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Abstract: Tree species information is an important factor in forest resource surveys, and light detection
and ranging (LiDAR), as a new technical tool for forest resource surveys, can quickly obtain the 3D
structural information of trees. In particular, the rapid and accurate classification and identification
of tree species information from individual tree point clouds using deep learning methods is a
new development direction for LiDAR technology in forest applications. In this study, mobile laser
scanning (MLS) data collected in the field are first pre-processed to extract individual tree point
clouds. Two downsampling methods, non-uniform grid and farthest point sampling, are combined
to process the point cloud data, and the obtained sample data are more conducive to the deep
learning model for extracting classification features. Finally, four different types of point cloud
deep learning models, including pointwise multi-layer perceptron (MLP) (PointNet, PointNet++,
PointMLP), convolution-based (PointConv), graph-based (DGCNN), and attention-based (PCT)
models, are used to classify and identify the individual tree point clouds of eight tree species. The
results show that the classification accuracy of all models (except for PointNet) exceeded 0.90, where
the PointConv model achieved the highest classification accuracy for tree species classification. The
streamlined PointMLP model can still achieve high classification accuracy, while the PCT model
did not achieve good accuracy in the tree species classification experiment, likely due to the small
sample size. We compare the training process and final classification accuracy of the different types
of point cloud deep learning models in tree species classification experiments, further demonstrating
the advantages of deep learning techniques in tree species recognition and providing experimental
reference for related research and technological development.

Keywords: tree species classification; point cloud deep learning; multi-layer perceptron; convolution;
graph; attention; transformer

1. Introduction

Forest ecosystems cover approximately one-third of the Earth’s land surface and are
an important type of global land cover [1]. Forests have an irreplaceable role in maintaining
the stability of ecosystems and play a vital role in the survival and development of human
civilization [2,3]. Tree species information is essential in forest resource surveys, and
the classification of tree species is one of the main tasks of forest science [4]. Timely
and accurate information on tree species is essential for developing strategies for the
sustainable management and conservation of planted and natural forests [5]. Over the past
four decades, the development of remote sensing technology has made large-scale forest
inventories possible. Light detection and ranging (LiDAR), as an active remote sensing
technology, can obtain 3D point clouds of scanned forest scenes and has become the main
technical tool for tree species identification and accurate extraction of forest parameters.

LiDAR data from different platforms have different roles in the study of forest parame-
ter extraction and tree species classification. Most studies have used airborne laser scanning
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(ALS) data, from which scholars extract taxonomic features for region-wide mapping of
tree species distribution [6–9]; however, there are relatively few studies using terrestrial
laser scanning (TLS) data for individual tree species classification due to its high acquisi-
tion cost and difficulty in data processing [10,11]. Mobile laser scanning (MLS) based on
simultaneous localization and mapping (SLAM) technology can easily and quickly collect
point cloud data in a study area [12]. Research on the identification and classification of
individual tree point cloud species based on ground-based LiDAR data extraction has been
carried out by various scholars [13–15].

Based on traditional machine learning algorithms, LiDAR-derived feature metrics help
to improve the accuracy of tree species identification [16]. Random forests (RF) [17–20] and
support vector machines (SVM) [21–23] have been used in many studies. However, machine
learning-based classification methods require the prior extraction of a large number of
classification features, and the accuracy of these algorithms depends on a variety of feature
metrics. Deep learning approaches, as end-to-end classifiers, can automatically extract
classification features through the use of deep neural networks. Existing research has
demonstrated that high classification accuracy can be achieved through the use of deep
learning for tree species classification [8,9,14].

Over the past decade, deep learning has made rapid progress in the field of computer
vision. Point clouds are disordered and do not conform to the regular lattice grid in 2D
images, making it difficult to apply traditional convolutional neural networks (CNNs)
to such unordered inputs. Therefore, scholars have developed a series of deep learning
models based on the characteristics of 3D point cloud data, in addition to a series of deep
learning models applicable to point clouds. The development of point cloud analysis has
been closely related to the development of image processing networks [24]. PointNet [25]
and PointNet++ [26], as seminal studies in point-based deep learning, have driven the
development of deep learning modeling techniques that learn categorical feature informa-
tion directly from the original point cloud. In current research, point cloud deep learning
methods can be classified into pointwise multi-layer perceptron (MLP), convolution-based,
graph-based, and attention-based methods, depending on the point-based feature-learning
network architecture [27,28]. Most existing deep learning methods used in studies for indi-
vidual tree point cloud tree species classification are based on pointwise MLP. Other types
of point cloud deep learning methods have rarely been used in tree species classification
studies. In response to the limitations of point cloud deep learning models regarding the
number of points in typical samples, the non-uniform grid-based downsampling algorithm,
used in the studies [14,29], has shown potential for accurately extracting the 3D morphol-
ogy of single plants. Zhou et al. [30] proposed CNN-specific [31] class activation maps
(CAMs) for the visualization of class features, which represent a weighted linear sum of
each class of visual patterns present at different spatial locations in the image [30]. In this
line, Huang et al. [32] have attempted to interpret the PointNet model through the use of
CAMs, and Xi et al. [11] have visualized the feature points of PointNet++ classification
results using CAMs.

To fully explore the potential of point cloud deep learning methods with regard to
the classification of individual tree species, we conducted the following experiments. A
point cloud data downsampling strategy (NGFPS) that incorporates non-uniform grid
and farthest point sampling methods was proposed. Four different types of point cloud
deep learning approaches, including pointwise MLP, convolution-based, graph-based,
and attention-based models, were used for tree species classification and recognition of
individual tree point clouds. A total of six point cloud deep learning models—including
PointNet [25], PointNet++ [26], PointMLP [24], PointConv [33], DGCNN [34], and point
cloud transformer (PCT) [35]—were included in our experiments. We analyzed and evalu-
ated the classification results of all models. The CAM method was used to visualize the
set of critical points at which the classification features of a sample converge. Some new
results regarding tree species classification using point cloud deep learning methods were
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presented, thus providing a reference for future tree species classification and the further
development of deep learning models.

2. Materials and Methods
2.1. Study Area and Data Collection

Experimental data were collected from three study areas in China: The Greater Khin-
gan Station (GKS), Huailai Remote Sensing Comprehensive Experimental Station (HL),
and Gaofeng forest farm (GF). Point cloud data from forest plots in the study areas were
collected in September, July, and April of 2021, using a LiBackpack DGC50 backpack laser
scanning (BLS) system from Beijing GreenValley Technology Co., Ltd. (Beijing, China).
The LiBackpack DGC50 system has an absolute accuracy of ±5 cm, a relative accuracy of
3 cm, and is equipped with two VLP 16 laser sensors that can reach a scanning range of
100 m, with vertical and horizontal scanning angles of −90◦ to 90◦ and 360◦, respectively.
Figure 1 shows the distribution locations of the three study areas and the LiDAR data of
some sample sites. LiDAR data were collected from 17, 41, and 16 ground sample plots
in the three experimental areas of GKS, HL, and GF, respectively. A total of eight types
of tree species were included in the three experimental areas. Table 1 provides a detailed
representation of tree species and forest plot information.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 22 
 

 

results regarding tree species classification using point cloud deep learning methods were 
presented, thus providing a reference for future tree species classification and the further 
development of deep learning models. 

2. Materials and Methods 
2.1. Study Area and Data Collection 

Experimental data were collected from three study areas in China: The Greater Khin-
gan Station (GKS), Huailai Remote Sensing Comprehensive Experimental Station (HL), 
and Gaofeng forest farm (GF). Point cloud data from forest plots in the study areas were 
collected in September, July, and April of 2021, using a LiBackpack DGC50 backpack laser 
scanning (BLS) system from Beijing GreenValley Technology Co., Ltd. (Beijing, China). 
The LiBackpack DGC50 system has an absolute accuracy of ±5 cm, a relative accuracy of 
3 cm, and is equipped with two VLP 16 laser sensors that can reach a scanning range of 
100 m, with vertical and horizontal scanning angles of −90° to 90° and 360°, respectively. 
Figure 1 shows the distribution locations of the three study areas and the LiDAR data of 
some sample sites. LiDAR data were collected from 17, 41, and 16 ground sample plots in 
the three experimental areas of GKS, HL, and GF, respectively. A total of eight types of 
tree species were included in the three experimental areas. Table 1 provides a detailed 
representation of tree species and forest plot information. 

 
Figure 1. Distribution map of the study area and some of the LiDAR data collected in the field. Figure 1. Distribution map of the study area and some of the LiDAR data collected in the field.



Remote Sens. 2022, 14, 5733 4 of 21

Table 1. Study area and tree species information.

Study
Area Location Plot Size Tree Species Genus Tree Height

(m) Number

GKS 120◦12′ to 122◦55′ E,
50◦20′ to 52◦30′ N

25 m × 25 m
Birch (Betula platyphylla Suk.) Betula 6.58–20.87 215
Larch (Larix gmelinii Rupr.) Larix 6.23–19.30 295

HL 115◦47′ E, 40◦20′ N 20 m × 20 m

Locust
(Styphnolobium japonicum L.) Styphnolobium 4.91–9.79 142

Willow (Salix babylonica L.) Salix 6.33–12.55 174
Poplar (Populus L.) Populus 14.39–25.04 165

Elm (Ulmus pumila L.) Ulmus 4.37–13.48 85

GF 108◦20′ to 108◦32′ E,
22◦56′ to 23◦4′ N

20 m × 20 m
Eucalyptus (Eucalyptus robusta Sm.) Eucalyptus 20.34–34.66 131

Chinese fir
(Cunninghamia lanceolata (Lamb.)

Hook.)
Cunninghamia 7.51–22.64 105

2.2. Data Pre-Processing

The data collected in the field were SLAM solved using the LiFuser-BP software, in
order to obtain the raw point cloud data in standard format. To obtain individual tree point
cloud data that fit the input requirements of the deep learning model, the LiDAR data of
the plots collected in the field were subjected to a series of pre-processing steps.

First, the noise in the point cloud data was removed. A height threshold method was
used to remove noise points that were significantly above and below ground level, and a
local distribution-based algorithm was used to remove some stray isolated points. Then,
we used the cloth simulation filtering (CSF) algorithm [36] to classify the raw point cloud
data into two categories: ground points and vegetation points. To segment the point cloud
of each tree from the point cloud of the whole plot, we normalized the point cloud of the
plot based on the elevation information of the ground points, which were processed to
be parallel to the horizontal plane. Subsequently, we eliminated the ground points and
segmented the point cloud of each individual tree from the sample point cloud using the
comparative shortest path (CSP) algorithm [37], which uses a bottom-up approach to detect
each tree in the region. Immediately afterwards, we processed the point cloud data of each
single tree manually and eliminated some points that were misclassified, such as ground
and weeds. Finally, we obtained clean point cloud data for each tree.

An individual tree point cloud data set for tree species classification, called TS8, was
successfully built following the file organization of the ModelNet40 [38] dataset, which
has been commonly used in point cloud deep learning research. As we obtained an
unbalanced number of trees of each species, we used a stratified random sampling method
within species, randomly selecting 80% of each tree species as the training data set and the
remaining 20% as the test set.

2.3. Research Workflow

After creation of the TS8 (Table 1) data set, we downsampled the individual tree point
clouds using the proposed NGFPS method. The data set was then trained for classification
using a variety of deep learning models. Finally, high-precision tree species classification
results and optimal model hyperparameters were obtained. Figure 2 depicts the technical
route and logical structure of this study in detail.
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3. Methods
3.1. Methods Combined with Non-Uniform Grid and Farthest Point Sampling

The difference between the non-uniform grid sampling (NGS) method and traditional
grid-/voxel-based methods is that it can select representative points from a grid having
different sizes. The NGS method calculates the normal vector of each point before sampling
the point cloud, which can better preserve the details of 3D objects. The NGS method was
first used to align multiple sets of point clouds representing the same object but with differ-
ent coordinate systems [39], as well as for 3D point cloud surface reconstruction [40–42].
This method can effectively filter out the key points describing the shape of the object from
a dense point cloud and is more conducive to the mutual matching of multiple groups of
point clouds, as it can well-preserve the details of the 3D object‘s surface. The dominant
downsampling method used with current deep learning models is the farthest point sam-
pling (FPS) method, which allows for rapid sampling to obtain a point cloud of objects
containing a specified number of points (N = 1024, 2048, . . . ). One of the main reasons for
using the FPS method is that the ModelNet40 data set consists of point clouds uniformly
sampled from the surface of regular computer-aided design (CAD) models; however, in
practice, the point cloud density of collected LiDAR data is not uniformly distributed,
and the points that can represent the details of the object need to be fully retained when
identifying and classifying tree species.
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FPS is a downsampling method for uniform density point clouds, which cannot
successfully retain the more detailed features of tree point clouds. In the study of tree
species classification, more detailed information regarding 3D objects needs to be retained
using NGS methods. However, the NGS method cannot accurately obtain the number
of points (N) contained in the sample required by the point cloud deep learning model.
Therefore, in this experiment, we first used the NGS method to obtain the number of points
in the individual tree point cloud that is closest to N. After obtaining samples with sufficient
detail retention, the number of points in the individual tree point cloud can be unified
using the FPS method.

The NGS algorithm can be implemented quickly in MATLAB, but requires inputting
the smallest number of points (k) within each grid point as the initial parameter, and the
final sampling results in the representation of k points combined into 1 point. To obtain a
fixed number of downsampling points N per object, the value of k tends to be inconsistent
during data processing. In order to obtain individual tree point cloud data that are more
conducive to model learning, we combine two methods, non-uniform grid and farthest
point sampling, and the combined method is called NGFPS in this paper. The details of the
combination of the two methods are as follows.

1. The objects are downsampled using the NGS algorithm, and k is iterate as an input
parameter. The minimum value of k is set to 6, and the value of k is increased by 1 at
each iteration;

2. When the number of points satisfies N(k) < N after downsampling the object, the
iteration is stopped, and the experimental results of N(k−1) are retained;

3. We use the FPS algorithm to downsample the N(k−1) points to the specified number
of points N.

Using the NGFPS method not only preserves the details of the 3D objects better, but
also allows us to obtain a data set that satisfies the number of points N as the input to the
deep learning model.

3.2. Point Cloud Deep Learning Methods

We conducted tree species classification research using four types of point cloud deep
learning approaches: pointwise MLP, convolution-based, graph-based, and attention-based
models. The second module in Figure 2 shows the categories of models used, along with
the names of the specific models. To facilitate comparison and analysis of the models,
the structures of all models are summarized and drawn in a single image (Figure 3).
Additionally, the hyperparameters used in the training process of all the deep learning
models are summarized in Table 2. We maintained the parameters used by the original
authors of the models as much as possible.
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Table 2. Hyperparameters used in the training process of six point cloud deep learning models.

Category Pointwise MLP Convolution Graph Attention
Model PointNet PointNet++ PointMLP PointConv DGCNN PCT

Batch Size 12 12 12 12 8 12
Number of Points 2048 2048 2048 2048 2048 2048

Number of
Categories 8 8 8 8 8 8

Epochs 200 200 300 400 250 300
Optimizer Adam Adam SGD SGD SGD Adam

Learning Rate 0.001 0.001 0.1 0.01 0.1 0.0001
Weight Decay 0.0001 0.0001 0.0002 — 0.0001 0.0001
Momentum — — 0.9 0.9 0.9 —

Learning Rate
Scheduler 1 StepLR StepLR CosineAnnealingLR StepLR CosineAnnealingLR StepLR

Loss Function 2 NLLLOSS NLLLOSS CrossEntropyLoss NLLLOSS CrossEntropyLoss CrossEntropyLoss

Activation
Function

ReLU and
LogSoftmax

ReLU and
LogSoftmax

ReLU and
AdaptiveMax-

Pool1d

ReLU and
LogSoftmax

LeakyReLU and
AdaptiveMaxPool1d +
AdaptiveAvgPool1d

ReLU and Max

1 Learning Rate Scheduler: StepLR: Decay the learning rate of each parameter group by gamma every epoch
(https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html, accessed on 2 November
2022). CosineAnnealingLR: Set the learning rate of each parameter group using a cosine annealing schedule
(https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html, accessed on
2 November 2022). 2 Loss Function: NLLLOSS: The negative log-likelihood loss (https://pytorch.org/docs/
stable/generated/torch.nn.NLLLoss.html, accessed on 2 November 2022). CrossEntropyLoss: Cross entropy loss
(https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html, accessed on 2 November 2022).

3.2.1. Pointwise MLP Methods

Multi-layer perceptrons (MLPs), developed from perceptrons, are the simplest kind
of deep network. An MLP is a non-linear model obtained by adding hidden layers and
activation functions, as well as changing the classification function. Commonly used
activation functions include sigmoid, tanh, ReLU, and so on. The softmax function is used
to address multi-classification problems. The number of hidden layers and the size of each
layer are its main hyperparameters.

Due to the irregularity of point cloud data, traditional 2D deep learning methods
cannot be directly used with 3D data. PointNet is a pioneering work that deals directly with
disordered point sets using multiple shared MLPs, which achieves permutation invariance
through symmetric functions. PointNet uses multiple MLP layers to learn point-wise
features independently, as well as a maximum pooling layer to extract global features
(see Figure 3a). This model has three main modules: A symmetric function aggregating
information from all points, a combination of local and global information, and a joint
alignment network. The global features extracted by the model are classified using a
multi-layer perceptron classifier. The PointNet model can be expressed by Equation (1):

f (x1, x2, . . . , xn) = γ

(
MAX
i=1,...,n

{h(xi)}
)

, (1)

where {x1, x2, . . . , xn} is the set of points of the model input, γ and h are multi-layer
perceptron networks, and the function f is invariant to the arrangement of the points of the
model input.

As the features of each point in PointNet are learned independently, the local struc-
ture generated by the metric space points cannot be captured, which limits its ability to
recognize fine-grained patterns and generalize to complex scenes. PointNet++ introduces
a hierarchical feature learning paradigm that captures the fine geometric structure from
the neighborhood of each point. Due to its ability to obtain local feature information at
different scales of 3D objects, PointNet++ has become the basis for the development and
exploitation of many other models [34,43,44]. As the core of the PointNet++ hierarchy, its
set abstraction layer (SA) consists of three layers: A sampling layer, a grouping layer, and a
PointNet-based learning layer. The SA in Figure 3b represents the structure of the model.
The input of each SA module can be represented by a matrix of size N × (d + C), where N

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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denotes the number of points of the 3D object, d denotes the coordinate dimension, and C
denotes the feature dimension. The structure after SA processing is N’ × (d + C’).

(1) The points in each layer of the input are first downsampled using the FPS method.
Compared with random sampling, FPS provides better coverage of the entire point set for
the same number of points [26].

(2) The sampled data are subsequently grouped using a ball query method, which al-
lows for better generalization of local area features in space. The output is N’ × K × (d + C),
where K denotes the number of points contained in each query ball.

(3) Finally, the PointNet layer is used to learn the features of the grouped data.
PointNet++ learns features from local geometric structures by stacking multiple levels

of ensemble abstraction and abstracting local features in a layer-wise manner. The core
structure of the model can be expressed as Equation (2):

gi = A
(
Φ
(

fi,j
)
| j = 1, · · · , K

)
, (2)

where A(·) denotes the maximum pooling operation, Φ(·) denotes the MLP local feature
extraction function, and fi,j denotes the feature of the jth neighboring point of the ith
sampling point. In this experiment, the distribution of the point cloud density of our
collected LiDAR data is heterogeneous, so a multi-scale grouping (MSG) approach was
used. A simple but effective way of capturing multi-scale features is to use MSG. Features
of different scales are connected in series to form multi-scale features.

PointMLP is a deep residual MLP network that follows the design philosophy of
PointNet and PointNet++, using a simpler but deeper network architecture explored by Ma
et al. [24]. PointMLP uses pre-feedback residual MLP network to hierarchically aggregate
the local features extracted by MLP without any fine-grained local feature extractor. Thus,
this method can avoid the large computational effort and continuous memory access
caused by complex local feature extraction. A lightweight geometric affine module is also
introduced, in order to adaptively convert local points to a normal distribution, further
improving the performance and generalization capability of the model. The structure of
the model is shown in Figure 3c, and the core algorithm of this network can be expressed
as Equation (3):

gi = Φpos
(
A
(
Φpre

(
fi,j

)
, | j = 1, · · · , K

))
, (3)

where Φpre(·) and Φpos(·) are residual MLP modules, the shared Φpre(·) is used to learn
shared weights from local regions, and Φpos(·) is used to extract deep aggregated features.
The aggregation function A(·) is the maximum pooling function. The model uses the
k-nearest neighbor algorithm (k-NN) to select proximity points with a value of k = 24.
Equation (3) describes a phase of PointMLP. We use a four-layer deep network, so it is
necessary to repeat this computational procedure four times.

Ma et al. [24] have also proposed a lightweight version, PointMLP-elite, which reduces
the number of channels in the PointMLP intermediate FC layer by a factor of 4, slightly adjusts
the network architecture, and reduces the number of MLP blocks and embedding dimensions.

3.2.2. Convolution-Based Method

PointConv [33] is one of the best convolution-based methods. PointConv is an exten-
sion of the Monte Carlo approximation of the 3D continuous convolution operator. By
using the continuous weights and density functions in the MLP approximation convolution
filter, PointConv is able to extend the dynamic filter to new convolution operations. The
point cloud is represented as a set of 3D points {pi | i = 1, . . . , n}, where each point is a
vector containing location (x, y, z) features. PointConv is a substitution-invariant point
cloud operation that can make point clouds compatible with convolution. PointConv can
be expressed as follows:

PointConv(S, W, F)xyz = ∑
(δx ,δy ,δz)∈G

S
(
δx, δy, δz

)
W

(
δx, δy, δz

)
F
(
x + δx, y + δy, z + δz

)
, (4)
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where S
(
δx, δy, δz

)
represents the inverse density of

(
δx, δy, δz

)
, and F

(
x + δx, y + δy, z + δz

)
represents the characteristics of the points centered at point (x, y, z) in local region G. For
each local region,

(
δx, δy, δz

)
can be any position within the region.

PointConv approximates the weight function W
(
δx, δy, δz

)
from the 3D coordinates(

δx, δy, δz
)

by a multi-layer perceptron and approximates the inverse density S
(
δx, δy, δz

)
through kernelized density estimation and a non-linear transformation implemented with
an MLP. The weights of the MLP are shared over all points, in order to maintain permutation
invariance. The density of each point in the point cloud is estimated using kernel density
estimation, following which the density is input to the MLP for one-dimensional non-linear
transformation, resulting in the inverse density scale S

(
δx, δy, δz

)
.

Considering the high memory consumption and low efficiency of the PointConv
implementation, Wu et al. [33] have simplified the model to two standard operations:
matrix multiplication and 2D convolution.

3.2.3. Graph-Based Method

Point clouds have difficulties, in terms of processing directly using convolution, due
to their disorderly and irregular characteristics. Graph-based approaches use graphs to
study the relationships between points. Wang et al. [34] have designed the DGCNN model
and proposed a new neural network module, called EdgeConv, to generate edge features
describing the relationship between points and their neighbors. It constructs a local graph,
which preserves the relationships between points. EdgeConv dynamically constructs a
graph structure at each layer of the network, using each point as a centroid to characterize
the edge feature with each neighboring point, and then aggregates these features to obtain a
new representation of that point. EdgeConv is one of the main components of the DGCNN
structure. The set of points is defined as X = (x1, x2, . . . , xn), where each point is a vector
containing the features at a location xi = (xi, yi, zi). The directed graph of the local point
cloud structure can be represented as:

G = (V , E), (5)

where V = {1, 2, · · · , n} denotes the vertices and E = V × V denotes the edges. In the
simplest case, G is defined as the k-nearest neighbors (k-NN) graph of the point set X. The
edge features are defined as:

eij = hΘ
(
xi, xj

)
, (6)

where hΘ is a set of non-linear functions with learnable parameters Θ. The edge features
are defined using the channel symmetric aggregation function � associated with all the
edges from each vertex. The output of EdgeConv at the ith vertex can be expressed as:

x′i = �
j:(i,j)∈E

hΘ
(
xi, xj

)
, (7)

hΘ
(
xi, xj

)
= hΘ

(
xj − xi

)
, (8)

e′ijm = ReLU
(
θm·

(
xj − xi

)
+ φm·xi

)
, (9)

x′im = max
j:(i,j)∈E

e′ijm (10)

where Θ = (θ1, . . . , θM, φ1, . . . , φM). Equation (8) can preserve the global features in the
neighborhood, as well as the information of the local neighborhood. The edge features
are obtained by adding the perceptron in Equation (9), while the aggregation operation is
implemented using Equation (10).

Another major part of the DGCNN structure is the dynamic update graph. The graph
is recomputed using the nearest neighbors in the feature space generated at each layer.
Therefore, at each layer l, there is a different graph G(l) =

(
V (l), E (l)

)
. The DGCNN
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learns how to construct the graph G used in each layer, which is its largest difference from
the GCN.

3.2.4. Attention-Based Method

Attention-based methods have also shown excellent capabilities for relationship ex-
ploration, such as PCT [35] and Point Transformer [45,46]. The attention module is the
core component, which generates refined attention features for input features, based on the
global context. Attention allows the model to adapt to diverse data by calculating dynamic
weights. The self-attention (SA) module is the core component, generating refined attention
features as its input features based on the global context. Self-attention is a mechanism
that calculates the semantic affinities between different items within a sequence of data.
Self-attention updates the features at each location by computing a weighted sum of fea-
tures using pairs of affinities at all locations to capture the long-range dependencies in a
single sample.

The transformer does not care about the order of the input data. For point cloud data,
the transformer itself is permutation-invariant, and feature learning is performed through
an attention mechanism. As such, they are considered very suitable for implementing
point cloud deep learning models. The overall structure and details of the PCT model
are shown in Figure 3f. The PCT model encoder is made up of an input embedding
module and four stacked attention modules. The encoder initially embeds the input 3D
point coordinates into a new feature space. The embedded features are then passed into
the four stacked attention modules, which are used to learn each point‘s features. The
input and output dimensions of each attention layer are the same, and the features of
all attention layers are then, finally, aggregated. To extract more efficient global features,
two aggregation functions—max pooling (MP) and average pooling (AP)—are used. With
regard to the PCT model, Guo et al. [35] proposed the offset-attention method, which
replaces the attentional features in SA with the offset between the input and the attentional
features of the attentional mechanism module. The offset attention layer obtains a better
model performance by calculating the offset between the SA features and the input features
via element-by-element subtraction.

The PCT model is designed with a local neighborhood aggregation strategy to enhance
local feature extraction. Two sampling and grouping (SG) layers gradually expand the
sensory domain during feature aggregation. The SG layers use Euclidean distance during
point cloud sampling and perform feature aggregation of local neighbors for each point
grouped by k-NN.

3.3. Critical Points Visualization

Most deep learning models, after extracting features from samples, use aggregation
functions to bring together important features to form global features, then use softmax
functions to complete the multi-classification task. Zhou et al. [30] have proposed the class
activation map (CAM) through the use of global average pooling (GAP) in the network.
CAM is used to indicate which part of the image is responsible for the classification results
in different networks. The CAM replaces the last fully connected layer with the GAP,
which displays its decision as a “salient graph”. This improved structure allows us to
efficiently locate important regions in the image for semantic prediction. CAM is a deep
learning interpretation method, in which training network information, such as gradients,
are passed backward to obtain results reflecting the basis of model decisions, such as
a heatmap of each sample’s contribution, which can then be used to interpret the deep
learning model [47].

Among the six deep learning methods used in this study, PointNet, PointNet++,
PointMLP, and PCT all use the max pooling function, while the DGCNN model uses both
max and average pooling convergence functions. The global features are processed using
the softmax function, in order to achieve the final classification. All deep learning models
extract features through their own unique model structure, which is a pre-requisite for
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effective classification. The more accurate and comprehensive the features aggregated by
the aggregation function, the more accurate the classification result of the model and the
higher the classification accuracy. The max pooling function extracts and retains the points
that contain the largest eigenvalues. In the study of [25], these points are called critical
points. These collections of critical points that contribute to the maximum set of features
summarize the skeleton of the 3D point cloud object shape. We extracted and visualized
critical points in the process of model training. Based on this, some explanatory notes on
the deep learning model can be given.

3.4. Model Accuracy Evaluation Metrics

After obtaining the tree classification results for each model, we evaluated the models
using the following metrics: balanced accuracy (BAcc), precision (Pr), recall (Re), F-score
(F), and kappa coefficient (kappa). Equations (11)–(14) give the formulae for Pr, Re, F, and
kappa for each category. In the final representation of the model metrics, we calculate the
weighted average of these metrics using the number of samples in each category as the
weights. Additionally, the weighted average of the model Re represents the overall accuracy
(Acc) of the model. BAcc is the arithmetic mean of Re for each category.

Pr =
TP

TP + FP
, (11)

Re =
TP

TP + FN
, (12)

F = 2× Pr× Re
Pr + Re

, (13)

kappa =
Acc− pe

1− pe
, (14)

where TP indicates the outcomes where the model correctly predicts the positive class, FP
indicates the outcomes where the model incorrectly predicts the positive class, FN indicates
the outcomes where the model incorrectly predicts the negative class, and pe is the sum of
the product of the actual sample size and the predicted sample size divided by the square
of the total number of samples.

The F-score (F) can be interpreted as a weighted average of precision and recall, which
reaches its best value at 1 and its worst value at 0. The kappa coefficient is a metric used for
consistency testing, which can also be used to measure the effectiveness of classification.
For classification problems, consistency is the agreement between the model prediction and
the actual classification result. The kappa coefficient is calculated based on the confusion
matrix, taking values between −1 and 1, and is usually greater than 0. Finally, we plotted
the confusion matrix for each model’s classification results.

4. Results
4.1. Analysis of the Effect of NGFPS Downsampling Method

We conducted deep learning training and testing experiments using the PointNet++
model on sample data from both the FPS and NGFPS methods. We aggregated the results
of the optimal model obtained from the training and analyzed them. We recorded the
model evaluation metrics for both the FPS and NGFPS approaches on the test data set.
All of these results are presented in Figure 4. As can be seen from the figure, all model
evaluation metrics were optimal in the results using the NGFPS method; notably, the
balanced accuracy (BAcc) of the NGFPS experimental results was significantly higher than
that of the FPS (by 0.02). The results of the model classification were close to perfect and
almost identical, as can be seen from the kappa coefficient values.
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4.2. Evaluation of Tree Species Classification Accuracy Using Six Deep Learning Methods
4.2.1. Training Process of Deep Learning Models

We recorded the change in training accuracy (Figure 5) and the change in loss (Figure 6)
during the training of each deep learning model. Figure 5 shows that the improvement
in training and testing accuracy for the PointNet model with increasing epochs was not
very large. The training and testing accuracies of all other models eventually reached
values greater than 0.90. Although the training accuracy of the PCT model reached a stable
interval early, its test accuracy increased slowly after reaching 0.80. The training accuracy
of the two PointNet++ models was always greater than the testing accuracy during the
training process. The training accuracy of the MSG models was consistently higher than
that of the SSG models. During the training of the DGCNN model, the training accuracy
and the testing accuracy were basically the same when the Epoch was in the range of
150, following which the testing accuracy was relatively lower than the training accuracy
as the training continued. From the perspective of model training accuracy, DGCNN
performed relatively poorly. In the later stage of model training, the training accuracy
kept improving, but the testing accuracy did not show good performance. For all other
models, the test accuracy was always greater than the training accuracy during the deep
learning training process. The advantages of the lightweight PointMLP-elite model can be
seen. During model training, the PointMLP-elite model achieved higher training accuracy
faster than PointMLP, and the final training accuracy remained consistent. The testing
accuracy of the PointMLP-elite model was also higher than that of the PointMLP model.
PointConv displayed a unique advantage in test accuracy, reaching over 0.95 at the early
stage of training (Epoch = 100). There was also some slower improvement in the accuracy
of PointConv as the training continued. The PCT model obtained a relatively high testing
accuracy at the beginning of training (Epoch = 50); however, after epoch 75, the test accuracy
did not grow significantly, although the training accuracy increased.

We could not evaluate different models exclusively with respect to the magnitude of
the value of the loss, as different models use different processes for the calculation of the
loss during the training of the model. However, we could compare models of the same type
or models with the same loss processing method. Figure 6 shows that the loss of all the
models decreased and eventually plateaued. This indicated that the training of all models
was stable. PointNet and PointNet++ used the same model training strategy. The loss value
of PointNet++ was eventually stable and close to 0, but the loss of the PointNet model
was higher, with value stabilizing at approximately 1. This indicates that the classification
performance of the PointNet model was worse than that of PointNet++. The loss values of
the DGCNN and PointMLP models also finally stabilized at approximately 1.
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4.2.2. Accuracy of Tree Species Classification

We summarize the final classification results of all models on the training and test sets
and provide all model evaluation metrics in Table 3. As shown in the table, the PointNet
model had the lowest evaluation metrics for all results. In the evaluation of the results
on the test set, the PointConv model had the highest values in all evaluation metrics. As
a recently proposed state-of-the-art (SOTA) pointwise MLP method, PointMLP ranked
second in all classification evaluation metrics on the test set. The confusion matrices
of the classification results for all models on the test data set are presented in Figure 7,
which corroborate the results detailed in Table 3. The overall performance indicated
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that three models—PointConv, PointMLP, and DGCNN—classified all samples nearly
completely correctly.
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Table 3. Evaluation metrics for model classification results.

Model
BAcc Pr Re F kappa

Train Test Train Test Train Test Train Test Train Test

PointNet 0.6251 0.7288 0.6277 0.7492 0.6351 0.7241 0.6288 0.7183 0.5726 0.679
PointNet++(MSG) 0.9642 0.9768 0.9648 0.974 0.9646 0.9732 0.9645 0.9731 0.9587 0.9687
PointNet++(SSG) 0.9579 0.9343 0.9579 0.9421 0.9579 0.9387 0.9578 0.9387 0.9508 0.9284

PointMLP 0.9097 0.9827 0.931 0.9818 0.9301 0.9808 0.9294 0.9808 0.9181 0.9776
PointMLP-elite 0.9467 0.9643 0.9562 0.9677 0.955 0.9655 0.955 0.9655 0.9473 0.9598

PointConv 0.9432 0.9952 0.9507 0.9963 0.9505 0.9962 0.9505 0.9962 0.9423 0.9955
DGCNN 0.9759 0.9614 0.9847 0.9648 0.9847 0.9647 0.9845 0.9647 0.9821 0.9588

PCT 0.9321 0.9232 0.9343 0.9441 0.9343 0.9425 0.9342 0.9426 0.9234 0.9329

The numbers in bold represent the maximum values of the indicators in each column.

4.2.3. Model Comparison and Analysis

We summarize the values of some evaluation metrics, determined through a literature
review, of the point cloud deep learning models used in this study in Table 4. The mean
accuracy (mAcc) and overall accuracy (OA) in Table 4 denote the classification accuracies
obtained from the deep learning models trained on the ModelNet40 data set. OA indi-
cates the number of correct predictions as a percentage of the total number of samples,
while mAcc indicates the arithmetic mean of accuracy for all categories. OA and mAcc
correspond to the Re (or Acc) and BAcc evaluation metrics in the tree species classification
experiments, respectively.
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Table 4. Results for all models trained on the ModelNet40 data set.

Model Year mAcc OA #Params #FLOPs Ref.

PointNet 2017 0.860 0.892 3.47 M 0.45 G [25]
PointNet++(MSG) 2017 — 0.919 1.74 M 4.09 G [26]
PointNet++(SSG) 2017 — 0.907 1.48 M 1.68 G [26]

PointMLP 2022 0.914 0.945 12.6 M — [24]
PointMLP-elite 2022 0.907 0.940 0.68 M — [24]

PointConv 2018 — 0.925 — — [33]
DGCNN 2019 0.902 0.929 1.81 M 2.43 G [34]

PCT 2021 — 0.932 2.88 M 2.32 G [35]
#Params indicate the number of parameters required by the model; #FLOPs indicate the number of floating-point
operations for the model.

The structure and performance of point cloud deep learning models have been contin-
uously improved and optimized by researchers, and newly proposed models have recently
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achieved higher classification accuracy. Among the experiments performed to classify the
ModelNet40 data set, Table 4 shows that the PointMLP method had the highest classifi-
cation accuracy, and three other methods—PointConv, DGCNN, and PCT—had similar
classification accuracy. Meanwhile, the classification accuracies of PointNet and PointNet++
were lower. Furthermore, the PointMLP model had the largest number of parameters, while
the elite version had the smallest number of parameters, and the difference in classification
accuracy between the two models was small. The PointNet model had the second-highest
number of parameters, but also had the worst classification accuracy. PointNet++ (MSG)
had higher FLOPs and, thus, a higher computational burden. DGCNN and PCT had high
classification accuracy but require a certain amount of memory and processor load on
the computer.

We counted the time spent for each model to train in the tree species classification
experiment, which are plotted in Figure 8a, while Figure 8b displays the GPU memory
occupancy of each model during training. As shown in Figure 8, the time required for
training PointNet++ and PointMLP to obtain the optimal model parameters was longer.
PointMLP-elite is a streamlined and lightweight version of PointMLP, with a model runtime
reduction of 70 min, approximately 30% less than that of PointMLP. Using the same training
parameters, the GPU memory of the PointMLP-elite model was reduced by 24%. Three
models—PointConv, DGCNN, and PCT—took less time for training, but DGCNN had a
higher GPU memory allocation.
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4.3. Visualization of Critical Points

We extracted the critical points used for classification after training seven models,
including PointNet, PointNet++ (MSG), PointNet++ (SSG), PointMLP, PointMLP-elite,
DGCNN, and PCT, and selected samples of some tree species as cases for demonstration
(Figure S1). Figure S1 shows that all critical points summarized the structure of the 3D ob-
jects well. Some tree species with similar shapes or structures will lead to misclassification,
but this is rare.

5. Discussion

In this study, we demonstrated that four different point cloud deep learning model
techniques, including pointwise MLP, convolution-based, graph-based, and attention-based
models, perform well when categorizing tree species from individual tree LiDAR point
clouds. We suggested a new approach for downsampling point clouds that combines
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the non-uniform grid and farthest point sampling methods. For training and testing
experiments involving tree species categorization, we explored eight point cloud deep
learning models: PointNet, PointNet++ (MSG), PointNet++ (SSG), PointMLP, PointMLP-
elite, PointConv, DGCNN, and PCT. With the exception of PointNet, the accuracy of tree
species classification for all models was greater than 90%. We extracted and visualized the
set of critical points in feature convergence for each model when classifying each sample,
which were found to comprehensively summarize the skeletons of the 3D point cloud
object shapes.

Individual tree species point cloud data processed with the NGFPS method can be
utilized to gain higher accuracy in tree species classification as it combines the non-uniform
grid sampling and farthest point sampling algorithms. Using non-uniform grid sampling
can preserve the details of 3D objects well, while FPS is a distance-based fast sampling
method that guarantees uniform sampling, which has been widely used. The NGFPS
combines the advantages of both of these downsampling methods and can represent the
structure of 3D objects comprehensively and accurately.

The classification accuracy of the PointNet model was poor. This was because PointNet
only considers the global features of the samples and ignores local features. Trees are
usually grouped into one category in 3D object classification studies because their shape
characteristics are very similar. Local detailed features are the key information necessary
for classification when distinguishing different species of trees. The PointNet model cannot
capture the local structure generated by the metric space points, thus limiting its ability to
identify fine-grained patterns. All of the other five methods could extract the local feature
information of 3D objects and achieved a higher classification accuracy.

The PointConv model achieved the highest classification accuracy and also required
less training time. In 2D images, convolutional neural networks have fundamentally
changed the landscape of computer vision by dramatically improving the results of almost
all vision tasks [33]. Our experiments demonstrated the scalability of convolution-based
point cloud deep learning models for the task of classifying 3D objects. The 3D convolu-
tional deep learning method with local information extraction capability can successfully
capture the structural features of trees for classification and recognition. Convolution plays
a unique role in the study of deep learning.

The PointMLP model achieved a classification accuracy second only to that of the
PointConv model, in terms of tree species classification. This confirmed that the existing
feature extractors proposed by Ma et al. [24] can already describe the local geometric
features of 3D objects well. More complex designs no longer need to be designed to further
improve performance. This illustrates that we need to re-think and re-design algorithms for
local feature extraction, in order to propose simple model structures for point cloud data
analysis. The experimental results of the PointMLP-elite model illustrated that a simple
deep learning model structure can still achieve good classification accuracy.

The PCT model did not achieve optimal classification accuracy in the tree species
classification experiments. The transformer does not use recurrent neural layers, but
attention mechanisms, which have a high degree of parallelism. However, attention
mechanisms make fewer assumptions about the whole model, meaning that the transformer
model has less adjustable parameters, which leads to a need for more data and a larger
model to train in order to achieve the same effect as a CNN [48]. In this experiment, the
final classification accuracy is relatively low because the samples used for deep learning
model training are relatively small. This is why transformer-based models are considered
to be larger and more expensive. The transformer is a feature extraction method based on
an attention mechanism, which was originally proposed for natural language translation.
However, scholars have found that the model can be applied in any deep learning domain.
Transformers can fuse various data, such as text, images, speech, video, and so on, and
extract features within one and the same framework as a means to train larger and better
models. This is a hotspot and focus of deep learning research at present and is expected to
remain so for some time.
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The ranking of OA on the ModelNet40 dataset differs from the results of the tree
species classification experiments for different models. The results in Tables 3 and 4 show
that, although the recently developed models (PointMLP, PCT) achieved superior classifi-
cation accuracy in experiments on 3D object classification, the convolution-based method
(PointConv) and the MLP-based method (PointNet++ (MSG)) had higher classification
accuracy when performing tree species identification on individual tree point clouds. This
indicates that more models and methods need to be considered for use in different classifi-
cation tasks of 3D objects. The evaluation of the number of parameters and performance of
different models need to be reanalyzed for different experimental tasks.

Our experiments still had several flaws that will need to be addressed in the future.
Due to the small number of training examples, transformer, a promising deep learning
framework at the moment, did not demonstrate its advantages in this study. In future
related works, we hope to broaden the application of transformer models in point cloud
deep learning by extending the amount of data to as many samples as possible. Similar
to the authenticity test of remote sensing products [49–51], we must reduce the error
tolerance of training samples while improving the accuracy of the model by drawing on
the authenticity test. It has been proposed that very high-accuracy models can be trained
using MLP or simpler architectures; however, we found that the training time of pointwise
MLP-based methods was higher than that of other types of methods. The scalability of the
deep learning models used at this stage must be further demonstrated through various
experiments, as the methods currently designed and developed by scholars have been
proposed based on several data sets common to the field of computer vision. In this context,
more architectures are sure to emerge and expand into more research areas in the future.

Overall, our experiment was very successful. The NGFPS method can aid in deep
learning model training, obtaining higher accuracies, and different types of point cloud
deep learning methods were shown to achieve good results in the study of tree species
classification. The proposal of new point cloud deep learning methods, such as PointMLP,
provides us with more options in the study of tree species classification.

6. Conclusions

Deep learning approaches were demonstrated to be capable of identifying individual
tree point cloud species very accurately. The NGFPS method, which combines the non-
uniform grid and farthest point sampling methods, can better preserve the details and
structural information of 3D objects, providing accurate data input for deep learning
models to accurately identify the features of different tree species. All deep learning models
generalized the classification objects in terms of both local and global features. In particular,
the convolution-based PointConv model exemplified its superior performance for 3D object
classification. Furthermore, deep learning algorithms need not be more complex than they
currently are, as the lightweight PointMLP-elite model presented unique advantages over
PointMLP. The PointNet++ model, a foundational model for point-based deep learning
methods, still exhibited high classification accuracy in tree species classification studies.
Point cloud deep learning models are constantly developing, and the potentials of deep
learning techniques will be continuously explored. The successful practice of using deep
learning models for individual tree species classification provides a new solution, allowing
for more efficient forest resource surveys.
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