kalman filter for target tracking. Meanwhile, Zhao et al. [27]
inherited the advantages of both LBP and KF, such as the computational simplicity (LBP
and KF), the good performance (LBP and KF), the high discriminative power (LBP), and the
invariance to the changes in grascale (LBP). On the other hand, this model also inherited the
disadvantages of both of them, such as being not invariant to rotations (LBP), and the state
variables being normally distributed (KF). Lastly, in terms of time and space, the complexity
of computation increases exponentially with the number of neighbors (LBP).

One of the proposed solutions is to compare features (SIFT and HoG) [28,29] instead
of pixels, which are hopefully invariant to changes in scale and rotation. Although these
algorithms have been used for a long-time, that does not contradict the fact that they
have many issues such as highly dimensional feature descriptors (SIFT and HoG), high
computation requirements (SIFT and HoG), and low matching accuracy at large angles of
rotation and view, which makes them not as reliable as the current deep-learning models.

Learning-based tracking: Discriminative, generative, and reinforcement learning are
the three main paradigms used in learning-based tracking. We will review some of the main
deep visual object-tracking (VOT) approaches. With the advancement of deep learning,
deep features have been used in object trackers. SiamFC [8] was one of the models that used
fully convolutional Siamese networks to solve the problem of object tracking. Although
SiamFC has many advantages, it has two main disadvantages [30]. First, it only generates
the final response scores using the features from the final layer. These high-level features
are resistant to noise, but they lack specific target information, making these features
insufficient for discrimination when the distractor falls into the same category as the target.
Second, the SiamFC training method ensures that each patch in the search region contributes
equally to the final response score map. Therefore, regardless of where a distractor appears
in the search region, it may produce a high response score and lead the tracking to fail.
Later, in SiamRPN [9], the solution was developed using the region proposal network
(RPN), which was originally introduced in Faster R-CNN [31] to solve the object detection
problem. Therefore, instead of applying a sliding approach on the features, a bunch of
proposals are made and then the model both classifies and regresses these proposals using
RPN, which has two branches. The first branch is to classify each proposal, whether or not
it looks like the template object, and the second branch regresses an offset for the proposed
box.DaSiamRPN [6] focused on learning distractor-aware Siamese networks for precise and
long-term tracking. To that end, the features of conventional Siamese trackers were initially
examined. Zhu et al. [6] recognized that imbalanced training data reduces the separability
of the acquired features. To manage this distribution and direct the model’s attention to the
semantic distractions, a powerful sampling approach is used during the off-line training
phase. Zhu et al. [6] designed a distractor-aware module to perform incremental learning
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during inference so that the generic embedding can be successfully transferred to the current
video domain. Zhu et al. [6] also introduced a straightforward yet efficient local-to-global
search region approach for long-term tracking. ATOM (Accurate Tracking by Overlap
Maximization) [32] proposed a novel tracking architecture with explicit components for
target estimation and classification. The estimation component is trained offline on large-
scale datasets to predict the IoU overlap between the target and a bounding-box estimate.
The classification component consists of a two-layer fully convolutional network head and is
trained online using a dedicated optimization approach. In SiamMask [5], the authors point
out that additional information can be encoded in ROW (response of a candidate window)
produced by a fully convolutional Siamese network, to generate a pixel-wise binary map.
Transformer meets tracker [33]: In contrast to how the transformer is often used in natural
language processing applications, Wang et al. [33] redesigned the encoder and decoder
of the transformer into two parallel branches within the Siamese-like tracking pipelines.
Through attention-based feature reinforcement, the transformer encoder promotes the
target templates, which benefits the construction of better tracking models. The object
search procedure is made easier by the transformer decoder, which propagates tracking
cues from earlier templates to the current frame.

Since our proposed approach is meant to track moving objects in 3D space, we will
discuss object localization in 3D space. Indeed, the knowledge of the structure of the 3D
environment and the motion of dynamic objects is essential for autonomous navigation [34].
This importance comes from the fact that the 3D structure implicitly depicts the agent’s
relative position, and it is also used to help with high-level scene understanding tasks such
as detection and segmentation [35]. Recent breakthroughs in deep neural networks (DNNs)
have sparked a surge in interest in monocular depth prediction [14,35] and stereo image
depth prediction [36], as well as optical flow estimation [37].

Now we will discuss some of the state-of-the-art 3D visual object trackers that operate
in three-dimensional space. Eye in the sky [38] is a novel framework for drone-based
tracking and 3D object localization systems. It combines CNN-based object detection, multi-
object tracking, ground plane estimation, and, finally, 3D localization of the ground targets.
In our proposed framework, we use MiDaS [14], besides the depth map generated by the
depth sensor, to generate the hybrid-depth map, which is explained in the Section 3. Unlike
the relative depth map generated by the MiDaS algorithm [14], the proposed hybrid-depth
map estimates the depth measured in meters.

TrackletNet tracker (TNT) [39] is a multi-object tracking method based on a tracklet
graph model, incorporating tracklet vertex creation with epipolar geometry and connectiv-
ity edge measurement using a multi-scale algorithm, Tracklet-Net.

This description implies several important characteristics of the task at hand:

1. The watermark must include all the required information while remaining placeable
and noticeable, even on tiny photos. The created watermark must be compact while
still having the ability to hold sufficient information.

2. The watermark must be invisible to the human eye to prevent easy tampering (and,
preferably, to basic image parsing tools). If the malefactor is unaware of the existence
of the watermark, they may not even attempt to remove or disable it.

Beyond 3D Siamese tracking [7]: The authors of this paper also presented a motion-
centric paradigm to handle 3D SOT from a new perspective. They suggested the matching-
free two-stage tracker M2-Track in line with this concept. At the first stage, M2-Track uses
motion transformation to localize the target across a series of frames. The target box is then
refined at the second stage using motion-assisted shape completion.

While many 3D VOT studies focused on using LiDAR data as the essential data input
to their systems [7,38–41], in our work, we tried to solve the visual object-tracking task
using the RGBD data generated by the lightweight and the affordable sensor [42]. To do
that, we relied on the SiamMask architecture [5] which originally works in 2D space. We
introduced the hybrid-depth maps (explained in detail in the Section 3) to SiamMask to
be able to track the objects in 3D environments. In addition, we replaced the template
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frame used in SiamMask [5] with the template set to give the model the ability to track the
moving object from different points of view and without the need to build a 3D model for
the moving object. Lastly, we used stereo image triangulation [43] to deproject the position
into 3D space, which is followed by a 3D Kalman Filter [19] which helps to remove the
measurement noise.

In Table 1, we outlined a comparison between several state-of-the-art deep-learning
trackers, along with their tracking framework, published year, dimensional space (2D/3D),
backbone network (the feature-extraction network), modules, classification/regression
methods (BBR: bounding-box regression. BCE loss: binary cross-entropy loss), training
schemes, update schemes (no-update, linear-update, non-linear update), input data format
(RGB, LiDAR), tracking speed, re-detection (yes/no, i.e., Y/N).

Table 1. Summary of the state-of-the-art DL trackers with different attributes.

Approach Space Backbone Modules Localization
Method

Training
Scheme Input FPS Update Redetection

M2-Track/2022 [7] 3D PointNet -
binary

classification,
BBR

Cross-entropy +
Huber-loss +

Adam
Lidar 57 no-update N

3D-
SiamRPN/2021 [40] 3D PointNet-

++ -
binary

classification,
BBR

Focal-loss +
Smooth L1-loss Lidar 20.8 no-update N

SiamGAT/2021 [44] 2D Google-
LeNet Inception-V3

binary
classification,

BBR

BCE-loss+IoU
loss+SGD RGB 70 no-update N

TransT/2021 [45] 2D ResNet-
50 Block-4

binary
classification,

BBR

giou loss+
L1-loss +

cross-entropy
RGB 50 no-update N

P2B/20 [41] 3D PointNet-
++ -

binary
classification,

BBR

BCE-loss +
Huber-loss +

Adam
Lidar 40 non-linear N

SiamR-
CNN/2020 [46] 2D ResNet-

101-FPN Block-2,3,4,5
binary

classification,
BBR

BCE-loss +
Huber loss +
Momentum

RGB 4.7 no-update Y

PrDiMP/2020 [47] 2D ResNet-
18/50 Block-4

probabilistic
density

regression,
IoU-prediction

KL-divergence +
loss steepest

descent method
RGB 30 non-linear N

SiamMask/2019 [5] 2D ResNet-
50 Stage-1,2,3,4

binary
classification,
BBR, logistic

loss

BCE-loss + SGD RGB 55 no-update N

ATOM/2019 [32] 2D ResNet-
18 Block-3,4

binary
classification,

BBR

MSE + Adam(R),
L2-loss +

Conjugate
Gradient(C)

RGB 30 non-linear N

SiamRPN++/2019 [48] 2D ResNet-
50 Block-3,4,5

binary
classification,

BBR

BCE-loss +
L1-loss + SGD RGB 35 no-update N

SiamRPN/2018 [9] 2D modified
AlexNet conv5

binary
classification,

BBR

Smooth L1-Loss
+ BCE-loss +

SGD
RGB 200 no-update N

DaSiam-
RPN/2018 [6] 2D modified

AlexNet conv5
binary

classification,
BBR

Smooth L1-Loss
+ BCE-loss +

SGD
RGB 160 linear Y

SiamFC/2017 [8] 2D AlexNet conv5
binary

classification,
scales searching

logistic
loss+SGD RGB 86 no-update N

3. Methodology

The main goal of this work is to track the moving object from the perspective of the
multi-rotor aerial vehicle, Figure 1, where the multi-rotor navigates through the environ-
ment while trying to follow the moving object using a real-time visual tracking approach.
As shown in Figure 3, the multi-rotor keeps following the moving object until it reaches the
location of the moving object and the moving object stops.
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Figure 3. Schematic illustration for the problem formulation, where the multi-rotor tracks the moving
object from the time step t1 until it reaches the moving-object location. The red rectangles represent the
moving object over time and the blue circles represent the center of the moving object. In our proposed
online approach, we aim to achieve high practical convenience by combining visual tracking, object
segmentation, and depth estimation. For initialization, the system relies on a simple bounding box
initialization (the blue bounding box), produces an axis-aligned bounding box (the green bounding
box), binary segmentation mask, and estimates the position of the object center. θ ∈ R2 represents
the multi-rotor’s camera field of view (fov). ti is the time step.

There are two sub-tasks in the tracking task: identifying the tracked object and esti-
mating its state. The objective of the tracking mission is to automatically predict the state
of the moving object in consecutive frames given its initial state. The proposed framework
combines 2D SOT with monocular depth estimation to track moving objects in 3D space.
Depth maps are used primarily to maintain awareness of the relevant depth information
about target objects.

The proposed system basically has a stream of RGB frames and the depth-map inputs
(Figure 4). The target object is tracked by the Siamese network which produces a mask,
a bounding box, an object class (optional), and an RPN score [31] for the object. In order
to estimate the corresponding point in 3D space, a relative depth map [14] is aligned with
the depth map [42] to generate the hyprid-depth map. As a result of our experiments,
the proposed hyprid-depth map was able to estimate the distance from objects at a distance
of more than 20 m, which is four times the range of the currently used depth sensor, which
can only estimate the distance from objects at a distance of 5 m [42].

Loss function. To train the classifier fβ, we used binary cross entropy as the loss
function (1) and Adam as the optimizer.

Lcls = −y · log ŷ + (1− y) · log(1− ŷ) (1)

where ŷ is the scalar value in the model output, and y is the corresponding target value
(0 or 1).
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Figure 4. Schematic illustration of the vision-based tracking system. Two FCNs with the same
backbone fθ for RoW creation. The monocular depth estimation (MiDaS) works hand in hand with the
input depth map to produce the hybrid-depth map. There are three main branches (mask, bounding
box, and score) with an additional classifier. d denotes depth-wise cross correlation. The term H is
defined by Equation (4). hφ is a simple two-layer network, while bσ, sγ are 1 × 1 convolutional layers.

In our experiments, we augmented the architectures of SiamMask [5] and MiDaS [14],
where each of them were trained separately:

L4B = λ1 · Lmask + λ2 · Lscore + λ3 · Lbox + λ4 · Lcls (2)

We refer the reader to [5,8,9] for Lmask , Lscore , and Lbox . We have not performed
hyperparameter optimization for Equation (2) but we merely set λ1 = 32, λ2 = λ3 = 1, like
in [5], and λ4 = 1.

For MiDaS, we refer to [14]; the used loss function is called the scale- and shift-invariant
loss where the loss for a single sample is represented as

Lssi

(
d̂, d̂∗

)
=

1
2M

M

∑
i=1

ρ
(

d̂i − d̂∗i
)

, (3)

where d̂ and d̂∗ are scaled and shifted versions of the predictions and ground truth, and ρ
defines the specific type of loss function.

Before estimating the position of the target object, we need to estimate the depth of
the target object by using the hybrid-depth map H. At each time step, H is calculated as
follows

H = η · r · (NIRD ∗ M̂) + D (4)

where H is the hybrid-depth map which conveys the depth estimates in meters, η is
a scaling factor, D is the depth map generated by the sensor, and depth ratio r can be
evaluated using following expression

r =
D

NIRD + ε
(5)

where ε is a small fraction to avoid division by zero, and NIRD is the normalized inverted
relative depth map, which can be evaluated as

NIRD =
R† − R†

µ

R†
σ

(6)

To evaluate it, we normalize the inverted relative-depth map R† by subtracting the mean
R†

µ, then divide by the standard deviation R†
σ. Therefore,



Remote Sens. 2022, 14, 5756 9 of 21

R† = 1− R (7)

Here, M̂ is the output of applying the XOR operation (denoted by ⊕) on the binary mask
M with 1

M̂ = M⊕ 1 (8)

M is the mask for depth points that have values bigger than a small fraction γ, i.e.,

M = D > γ (9)

Despite the fact that many tracking algorithms have been proposed for various tasks
and object tracking has been studied for many years, it is still a challenging problem.
There is no single tracking algorithm that can be used to accomplish all tasks and in
different scenarios. In the case of SiamMask [9], the tracker showed that sometimes
it can be distracted from the target object by other distractors or by similar objects in
the scene. Working on solving such critical issues could help make multi-rotor-based
tracking applications much safer and more reliable. For that purpose, we proposed an
auxiliary object classifier and a mechanism for initiating and updating the template set.
This mechanism is designed to cover the target object from different points of view from
different distances.

At each time step, the proposed framework has two main inputs (the undistorted
RGB and depth frames) and estimates the position of the moving object. At the initial step
(j = 0), the InitTracker initializes the tracker after adding the cropped template of the target
object to the template set. The template set has a maximum size (l) and new candidates will
be replace old templates over time. All the templates in the template set could be replaced
except for the original template inserted at (j = 0).

The proposed framework components are realised within Algorithm 1.

Algorithm 1 Object visual tracker
Input: Undistorted RGB & depth frames
Output: Estimated object position

1: S0 ← InitTracker(RGB0, D0)
2: repeat
3: RDi+1 ← EstimateRelativeDepthMap(RGBi+1)
4: HDi+1 ← GenerateHybridDepthMap(Di+1, RDi+1)
5: Si+1 ← EstimateObjectState(Si)
6: if StateIsValid(Si+1)
7: < xi+1, yi+1, zi+1 >←ApplyProjectionAndKF(HDi+1, Si+1)
8: else
9: Si+1 ← Si

10: < xi+1, yi+1, zi+1 >←< xi, yi, zi >

11: until end of sequence

Let us consider all the steps of Algorithm 1 in detail:

1. EstimateRelativeDepthMap has the RGB image as an input to estimate the relative
depth map using the robust monocular depth estimation network [14]; the predicted
relative-depth map with the depth map produced by the sensor [42] will be the inputs
for the next step.

2. GerenateHybridDepthMap by applying Equation (4). To estimate the hybrid-depth
map that has the depth information of the moving object in meters. The process of
generating the hybrid-depth map is divided into 3 main steps, as follows

(i) Preprocess the depth map by replacing all non-numeric values with zeros. The re-
sult is a 2D array D with values measured in meters.

(ii) Generate from the relative depth map R a 2D array with values ∈ [0, 1].
(iii) Apply Equation (4).
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3. EstimatingObjectState takes the state vector of the moving object Si as the input and
returns the updated state as the output Si+1. Si has the details of the target object such
as the hybrid-depth maps and the RGB frames of the current and previous time steps
[HDi, HDi+1, RGBi, RGBi+1]. The position will be defined in 2D space as the center
of the object (x, y). The depth is d = HD[x, y].
To update the template set there are conditions the candidate template needs to meet.
These conditions are as follows

• Class-specific tracker: the object should be classified by the auxiliary classifier as
the desired class.

• Both trackers: if the detected object satisfies the inequalities (3) below, then the
candidate template will be inserted to the template set at j = 1 after the original
template frame and before the other templates in the template set:

|Ai+1
mask − Ai

mask| < ε1

|Ai+1
box − Ai

box| < ε2

where Amask and Abox are the area for the generated mask and the bounding box,
respectively. ε1 and ε2 are small fractions.

Therefore, if the candidate template violates any of the corresponding conditions,
the new candidate template will not be inserted to the template set. Before we explain
how the template set is used, we need to know that the original template frame has
index j = 0 at every time step. The usage of the template set is as follows

(i) Use the original template frame.
(ii) The conditions (3) above must be satisfied and the objectness probability (RPN

score) should be greater than a threshold≥ α. Other than that, the template frame
is skipped to the next most recent frame in the template set.

(iii) Repeat (ii) if needed for n times (in our experiments n = 2).
(iv) Return the estimated object state.

4. ApplyProjectionAndKF: A 3D Kalman filter [19] will remove measurement noise after
a stereo image triangulation [43] deprojects the position into 3D space.

As shown in Figure 4, the hybrid-depth map is generated from both the MiDaS relative-
depth map [14] and the Intel RealSense depth map [42]. The alignment of these two maps
was explained in detail in Algorithm 1. Figure 5 shows the generated hyprid-depth map
using the proposed approach.

Figure 5. Hybrid-depth map. The figure shows how the proposed hybrid-depth map changes
overtime. t is the frame number. The white arrows point to the borders between short range (depth
estimation is measured by the sensor [42]) and the medium and long ranges (depth estimation is
performed by the proposed hybrid-depth estimation algorithm).
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Similarly to SiamMask [5], ResNet50 [49] is used until the final convolutional layer of
the 4th stage as the backbone fθ for both Siamese Network [5] branches. The main goal of
hφ is to predict w× h binary masks (one for each RoW). Basically, hφ is a simple two-layer
network with learnable parameters φ.

In the proposed system, a ResNet18 [49] was used to classify the object detected by the
SiamRPN branches [9], to stabilize tracking and make the model less prone to distractors.
We have two different settings to run in the proposed system:

1. Generic moving-object tracker: in this case, the object will be classified using the
Siamese tracker with the help of the frames in the template set.

2. Class-specific moving-object tracker: in this case, the tracker will have an auxil-
iary object classifier which makes sure to avoid distractors and the possible fore-
ground/background confusions by the RPN network.

The experiment was performed by training ResNet18 with a binary classification
layer. Two datasets were utilized to train the binary classifier. The moving object class is
represented by the Stanford Cars dataset (16,185 photos of 196 car classes) [50]. In contrast,
the Describable Textures Dataset (DTD) [51] was applied to the non-moving object class.
The DTD dataset contains 5640 photos sorted into 47 categories influenced by human sight.

4. Results

The trackers were tested in two simulation environments, Figure 6, to assess the
performance in different cases. The GitHub repository includes a video with the experi-
ment results. For visual tracker evaluation, the VOT (visual object tracking) benchmarks
were used [52–54]; all of the benchmark datasets are annotated with rotated bounding
boxes. The comparison over the three benchmarks was performed using the official VOT
toolkit and the expected average overlap (EAO) [55] (EAO is a metric which takes into
consideration the accuracy and the robustness of the visual tracker).

Figure 6. Simulation environments. (a) The basic simulation environment. There is the moving
object, and the multi-rotor. (b) The customized simulation environment. There are three identical
moving objects, the multi-rotor, one gas station, and a residential area with multiple houses, etc.
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The tracker was tested in the simulation environment utilizing the Iris drone with
the Intel Realsense Depth Camera [42]. The tracker was implemented using Python 3.6
and ROS1. We used a computer with a 2.6 GHz CPU, an NVIDIA GeForce RTX 2060 6 GB
GPU, and 16 GB of RAM for the simulated environment. The simulated experiments were
performed in a Gazebo software. The local planner [56] was used to generate the optimal
control to maneuver the quad-rotor considering close-in obstacles and system dynamics.
Code and results are available at: https://github.com/mhd-medfa/Single-Object-Tracker.

4.1. Experiment 1: Generic and Class-Specific Trackers

Firstly, this experiment was carried out in the basic simulation environment, Figure 6.
We should mention here that the proposed framework has two tracking approaches:

1. Generic tracker. Figure 7 shows how the tracker, using the Siamese tracker with the
help of the template set and the hybrid depth map, was able to track the target object.
The experiment showed that the tracker passed the moving object.

2. Class-specific tracker. Figure 8 shows that by involving the auxiliary object classifier,
the object tracker did not pass the moving object. The responsibility of this classifier is
to stabilize the tracking process.

Figure 7. Generic-tracker experiment result. In this experiment, the multi-rotor tracked the moving
object until it reached the moving object. The figure shows that the multi-rotor almost passed the
target position. The generic object tracker could cause instability in the tracking process because of
the inherited behaviour of the Siamese network.

A primary drawback of the generic tracker is that the multi-rotor may pass the target
object due to the fact that the Siamese tracker measures the similarity between the template
frame and input frame, which makes the tracker detect the object even if only small part
of the object is showing in the scene [5].This issue is handled in the class-specific mode,
in which the object classifier classifies the RPN-proposed item at each time step, so that
if the target object is closer than d[meters] or if the tracker could not recognize the target

https://github.com/mhd-medfa/Single-Object-Tracker
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object (i.e., the auxiliary classifier classified the detected object into a different class of
objects), then the multi-rotor will keep hovering at the same position until the conditions
change (i.e., the moving object becomes farther than d[meters]). All that helps keep the
target object in the scene without passing the tracked object, as shown in Figure 8.

Figure 8. Class-specific tracker. The figure shows the multi-rotor stopped right before the car. Unlike
the generic tracker, the class-specific tracker can recognize the class of the target object, which makes
the tracker performs the task of tracking as expected.

4.2. Experiment 2: Different Case Scenarios

In this experiment, we try to record the behavior of the tracking system in the follow-
ing scenarios:

• The basic moving-object tracking Figure 9.
• Tracking one out of multiple identical objects, Figures 10 and 11.
• Tracking a far moving object, Figure 12.

(a) (b)

Figure 9. Tracking the moving object. (a) The multi-rotor follows the moving object. (b) The
multi-rotor stopped after reaching the target object.
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Figure 10. Tracking one of multiple moving objects. This experiment was performed in the cus-
tomized simulation environment. The moving objects were distributed in the scene to try to confuse
the object tracker.

Figure 11. Results for tracking one of multiple identical moving objects; t is the frame number.
The object tracker managed to keep tracking the target object without being confused by the other
similar objects. The black trajectory is the estimated position of the moving object over time. The green
trace is the prediction horizon generated by the local planner [56].

Figure 12. Results for tracking a far moving object; t is the frame number. In this experiment, there
was only one moving object in the scene. The multi-rotor made aggressive movements to simulate
how the object tracker could behave in the existence of external factors (i.e., wind). The multi-rotor
started to move aggressively towards the moving object at t = 5, which explains why the object
tracker did not correctly detect the target moving object at t = 5 and t = 10. The tracker managed to
track the moving object very well except at t = 5 and t = 10.
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4.2.1. The Basic Moving-Object Tracking

In this case of Figure 9, the multi-rotor followed the moving object. The moving car
has no other semantically similar objects in the scene. In the experiment, the car was not
very fast, so the multi-rotor kept pace with the moving car. At the beginning, the visual
tracker was running without running the planner [56]. When the moving object became
far from the multi-rotor (about 10 m away), the multi-rotor tracked the moving object.
The multi-rotor stopped when the distance from the moving object became less than the
predefined threshold α = 5 [m]. When the object was far from the multi-rotor, the estimated
depth of the moving object was not accurate, but the multi-rotor still managed to track it.
As the multi-rotor approached the moving object, depth estimation became more accurate.
For more details, check the video attached in the GitHub repository.

4.2.2. Tracking One of Multiple Identical Objects

As shown in Figure 10, the experiment had three identical objects while the goal was
tracking one of these objects. Figure 11 shows how the proposed managed to track the car
(moving object) with no conflict with the other similar objects.

4.2.3. Tracking a Far Moving Object

The experiment shows how the tracking system will behave in the case of tracking a far
moving object (Figure 12). The result shows that the visual object tracker managed to track
the far moving objects even when the object was far from the multi-rotor. The experiment
is shown in the results video in the GitHub repository.

4.3. Depth-Estimation Analysis

For depth estimation, the intended experiment had the target object moving over
almost a straight line so we could observe the depth-estimation accuracy and that explains
the relatively small errors on the y and z axes in the medium-range experiment, Table 2,
as an example. The experiments are classified into three categories based on the distance
between the object and the camera frame and considering a ToF (time-of-flight) camera [57]
was used:

• Short (typical) range (5 m or less)
• Medium range (between 5 and 10 m)
• Long range (more than 10 m)

Table 2. Medium-range performance

x [m] y [m] z [m] Position [m]

RMSE 1.1156 0.1618 0.2628 1.1576
MSE 1.0314 0.1566 0.2625 1.34
MAE 1.245 0.0262 0.0691 1.4506

The experiments were conducted in an open-source [58] customized simulation envi-
ronment, Figure 6 .

4.3.1. Short (Typical) Range

In the typical range, Figure 13, the hybrid-depth estimation matches the sensor depth
estimation, and the reason is that in short ranges, our proposed framework relies on the
data measured by the sensor. While the claimed max. range of the sensor is up to 6 m [42],
in our experiments the sensor depth measurements was available only up to the range of
5 m.
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Figure 13. The depth estimation in the short range and the actual depth value.

4.3.2. Medium Range

Medium range shows the interesting part of the hybrid-depth approach. The estima-
tion of depth is in the range of 5 to 10 m.

As shown in Figure 14, the experimental results show that the maximum abstract
depth error is around 20%. The root-mean-square deviation (error) RMSD or RMSE can be
computed as

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(10)

where N: is the number of depth samples, xi: is the ground truth at point i, and x̂i is the
estimated depth at point i. The mean-square-error MSE is evaluated as follows

MSE =
∑N

i=1(xi − x̂i)
2

N
(11)

where N: is the number of depth samples, xi: is the ground truth at point i, and x̂i is the
estimated depth at point i. In addition, the mean absolute error MAE was computed using
following expression

MAE =
∑n

i=1|xi − x̂i|
N

(12)

where N: is the number of depth samples, xi is the ground truth at point i, and x̂i is the
estimated depth at point i.

(a) (b)

Figure 14. Medium range—(a) depth estimation and (b) error measurement.
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To identify how far the predictions fall from the ground truth, RMSE Equation (10),
MSE Equation (11) and MAE Equation (12) were measured on random samples collected in
the medium range (Table 2). The goal of the experiment is to observe the accuracy of depth
estimation by moving the target object along a straight line. This explains the relatively
small errors on the y and z axes.

4.3.3. Long Range

Depth estimation performed poorly in long ranges, and the estimated depth values
oscillate between 9 and 12 m with a linearly growing error over distance. However, current
performance will be enough in the case of a quadrotor with a similar or higher range of
speed than the moving object (Figures 15 and 16).

(a) (b)

Figure 15. Long range—(a) depth estimation and (b) error measurement.

Figure 16. The position error for medium and long ranges.

4.4. Visual Object-Tracker Evaluation

In this subsection, we explore the general performance regarding speed and the
performance on the established visual-tracking benchmarks VOT-2016 [52],VOT-2018 [53],
and VOT-2019 [54]. On the used VOT benchmarks, the performance is measured in terms
of accuracy, robustness, and expected average overlap (EAO), as shown in Tables 3 and 4,
where EAO is used to rank trackers. Additionally, as shown in Table 5 , we considered the
speed in the comparison on the VOT-2018 dataset.

To run our experiments, we had access to a server with a single Nvidia Quadro P4000
GPU with Ubuntu 18.04. The comparison with other nine state-of-the-art single-object
trackers (Table 5), showed that the proposed tracker performed better in terms of accuracy
on the VOT-2018 dataset. While in Table 3, the generic tracker had a better robustness score
than the SiamMask model [5].
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Table 3. Results for VOT-2016

VOT-2016
EAO ↑ Accuracy ↑ Robustness ↓

SiamMask [5] 0.433 0.639 0.214

The proposed generic tracker 0.433 0.639 0.210

Table 4. Results for VOT-2019

VOT-2019
EAO ↑ Accuracy ↑ Robustness ↓

The proposed generic tracker 0.281 0.610 0.527

Table 5. Comparison with the state-of-the-art under the EAO, accuracy, and robustness metrics
on VOT-2018. Up arrows indicate that bigger values are better. Down arrows indicate that smaller
values are better.

EAO ↑ Accuracy ↑ Robustness ↓ Speed (fps) ↑
The proposed generic tracker 0.381 0.61 0.286 36
SiamMask [5] 0.380 0.609 0.276 55
DaSiamRPN [6] 0.326 0.569 0.337 160
SiamRPN [9] 0.244 0.490 0.460 200
SiamRPN++ [48] 0.414 0.600 0.234 35
PrDiMP [47] 0.385 0.607 0.217 40
CSRDCF [59] 0.263 0.466 0.318 48.9
SiamR-CNN [46] 0.408 0.609 0.220 15
THOR [60] 0.416 0.5818 0.234 112
TrDiMP [33] 0.462 0.600 0.141 26

5. Conclusions

A fundamental computer vision problem known as single-object tracking (SOT) has
numerous applications, including surveillance systems [4], autonomous vehicles [1,2] and
aerial photography [61]. Its objective is to track a particular target within a video series
using only its initial state (appearance and location).

In this paper, we proposed a framework which allows multi-rotor aerial vehicles to
track moving objects in real time. We suggested having a set of templates, so that we could
cover the object from various perspectives throughout time. We developed a method to
overcome the limitations of popular commercial depth sensors by combining their data
with relative depth maps produced by a machine-learning model for depth estimation [14]
to create a hybrid-depth map. Lastly, an object classifier was utilized to overcome the
inherited behaviour of the Siamese visual tracker and to limit the effect of distractors and
false-positive detected objects.

Apart from the numerous advantages for the proposed framework, there are some
limitations to take into consideration, such as the fact that the proposed hybrid-depth
estimation approach showed some weaknesses in long-range distances. However, in the
case of the moving-object tracking problem, this limitation could not be considered to be a
critical issue because the distance estimation will become more and more accurate as the
multi-rotor aerial vehicle reaches the target object.

In future work, the main focus will be to build multi-class non-contrastive incremental
learning for the following reasons:

• Non-contrastive learning will be used for the opportunity of having a better representa-
tion [62] which could tackle problems such as occlusion, illumination variation, etc.

• Self-supervised incremental learning will be used to create a more effective tracking
framework which could be trained on the new classes without suffering from the
forgetting problem [63].
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