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Abstract: Segmentation of vegetation LiDAR point clouds is an important method for obtaining
individual tree structure parameters. The current individual tree segmentation methods are mainly for
airborne LiDAR point clouds, which use elevation information to form a grid map for segmentation,
or use canopy vertices as seed points for clustering. Side-view LiDAR (vehicle LiDAR and hand-held
LiDAR) can acquire more information about the lower layer of trees, but it is a challenge to perform
the individual tree segmentation because the structure of side-view LiDAR point clouds is more
complex. This paper proposes an individual tree segmentation method called Shadow-cut to extract
the contours of the street tree point cloud. Firstly, we separated the region of the trees using the
binary classifier (e.g., support vector machine) based on point cloud geometric features. Then, the
optimal projection of the 3D point clouds to the 2D image is calculated and the optimal projection is
the case where the pixels of the individual tree image overlap the least. Finally, after using the image
segmentation algorithm to extract the tree edges in the 2D image, the corresponding 3D individual
tree point cloud contours are matched with the pixels of individual tree edges in the 2D image.
We conducted experiments with the proposed method on LiDAR data of urban street trees, and
the correctness, completeness, and quality of the proposed individual tree segmentation method
reached 91.67%, 85.33%, and 79.19%, which were superior to the CHM-based method by 2.70%, 6.19%,
and 7.12%, respectively. The results show that this method is a practical and effective solution for
individual tree segmentation in the LiDAR point clouds of street trees.

Keywords: LiDAR; point cloud segmentation; pixel matching; edge detection; tree contour extraction

1. Introduction

In recent years, urban vegetation management has become an indispensable part of
human sustainable development. Vegetation has the functions of dust prevention, haze
reduction, noise absorption, and air purification [1,2]. In order to maintain the good
growth conditions of urban vegetation, there is an increasing demand for new methods to
study urban green infrastructure. Street trees are an important component of the urban
landscape system and ecosystem. Street trees can reduce the adverse effects on human
living environment caused by urbanization and help maintain the biodiversity of cities [3].
Traditional urban forest information detection mostly adopts manual measurement and
sampling survey methods, which are inefficient, prone to significant errors, and difficult to
dynamically reflect the changes of street trees, especially for large area street tree sample
plots [4–6]. Compared with ordinary manual measurement, LiDAR is more accurate for
height measurement [7–10]. It can establish point cloud data by emitting laser pulses to the
trunk, branches, and leaves of street trees, and then obtain 3D signals containing distance
information and spatial location information. The greatest advantage of LiDAR is that it
can directly measure vertical forest structure, and LiDAR data can be used to characterize
stand height, canopy structure, canopy volume, and other forest attributes [11]. Currently,
LiDAR data are mainly classified into top-view LiDAR (airborne LiDAR) and side-view
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LiDAR (vehicle-mounted LiDAR and handheld LiDAR) according to the different views of
data acquisition.

At present, the individual tree segmentation method based on airborne LiDAR is
mature, which is mainly divided into two types. One is the individual tree segmentation
based on the grid surface model, in which the canopy height model (CHM) is widely
used. The other is to normalize the LiDAR point cloud data first, and then use the spatial
relationship information between the points for clustering.

CHM is a model that indicates the vertical distance between the tree canopy and the
ground. The idea is to divide the point clouds into grids and then perform the difference
operation between the local maximum in the grid and the ground points. The grid-based
method first interpolates the original discrete point clouds to obtain the digital surface
model (DSM) and the digital elevation model (DEM), and the CHM is the difference
between the DSM and the DEM. After obtaining the CHM, we can assume that the local
maximum is the vertex of the tree, and the local minimum can then be used to determine
the location of the tree canopy boundary. Chen Q et al. [12] used a variable window to
determine the position of the treetop and used Gaussian filtering to remove falsely detected
treetops to improve the accuracy of individual tree segmentation. The size of the variable
window was determined by the lower bound of the regression curve prediction interval
of tree crown size and tree height. Koch B et al. [13] used a local maximum filtering to
detect tree crowns, and then detected the edges of the tree crowns by pouring algorithm
and searching vectors starting from the trees’ tops. Although the method based on CHM
can quickly segment an individual tree, most of the methods focus on the information
of the canopy while ignoring the parameter information in the lower part of the canopy.
Moreover, the rasterization and interpolation of point clouds are likely to cause spatial
information errors, thereby reducing the segmentation accuracy.

The point-based approach to implementing individual tree segmentation can effec-
tively solve the problem of information loss caused by the formation of grid surfaces.
At present, among the methods for individual tree segmentation directly based on point
cloud data, the more common ones are the voxel clustering method and the K-means
clustering algorithm. The voxel clustering method is to partition the set of point clouds
into multiple voxel units in 3D space, and each voxel unit uses the number of its points to
characterize the voxel attributes [14]. Yunsheng W et al. [15] proposed directly processing
point clouds based on voxels. According to the elevation distribution of voxels, the tree
canopy areas of different heights were divided to realize individual tree segmentation.
Morsdorf F et al. [16] obtained the local highest points of trees through the DSM first, and
then used the K-means algorithm to perform cluster analysis based on these local highest
points. Vega C et al. [17] proposed to extract optimal vertex sets from different scales and
then use K-means algorithm for clustering. Compared with the segmentation method
based on CHM, the method of directly segmenting the point cloud data can make full use
of the 3D information and identify more low trees, thereby improving the segmentation
accuracy. However, the forest structure is complex, and the amount of data is huge. Direct
processing of point cloud data requires more computing time, which can easily lead to the
decrease of segmentation efficiency.

Compared with trees in forests, urban street trees are relatively sparsely planted, and
the understory is clear. The CHM-based method cannot obtain more information about
low-level trees and trunks, and the point-based method is inefficient, so side-view LiDAR is
especially suitable for the study of street trees. However, the current effect of individual tree
segmentation for side-view LiDAR data is restricted by the complex structure of trees. To
address these challenges, we propose a method based on projection and back-projection and
realize the edge extraction of street trees point clouds with the help of image segmentation
algorithms. We named the method tree-shadow. The main contributions of the proposed
method are as follows.

(1) Compared with the current individual tree segmentation methods, the method pro-
posed in this study is not limited to the information of canopy, but also takes into
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account the information of the undergrowth trees to achieve multi-directional seg-
mentation of the side face of trees.

(2) Due to the complex structure of 3D vegetation point clouds, we propose extracting
3D point cloud contours through the edge information in 2D images and realize the
mapping from 2D edges to 3D contours, thus solving the segmentation problem of
the tree point clouds in 3D space.

2. Materials and Methods

In this study, individual tree segmentation of street trees was conducted based on
point cloud projection and edge detection algorithm. First of all, we envisaged that the
vegetation was classified into trees, grounds, and weeds through feature extraction based
on covariance matrix, feature selection based on Fisher algorithm, and support vector
machine (SVM) [18]. In order to obtain the forest information and monitor the growth of
trees better, we performed individual tree segmentation for the classified tree parts. After
completing the optimal orientation projection of the tree region, the Canny algorithm is
suitable for edge detection of tree projections because of the generally large number of
gaps inside the trees and the good anti-noise ability of the Canny algorithm compared
with other edge detection algorithm. However, there are still some false edges in the result
image detected by the Canny algorithm, which is not the outermost edge curve in the
ideal result. Therefore, the Snake model was considered to extract the outer edge of a tree
from the results calculated by Canny. Finally, after obtaining the contour map of the outer
edge of the individual tree, the 3D point clouds corresponding to the edge of the 2D gray
image were calculated by pixel matching to complete the individual tree segmentation. The
system framework of this study is shown in Figure 1.
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Figure 1. Flowchart of the proposed point cloud individual tree segmentation method. 
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Figure 1. Flowchart of the proposed point cloud individual tree segmentation method.

2.1. Study Area and Data Preparation

The experimental data set of this study was collected from some street trees in Purple
Mountain Scenic Area and Nanjing Forestry University in Jiangsu Province. The data set
was collected using the Riegl VZ4-00i 3D laser scanning system, which has a maximum
measurement distance of 480 m, a scanning angle range of 360◦ × 100◦, and an effective
measurement speed of 125,000 points/s. A total of 98,721,201 laser data points were
obtained. When using LiDAR equipment to collect vegetation point cloud data, affected by
the environment of the measurement area, such as atmospheric particles and multi-path
propagation caused by reflection, there will inevitably be some outliers higher than ground
objects in the data set. Therefore, we need to denoise the point cloud before conducting
individual tree segmentation research. Most point cloud noises are represented by a single
point or a sparse clustered point set. Considering that the number of noise points in the
vegetation point clouds is large, and most of them have obvious height differences from
the vegetation part, we used a radius outlier removal filter to remove these noise points.
Given a value R, we set N as the threshold of the number of adjacent points existing in
the field with R as the radius of each point. When the number of points existing in the
neighborhood of a point with a radius of R is M, if M < N, the point is removed, otherwise
it is kept. In this experiment, R is 0.1 and N is 3, which can remove most of the isolated
points and noise points.

The data studied is vegetation point cloud, which is large in scale. Direct process-
ing of raw data requires a high computation cost. In order to improve the efficiency of
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vegetation point cloud segmentation, it is considered to use Voxel-subsampling to extract
representative samples from the point cloud data according to certain rules. Voxelization
can effectively solve the problem of point cloud disorder and reduce the data scale. For
any point (x, y, z) in the data set, its coordinate position is changed according to (1), where
xmin, ymin, and zmin are the minimum values in the three coordinate directions of x, y, and z,
respectively, s is the size of voxel grid, and floor (m) is the largest integer less than or equal
to m. After traversing all points, the voxelization of the point cloud is completed [19,20]. We
take s as 0.05, which avoids the loss of data information and improves the computational
efficiency of subsequent experiments.

xnew = f loor
(

x−xmin
s

)
ynew = f loor

(
y−ymin

s

)
znew = f loor

(
z−zmin

s

) (1)

2.2. Vegetation Classification

In order to segment a tree more accurately and efficiently, we first separate the trees
by machine learning. The features extracted based on the covariance matrix reflect the local
geometric information of the point cloud. The eigenvalues of the covariance matrix are
arithmetically combined to obtain the futures that represent the local surface curvature
of the model [21]. For the i-th point in the point cloud data, the covariance matrix of its
neighborhood is defined as:

Ci =
1
n

n

∑
k=1

(
Pk − P

)(
Pk − P

)T (2)

P =
1
n

n

∑
k=1

Pk (3)

where Pk is the coordinate of the k-th point in the field, k = 1,2,· · · ,n, n is the number of
points in the neighborhood of the i-th point. The corresponding eigenvalues λ1, λ2, λ3 and
eigenvectors e1, e2, e3 can be acquired by the covariance matrix Ci. Based on the arithmetic
combination of these eigenvalues and eigenvectors, the local geometric features of the point
cloud can be obtained as shown in Table 1. Since there are some redundant features in these
features, we used Fisher feature selection algorithm to assign weight to each feature so
that we could get several features with a high discriminative ability [22,23]. Finally, these
features were used as the input of SVM to achieve classification.

Table 1. Feature combination.

Name Combination Value Name Combination Value

∑λ Sum λ1 + λ2 + λ3 Cλ Surface Variation λ3
λ1+λ2+λ3

Oλ Omnivariance 3
√

λ1 · λ2 · λ3 Sλ Sphericity λ3
λ1

Aλ Anisotropy λ1−λ3
λ1 Vλ Verticality 1−

∣∣ 〈 [0 0 1
]

, e3
〉 ∣∣

Pλ Planarity λ2−λ3
λ1 Jλ Area λ1·λ2

λ3
Lλ Linearity λ1−λ2

λ1 Zλ Pointing λ3·λ1
λ2

2.3. Point Cloud Projection

The structure of tree point clouds is complicated. In order to reduce the complexity of
the individual tree segmentation algorithm and improve the computational efficiency, we
used the point cloud optimal orientation projection method to extract the projection surface
which retains the most complete information on street trees. In order to select the optimal
projection surface, we considered projecting the point clouds from multiple directions to
obtain vegetation cross-sections from different perspectives. We used the transformation
matrix to rotate the vegetation point cloud. It is assumed that the matrix formed by the 3D
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coordinates of n points of the point cloud data is Dn×3, and the rotation matrix is Sθ , where
θ is the angle of rotation of the point cloud. D′ is the point cloud coordinate matrix after
rotation, as shown in Formula (4).

D′ = Dn×3 × Sθ (4)

Sθ =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (5)

In order to ensure the high accuracy of tree segmentation and high efficiency in edge
extraction using Canny algorithm and active contour model, we set the pixel size of the
projection image as pa× pb = 200× 500 (determined by multiple comparison experiments).
Then, we divided the point clouds into the finite blocks of point sets with a cross-section of
Cy × Cz along the direction parallel to the Y-Z plane. Cy and Cz are shown in Formula (6),
where Ymax and Ymin are the maximum and minimum of the Y-axis coordinates of all points
in the point clouds, and Zmax and Zmin are the maximum and minimum of the Z-axis
coordinates of all points in the point clouds, respectively. Each point in the point clouds
has a corresponding pixel position in the projection image. The correspondence between
the point and the pixel position is shown in Formula (7), where Y and Z are the Y-axis and
Z-axis coordinates of a point, respectively, and the coordinate (a, b) is the pixel position in
the image. {

Cy = Ymax−Ymin
pa

Cz =
Zmax−Zmin

pb

(6)

{
a = Y

Cy

b = Z
Cz

(7)

2.4. Edge Detection

The edge of the object in the image is reflected in the dramatic change of the pixel gray
value. The reasons for this discontinuous change are mainly (1) the dramatic change of the
light; (2) the change of the viewing angle and the observation distance; (3) the difference of
the surface reflectivity [24]. After projecting the tree point clouds into a gray image, the
individual tree edge we want to extract is the junction of the tree area with gray value of
0 and the background area with gray value of 255. The Canny edge detection algorithm
has the advantages of high signal-to-noise ratio, high positioning accuracy, and single edge
response [25]. We considered using this algorithm to extract the edge of tree projection gray
images first.

Canny uses a two-dimensional Gaussian function to smooth the projected gray image
to reduce the influence of noises on the edge detection effect, especially for the projection
map of trees with sparse leaves. After obtaining the smoothed image I(x, y), the gradi-
ent amplitude and direction of the image I(x, y) are calculated by Formulas (8) and (9),
respectively.

M =
√

I′x(x, y)2 + I′y(x, y)2 (8)

θ = tan−1

(
I′x
I′y

)
(9)

I′x(x, y) and I′y(x, y) are the first-order partial derivatives in the X and Y directions
approximated by first-order finite differences in the 2 × 2 field.

Then, we traversed the pixels of the gradient amplitude image to determine whether
the point is the local maximum point in the gradient direction, and if so, this point is the
candidate point of the image edge. Finally, the gradient histogram of the image is used to
calculate the double threshold, and the gradient magnitude of the edge candidate point
obtained in step C is compared with the two thresholds. If the gradient amplitude of the
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pixel point is higher than the high threshold Th, the point is marked as an edge point. If the
gradient amplitude is lower than the low threshold Tl, the point is a non-edge point. The
points between high threshold and low threshold are weak edge points. For weak edge
points, check whether there are certain edge points in the 3 × 3 field, and keep them if
they exist.

However, due to the irregularity of the vegetation point clouds and the different
settings of the double thresholds in Canny algorithm, the edge map calculated by the Canny
algorithm still has false edges or discontinuous edges, so we used the Snake algorithm to
extract the outer edge of the individual tree.

The basic principle of active contour model, also known as Snake, is to construct
a deformable curve using the edge information of the image, so that it can iteratively
converge to the edge of the image. The deformation process from the initial position to the
target contour is controlled by an energy functional, and the energy can be minimized by
solving its Euler equation.

The Snake model represents a deformable closed curve in a parametric form, and
the Fourier representation of the curve is: V(s) = (x(s), y(s)), sε[0, 1]. Define an energy
functional Esnake in (10) and minimize it so that the curve gradually moves from the initial
state to the target feature boundary position.

Esnake = Eint(V(s)) + Eext(V(s)) (10)

Eint(V(s)) =
∫ 1

0

1
2

[
α
∣∣X′(s)∣∣2 + β

∣∣X′′(s)∣∣2] (11)

Eint is the internal energy, which is an energy function describing the characteristics of
the curve. α represents the elastic coefficient, and its value determines the shrinkage degree
of the Snake contour. X′(s) is the rate of change in length. β is the rigidity coefficient, which
represents the speed of Snake curve moving towards the target boundary in its normal
direction, and X′′(s) represents the change rate of curvature.

Eext represents the external energy, which is generally derived from the image features.
For gray image I, Eext is traditionally defined as Equation (12), where ∇ represents the
spatial gradient operator.

Eext = −|∇I(x, y)|2 (12)

However, using the external force of the traditional Snake, the scope of action is
small, and the concave boundary of the image cannot be accurately segmented. Due to
the irregular shape of trees, it is inevitable that there will be many concave boundaries in
the projection image, so the traditional external force is not suitable for the extraction of
tree edges. Xu et al. (1998) proposed the gradient vector flow (GVF) model, which does
not rely on the initial position of the contour and can effectively converge to the concave
boundary. The gradient vector field is defined as (x, y) = [u(x, y), v(x, y)], V(x, y) is the
gradient vector field corresponding to the coordinate position (x, y) of the image, and
V(x, y) is obtained by minimizing the following equation:

ε =
x

µ
(

ux
2 + uy

2 + vx
2 + vy

2
)
+ |∇ f |2|V −∇f|2dxdy (13)

f (x, y) in Formula (13) is the function of image edge and µ is a weight. For a given
gray image I(x, y), we define f (x, y) as:

f (1)(x, y) = |∇I(x, y)|2 (14)

It can be seen from Equation (13) that when ∇ f is small, ε is dominated by the first
term. At this time, the coordinates (x, y) are located far from the edge of the image, and
V diffuses outward from the edge of the image, forming a smooth and slowly changing
force field. When ∇ f is large, the second term of ε plays a leading role. Obviously, when
V = ∇f, ε takes a minimum value. This function ensures that at the edge of the image,
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V is approximately equal to the gradient of the edge image. As shown in Figure 2a, the
traditional Snake model takes the image gradient as the external force, which only acts
on the adjacent region of the image boundary, while GVF can achieve the effect shown
in Figure 2b, resulting in a slowly varying vector field in the homogeneous region of
the image.

Remote Sens. 2022, 14, 5742 7 of 18 
 

 

degree of the Snake contour. 𝑋′(𝑠) is the rate of change in length. β is the rigidity coeffi-

cient, which represents the speed of Snake curve moving towards the target boundary in 

its normal direction, and 𝑋″(𝑠) represents the change rate of curvature. 

Eext represents the external energy, which is generally derived from the image fea-

tures. For gray image I, Eext is traditionally defined as Equation (12), where ∇ represents 

the spatial gradient operator. 

𝐸𝑒𝑥𝑡  =  −|∇𝐼(𝑥, 𝑦)|
2 (12) 

However, using the external force of the traditional Snake, the scope of action is 

small, and the concave boundary of the image cannot be accurately segmented. Due to the 

irregular shape of trees, it is inevitable that there will be many concave boundaries in the 

projection image, so the traditional external force is not suitable for the extraction of tree 

edges. Xu et al. (1998) proposed the gradient vector flow (GVF) model, which does not 

rely on the initial position of the contour and can effectively converge to the concave 

boundary. The gradient vector field is defined as (𝑥, 𝑦)  =  [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)], 𝑉(𝑥, 𝑦) is the 

gradient vector field corresponding to the coordinate position (𝑥, 𝑦) of the image, and 

𝑉(𝑥, 𝑦) is obtained by minimizing the following equation: 

ε =  ∬𝜇(𝑢𝑥
2  +  𝑢𝑦

2  +  𝑣𝑥
2  +  𝑣𝑦

2)  + |∇𝑓|2|𝑉 − ∇f|2 𝑑𝑥 𝑑𝑦 (13) 

𝑓(𝑥, 𝑦)  in Formula (13) is the function of image edge and µ is a weight. For a given 

gray image 𝐼(𝑥, 𝑦), we define 𝑓(𝑥, 𝑦) as: 

𝑓(1)(x, y)  =  |∇I(x, y)|2 (14) 

It can be seen from Equation (13) that when ∇𝑓 is small, ε is dominated by the first 

term. At this time, the coordinates (𝑥, 𝑦) are located far from the edge of the image, and 

V diffuses outward from the edge of the image, forming a smooth and slowly changing 

force field. When ∇𝑓 is large, the second term of ε plays a leading role. Obviously, when 

V =  ∇f, ε takes a minimum value. This function ensures that at the edge of the image, V 

is approximately equal to the gradient of the edge image. As shown in Figure 2a, the tra-

ditional Snake model takes the image gradient as the external force, which only acts on 

the adjacent region of the image boundary, while GVF can achieve the effect shown in 

Figure 2b, resulting in a slowly varying vector field in the homogeneous region of the 

image. 

(a) (b)

Snake curve

Boundary

External force

Internal force
 

Figure 2. (a) Snake with image gradient as external force. (b) Snake with GVF as external force. 

2.5. Point Cloud Back-Projection 

We used the Snake algorithm to calculate the closed curve of the edge of the tree in 

the projection image of the tree. The closed curve is formed by connecting the correspond-

ing pixel points in the image. Section 2.2 shows that each pixel of the tree in the gray image 

corresponds to a point set block that has a cross-section of 𝐶𝑦  ×  𝐶𝑧 in the point clouds. 

Figure 2. (a) Snake with image gradient as external force. (b) Snake with GVF as external force.

2.5. Point Cloud Back-Projection

We used the Snake algorithm to calculate the closed curve of the edge of the tree in the
projection image of the tree. The closed curve is formed by connecting the corresponding
pixel points in the image. Section 2.2 shows that each pixel of the tree in the gray image
corresponds to a point set block that has a cross-section of Cy × Cz in the point clouds. We
queried the corresponding point set for the pixel points that constitute the Snake curve
one by one, and the combination of all the point sets is our final target result. The pixel
matching process is shown in Algorithm 1.

Algorithm 1: Point Cloud Back-Projection Using Pixel Matching

Input: Data are the matrix of N rows and 3 columns composed of point cloud coordinates,
where each
row represents the coordinates of a point and N is the number of point clouds;
Loc is the matrix of N rows and 2 columns formed by the corresponding pixel positions after
point cloud projection, where each row represents the projection position of a point, the row
number corresponds to Data, and N is the number of point clouds.
Snk is a matrix of M rows and 2 columns composed of the pixel positions corresponding to the
curve extracted by Snake, where M is the number of pixels.

1. k←1
2. for i = 1· · ·M do
3. for j=1· · ·N do
4. if Snk[i]==Loc[j] then
5. result[k]←Data[j]
6. K = k+1
7. end if
8. end for
9. end for
10. return result;

Output: Matching results of point cloud contours;

3. Results and Discussion
3.1. Vegetation Classification

In order to segment the point cloud of the street tree, this study first classifies the
point cloud data of the street tree scene. The purpose is to separate the tree part of
the street scene, avoiding the problem of subsequent wrong segmentation and merging
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segmentation caused by weeds, shrubs, and uneven surface in the study area. We used
each point and its three neighboring points (the number of neighboring points is chosen
with respect to the point cloud density) to calculate the covariance matrix of each point
and the corresponding eigenvalues and eigenvectors of this matrix, and then combine
the eigenvalues and eigenvectors to form different features. In order to avoid redundant
features affecting the classification accuracy, the Fisher feature selection algorithm was
considered to calculate the weight of each feature. The top 95% of the features and their
weight values are shown in Figure 3. Finally, we selected the top 95% features with large
weights λ1, λ2, λ3, Sum (∑λ), Omnivariance (Oλ), Area (Jλ), and Pointing (Zλ) as the input
of SVM classifier, and the results show that the recall is 97.79%, precision is 99.93%, and the
f1-score is 98.85%.
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3.2. Projection and Contour Extraction

As shown in Figure 4, we classified part of the test road point clouds into three parts:
trees, ground, and weeds. The main object of this study is the street tree point cloud data, so
the tree point cloud is selected for 3D to 2D projection. In order to obtain the best projection
surface, we projected different directions of the point cloud data every 30◦ interval and
selected out the projection surface with the least overlap of pixels between the individual
tree images as the target image of our segmentation. Figure 5 is the projection images of
some randomly selected tree point clouds at different angles. As shown in Figure 5b, we
chose the projection with the least overlap as our next research object.
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Figure 5. Pixel coincidence (a) and non-coincidence (b) projection map.

If there is no overlap between the trees after projection, the individual tree can be
directly obtained by back-projecting the image of each tree. However, after the optimal
plane projection, some trees will still overlap. For this reason, the contours of trees are
extracted in this method. The contour extraction can not only avoid the wrong segmentation
caused by tree overlap, but can also effectively improve the efficiency of obtaining tree
structure parameters.

In addition, Figure 6 shows the relationship between the precision of the proposed
method for individual tree segmentation and the overlap of a randomly selected tree, where
the precision is defined as Equation (15) in Section 3.3 and the overlap of a tree is the ratio of
the number of coincident pixels to the total number of pixels of the tree. It can be seen from
the chart that, with the increase of overlap, the precision of individual tree segmentation
is generally declining, but 95% of the street trees after the best plane projection have an
overlap of less than 20%, so good segmentation results can be achieved.
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In order to extract the boundary of a tree, we first used the Canny algorithm to
preliminarily calculate the edge points of the projection image. Although the Canny
algorithm can extract the edge of the image more completely, there are still some problems.
Using Gaussian filter to smooth the image will cause the edges to be unclear, so that some
edges cannot be accurately identified. The different selection of double thresholds also
affects the effect of edge detection. If the high threshold Th is set as small, some weak edges
can be easily detected, but we do not want to get the weak edges that are not outer contours.
If the high threshold Th is set as too large, the outer edge may break, resulting in the failure
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to obtain a continuous outer contour. Similarly, a too large or too small set of low threshold
Tl can cause edge breakage or false edge, respectively. After several parameter adjustments
and comparison of the resulting image, we selected the resulting images with broken outer
edges and fewer non-target edges. At this time, the standard deviation of the Gaussian
filter σ is 2, the high threshold Th is set to 0.7, and the low threshold Tl = Th × 0.4. The
results calculated by some sample plots are shown in Figure 7.
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Figure 7. Tree edges extracted by Canny algorithm.

After the edge detection of vegetation projection image by Canny algorithm is realized,
since the algorithm needs to be manually adjusted when performing double threshold
processing, the adaptive ability is poor, and the edge is prone to discontinuity. Moreover,
due to the partial gaps in the tree projection image, it is easy to produce false edges and
affect the segmentation accuracy. As shown in Figure 8, after adjusting the high threshold,
low threshold, and the standard deviation of the Gaussian filter, although the outer edges
extracted from 80% of the individual tree grayscale images are relatively accurate, it is
inevitable that some trees have a large proportion of false edges due to the large area and
number of gaps.
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Figure 8. Canny algorithm inevitably produces false edges as shown in the red circles.

Active contour model (Snake) completes image segmentation through deformable and
closed curve converging to target the edges, which can effectively extract tree contour and
avoid the influence of ‘false edge’ and broken edge on experimental accuracy. On the basis
of the result graph calculated by the Canny algorithm, we used the Snake model to extract
the edge. As shown in Figure 9, the changing course of snake curve on a randomly selected
tree is given. There are 169 trees in our study area, and the growth status and morphology
of the trees are different. Figure 10 shows the iterative process and corresponding results of
10 randomly selected trees in the experimental plot, where the red is the Snake curve. As
shown in Figure 11a, two trees overlap after projection, and the Canny algorithm cannot
correctly segment the individual tree from the two trees. For this reason, we used the
Snake algorithm to extract the individual tree. Figure 11b is the iterative process of Snake
algorithm to extract the edge, and the red curve in Figure 11c is the extracted edge of the
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individual tree. Obviously, the edge calculated by Snake can effectively avoid the influence
of false edge and accurately extract the outer edge of an individual tree.
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Figure 11. The process of individual tree segmentation when tree projections overlap. (a) Two trees
overlap after projection, (b) the iterative process of Snake algorithm to extract the edge, (c) the red
curve is the extracted edge of the individual tree.

Finally, we used back-projection to match the pixels of Snake’s convergent curve
position with the 3D point cloud to obtain the point cloud contour of a tree. The results
of back-projection of 10 trees are shown in Figures 12 and 13, showing the segmentation
result in one scene.

3.3. Validation Approach

In order to evaluate the accuracy of tree point cloud segmentation, we manually
segmented the outer edges of each tree, and then compared them with the results obtained
by the proposed method. Quantitative evaluation includes three indicators: p (precision),
r (recall), and q (quality). The corresponding calculation methods are:
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
p = TP/(TP + FP)
r = TP/(TP + FN)

q = TP/(TP + FP + FN)
(15)

TP represents the number of points belonging to the edge of the tree that are classified
as the edge of the tree, that is, the points that are correctly classified. FP represents the
number of points belonging to non-tree edges that are classified as tree edges, that is, the
points that are misclassified. FN denotes the number of points that belong to edge points
but are classified as non-edge points, that is, the points that are missed when classifying.
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3.4. Evaluation and Analysis

The individual tree point cloud contour extracted by Snake is basically consistent with
the real contour, which can achieve our target effect. In order to verify the effectiveness
and necessity of combining Canny algorithm with Snake model, we compared the results
extracted by the Canny algorithm with the results obtained by convergence of the Snake
curve and calculated the performance indexes of point cloud individual tree segmentation,
respectively. Table 2 shows the segmentation precisions of 10 randomly selected trees and
the overall accuracy of the experimental data. It can be seen that the proposed method can
accurately segment a tree, and the precision and recall are basically concentrated in 80–90%.
When the Canny algorithm is used alone, precision, recall, and quality are 90.28%, 81.38%,
and 74.83%, respectively. After combining Canny algorithm and Snake model, precision,
recall, and quality are 91.67%, 85.33%, and 79.19%, respectively. Therefore, for most trees,
the segmentation accuracy of the combined method of Canny and Snake is higher than
that of using Canny algorithm alone, especially for trees with many gaps so that there are
many “false edges” after processing by Canny algorithm, and the accuracy improvement is
more obvious.

Table 2. Segmentation precisions of 10 trees randomly selected from the experimental plot.

Method Canny Canny + Snake

Accuracy Metrics p % r % q % p % r % q %

Tree 1 82.86 80.57 69.06 86.90 79.85 71.27
Tree 2 81.71 78.48 66.76 86.58 88.62 77.92
Tree 3 86.65 81.75 72.60 87.57 88.73 78.80
Tree 4 85.82 79.65 70.39 88.48 83.98 75.70
Tree 5 91.83 93.00 85.89 91.90 93.96 86.77
Tree 6 87.08 88.67 78.36 85.89 83.58 73.49
Tree 7 90.52 89.06 81.46 91.51 89.16 82.35
Tree 8 89.54 88.95 80.57 89.40 83.16 75.70
Tree 9 92.41 75.80 71.36 91.55 89.64 82.79

Tree 10 90.83 81.97 75.70 91.01 89.11 81.90
. . . . . . . . .
All 90.28 81.38 74.83 91.67 85.33 79.19

In the process of data preparation in Section 2.1, we performed Voxel-subsampling on
the point clouds, which can not only reduce the data size but can also solve the problem of
point cloud disorder, so that the point clouds are evenly distributed in space. Therefore,
after the voxelization of point clouds, the segmentation precision based on the individual
tree contour is actually equal to the segmentation precision before contour extraction.

We used the CHM-based watershed algorithm and the point cloud-based distance
discriminant clustering algorithm to segment the individual tree of the experimental
plot [26,27]. The idea of watershed algorithm is that after obtaining CHM, the gray value
of the pixel is regarded as the canopy height, the local minimum is the tree vertex, and
the affected area is the catchment area, that is, the canopy. The dam is constructed at the
junction of the two catchment basins to form a watershed that distinguishes the canopy.
The point cloud-based clustering algorithm uses the distance rule between trees, assuming
that the highest point in the normalized point cloud data is the vertex of the tree, and then
the distance iterative judgment is carried out from this point to realize the segmentation,
where the distance threshold is set to the average crown radius of 1.81 m. After obtaining
the segmented single tree, we also calculated the number of correctly classified points TP,
misclassified points FP, and the points missed by classification FN through the ground
truth of manual segmentation, and then get p, r, and q. The results are shown in Table 3. It
can be seen that the segmentation effect of the proposed method in this paper is not inferior
to that of the watershed algorithm and the point cloud-based clustering algorithm, mainly
because of its superiority in handling side-view LiDAR vegetation point clouds.
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Table 3. Quantitative comparison between the proposed method and other methods.

Method p % r % q %

Watershed algorithm 88.97 79.14 72.07
Point cloud-based

cluster segmentation 91.86 83.18 77.47

Shadow-cut 91.67 85.33 79.19

Observing the experimental results of individual tree point cloud contour extraction,
it can be seen that the main contour can be accurately extracted, but there are still some
discontinuous broken edges. By observing the edge of the 2D image extracted by Snake
and the point cloud contour after back-projection, it can be found that this is because the
Snake curve cannot accurately reach some concave edges with narrow width or narrow
entrance width after the convergence is completed, resulting in a small part of the concave
region not being accurately extracted. For example, the positions A and B in Figure 14a
are concave edges with a narrow entrance width and narrow width, respectively. From
the convergence results of the Snake model shown in Figure 14b at these two positions, it
can be seen that none of them converge completely on the narrow concave boundary. We
observed and compared the vector field shown in Figure 14c,d. Figure 14c is the external
force field of the narrow concave boundary, and Figure 14d is the external force field of the
ordinary concave boundary. It can be seen that there are external forces perpendicular to
the top of the U-shape in the X, Y, and Z positions of Figure 14d, which force the Snake
curve to move to the concave boundary. Although the A position of Figure 14c has an
external force pointing to the top of the U-shape, the curve tends to be stable due to the
external force opposite to the top of the U-shape caused by the narrower entrance. The
B position of Figure 14c is because the U-shape region is too narrow, resulting in only a
small amount of external force parallel to the top of the U-shape, and no external force can
promote the curve to move inward.
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Figure 14. (a) Narrow concave boundary, (b) convergence results of narrow concave boundary,
(c) external force field within the narrow boundary concavity, (d) external force field within an
ordinary boundary concavity. The positions A and B are concave edges with a narrow entrance
width and narrow width, respectively. X, Y, and Z are the positions where the external forces are
perpendicular to the top of the U-shape.

4. Conclusions

This study proposes an individual tree segmentation method for side-view LiDAR
and implements individual tree segmentation for street tree point clouds. After the region
of tree was classified, edge detection was performed on the projection of tree point clouds,
and the individual tree can be segmented through the mapping relationship between the
2D image and the 3D point cloud. The conclusions are as follows:

(a) Most of the current individual tree segmentation methods are realized by using the
canopy information, thus ignoring the parameters at the lower part of the canopy. The
proposed method takes full account of the complex structure and irregular density of
vegetation point clouds and uses point cloud projection and back-projection to verify
the practicability of edge detection method in 3D point cloud segmentation.
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(b) Moreover, in the processing of projection images, we combined Canny algorithm
and Snake to effectively avoid the influence of false edges caused by tree gaps on the
experimental results. The experiment shows that, for most trees, the results obtained
by Snake are better than those obtained by Canny alone. For the sample plot, p, r, and
q increased by 1.39%, 3.95%, and 4.36%, respectively.

(c) The segmentation accuracy of this method can reach up to 91%, so the edge of a tree
can be accurately extracted. However, due to the complex shape of some trees, the
Snake curve does not converge completely for some narrow concave edges, resulting
in some 3D point cloud contours to break, which is the main reason that affects the
segmentation accuracy of the algorithm. In the subsequent research, improving the
accuracy of individual tree segmentation will be one of our priorities, and we will
study the extraction of tree skeletons through the separation of branches and leaves
so as to better achieve 3D reconstruction of trees.
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