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Abstract: The accurate estimation of phenological metrics from satellite data, especially the start of
season (SOS), is of great significance to enhance our understanding of trends in vegetation phenology
under climate change at regional or global scales. However, for regions with winter snow cover, such
as the alpine grasslands on the Tibetan Plateau, the presence of snow inevitably contaminates satellite
signals and introduces bias into the detection of the SOS. Despite recent progress in eliminating
the effect of snow cover on SOS detection, the mechanism of how snow cover affects the satellite-
derived vegetation index (VI) and the detected SOS remains unclear. This study investigated the
effect of snow cover on both VI and SOS detection by combining simulation experiments and real
satellite data. Five different VIs were used and compared in this study, including four structure-based
(i.e., NDVI, EVI2, NDPI, NDGI) VIs and one physiological-based (i.e., NIRv) VI. Both simulation
experiments and satellite data analysis revealed that the presence of snow can significantly reduce
the VI values and increase the local gradient of the growth curve, allowing the SOS to be detected.
The bias in the detected SOS caused by snow cover depends on the end of the snow season (ESS),
snow duration parameters, and the snow-free SOS. An earlier ESS results in an earlier estimate of
the SOS, a later ESS results in a later estimate of the SOS, and an ESS close to the snow-free SOS
results in small bias in the detected SOS. The sensitivity of the five VIs to snow cover in SOS detection
is NDPI/NDGI < NIRv < EVI2 < NDVI, which has been verified in both simulation experiments
and satellite data analysis. These findings will significantly advance our research on the feedback
mechanisms between vegetation, snow, and climate change for alpine ecosystems.
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1. Introduction

Land surface phenology is the assessment of seasonal vegetation growth at a large
scale using satellite remote sensing and has been widely used to quantify the response of
terrestrial ecosystems to climate change [1–3]. Alpine ecosystems, characterized by high
elevations, low temperatures, snows, and short growing seasons, are very sensitive to
climate change and are regarded as “climate change hot spots”. The accurate estimation
of phenological metrics from satellite data, especially the start of season (SOS), is critical
for understanding the dynamics of alpine vegetation and climate change. As the third
pole of the earth and the largest alpine pasture in Asia, the Tibetan Plateau is a research
focus in land surface phenology [4]. However, the prevalent and seasonal snow cover,
one of the major features of alpine ecosystems, increases the complexity of monitoring
vegetation phenology from satellites [5]. Especially in the Tibetan Plateau, existing studies
have yielded inconsistent results on the SOS changes, and snow cover has been attributed
as a major cause [6,7].

Phenological transitions are generally detected from the seasonal dynamics of the
satellite-derived vegetation index (VI). The VI measures the greenness of vegetation through
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algebraic combinations of the multiband reflectance of satellite data and is closely related to
the biophysical and structural properties of the canopy [8]. From the VI’s trajectory, the SOS
is detected as the point in time when the VI reaches a threshold, the growth gradient reaches
its maximum, or the VI exceeds the moving average VI curve, corresponding to the thresh-
old method, the derivative method, and the moving average methods, respectively [9].
While each method has its own advantages and shortcomings, there is no consensus on
which method performs best [10,11]. The dynamic threshold method, achieving a balance
between simplicity, universality, and robustness to noise, is one of the most commonly used
methods, especially in the latest MODIS phenology product MCD12Q2 C006 [12]. Among
the various VIs, the normalized difference vegetation index (NDVI) [13] is the earliest and
most commonly used VI in SOS detection due to its simplicity and long records of historical
data [14–16], but it suffers from saturation in densely vegetated areas and interference from
soil backgrounds. To reduce the sensitivity of VI to the soil background and atmosphere,
the two-band enhanced vegetation index (EVI2) [17] was proposed and has been widely
used in SOS detection, such as in the VIIRS phenology product VNP12Q2 [18].

Although various satellite-derived VIs have been successfully applied in phenology
detection [19–21], they face major limitations in alpine grasslands due to snow’s inter-
ference with satellite signals [22,23]. The presence of snow can significantly affect the
VI’s value and change the VI’s trajectory, while snowmelt can cause a rapid increase in
the VI’s trajectory [24,25]. If the effect of snow cover is not considered, the detected SOS
may be a snowmelt date instead of the SOS [26,27], which will further cause bias in our
understanding of vegetation phenology trends and climate change [28]. For example,
preseason snow was found to cause the SOS detected by NDVI to advance compared to
snow-free cases [20,21].

Previous studies have attempted to eliminate the effect of snow cover on SOS detection
from satellite data. Some studies introduced auxiliary information on snow, precipitation,
and temperature to replace the SOS of snow-covered pixels with those of snow-free back-
ground pixels [18,29]. However, auxiliary data are not always available in large alpine
areas, and additional data can also add bias and uncertainty [30]. Alternative approaches
have attempted to propose new snow-free VIs, such as the normalized difference phenol-
ogy index (NDPI) [31] and the normalized difference greenness index (NDGI) [21], which
were recently developed to eliminate the effects of snow and soil. Both VIs were found
to have better correlation with the in situ measurements and outperform the traditional
VIs under snow conditions, such as NDVI and EVI [20,21]. In some studies, the SOS dates
detected by NDPI or NDGI were used as the SOS detected under snow-free conditions to
evaluate the advancement or delay of the SOS under snow conditions [20,32]. In addition,
the near-infrared reflectance of vegetation (NIRv) [33] and solar-induced chlorophyll fluo-
rescence (SIF), as direct indicators of vegetation photosynthesis, are promising indicators
for phenological monitoring [33,34]. Both SIF and NIRv are physiological-based VIs and
overcome the saturation problem of NDVI. Existing studies verified the good consistency
of the SOS detected by NIRv and SIF with the SOS measured by flux towers [20,35].

Despite recent progress in eliminating the effect of snow cover on SOS detection, the
mechanism of how snow cover affects VI values and subsequent SOS detection remains
unclear. Existing studies have attempted to find evidence from satellite data or in situ
measurements [36–39], yet it is challenging to compare snow-free and snow-covered areas
directly. Vegetation growth on snow-free pixels cannot simply represent the growth on the
snow-covered pixels due to the confounding effects of snow cover on SOS detection and on
SOS itself. Furthermore, although several new snow-free VIs and SIF-related VIs have been
proposed [31,35,40], there are no definitive answers as to how they are affected by snow
cover and which VI performs best for alpine ecosystems. Direct evidence on how snow
cover affects SOS detected from satellite-derived VIs is urgently needed to enhance our
understanding of vegetation phenology changes on the Tibetan Plateau.

To address the above issues, this study combined simulation experiments and satellite
data to investigate the effect of snow cover on VI values and subsequent SOS detection, aim-
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ing to clarify the mechanism of how snow cover affects SOS detection from satellite-derived
VIs. Four snow parameters were adopted to describe the coverage and phonological
characteristics of snow, including snow cover fractions (SCFs), snow cover duration (i.e.,
consecutive days with snow and the ratio of days with snow to total days, hereafter referred
to as SCDc and SCDr), and the end of the snow season (ESS). Five different VIs were used
and compared in this study, including four structure-based (i.e., NDVI, EVI2, NDPI, NDGI)
VIs and one physiological-based (i.e., NIRv) VI. Simulation experiments were carefully
designed to model the time series of different VIs under different snow scenarios to investi-
gate the difference in SOS between snow and snow-free conditions. Then, the variations
in the SOS under different snow conditions were analyzed using satellite data. The main
objectives of this study are: (1) to elucidate the effect of snow cover on the five VIs and
subsequent SOS detection through simulation experiments; (2) to analyze the spatial and
temporal patterns of snow cover and investigate the effect of snow cover on the detected
SOS using real satellite data from 2020; and (3) to compare the performance of the five VIs
in detecting the SOS under snow-covered conditions.

2. Study Area and Data
2.1. Study Area

The study area is on the east of the Tibetan Plateau (29◦35′30′′N–35◦48′06′′N,
94◦08′08′′E–101◦03′36′′E, Figure 1), covering a large area of alpine grasslands at an av-
erage elevation of 4000 m. Our study focuses on alpine grasslands, which are dominated
by alpine meadows and alpine steppe [41]. The study area is typical of alpine meadows,
which normally grow from May to September. The mean temperature ranges from near
0 ◦C to above 20 ◦C, and precipitation ranges from 100 mm to over 1000 mm along a
south–north gradient [4]. Seasonal snow covers the study area from October to May, which
may contaminate the satellite signals and introduce bias in SOS detection.
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Figure 1. Map of the study area. (a) MODIS land cover map of the Qinghai–Tibet Plateau. (b) MODIS
land cover map and (c) DEM of the study area.

2.2. Datasets
2.2.1. Satellite Reflectance Data

The MODIS MCD43A4 Nadir Bidirectional Reflectance Distribution Function (BRDF)
Adjusted Reflectance (NBAR) product with a 500 m resolution was used in this study to
remove the viewing angle effects from directional reflectivity [42]. A total of 366 images
from 1 January 2020 to 31 December 2020 were freely downloaded from the NASA Land
Processes Distributed Active Archive Center (LP DAAC, http://lpdaac.usgs.gov (accessed
on 10 July 2021)), which were processed to UTM/WGS-84 projection and 500 m resolution.
Based on repeated manual tests, missing values of 50 consecutive days would introduce
significant errors in reconstructing the VI trajectory. To eliminate errors caused by missing

http://lpdaac.usgs.gov
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values in the daily NBAR products, pixels with more than 50 consecutive days of missing
data were flagged as poor-quality pixels and excluded from subsequent analysis, which
accounted for only 3.34% of the study area. Reflectance in the red, green, near-infrared
(NIR), and shortwave infrared (SWIR) bands was used to calculate the different VIs and to
further determine the SOS dates.

2.2.2. Snow Cover Data

The MODIS snow cover data MOD10A2, with a 500 m spatial resolution and 8-day
intervals, was used to derive snow phenology parameters in our study. This snow cover
product has higher spatial and temporal resolutions [43]. Previous studies have verified that
MOD10A2 is effective in reducing the effect of cloud contamination in most cases and has
higher classification accuracy than another MODIS snow product (MOD10A1) [37,44]. A
total of 46 images from 1 January 2020 to 31 December 2020 were freely downloaded
from the National Snow and Ice Data Center (NSIDC, http://nsidc.org (accessed on
17 December 2021)). All images were processed to UTM/WGS-84 projection and 500 m
resolution. Pixels coded as ‘200′ were extracted as snow pixels according to the product’s
user guide [43].

2.2.3. Land Cover Type and DEM

A subset of the global land cover product from Tsinghua University at 10 m resolution
in 2017 (available at http://data.ess.tsinghua.edu.cn (accessed on 15 July 2021)) was used
to define our study area for its high spatial resolution and high overall accuracy [45], as
shown in Figure 1. The SRTM digital elevation model (DEM) data at 90 m resolution were
used to characterize the variations in snow phenology and vegetation phenology. The DEM
data were freely downloaded from the Geospatial Data Cloud (http://www.gscloud.cn
(accessed on 15 July 2021)) and processed to UTM/WGS-84 projection and 500 m resolution,
as shown in Figure 1c.

3. Methods
3.1. Derivation of Vegetation Indices

Five VIs were selected and derived from MODIS daily NBAR data for phenology detec-
tion, including NDVI, EVI2, NDPI, NDGI, and NIRv. Their definitions and corresponding
references are given in Table 1.

Table 1. Derivation of vegetation indices used in the study.

Index
Acronym Formula Reference

NDVI NDVI = RNIR−RRed
RNIR+RRed

[13]
EVI2 EVI2 = 2.5 RNIR−RRed

RNIR+2.4RRed+1 [17]

NDPI
NDPIMODIS =

RNIR−[0.74×RRed+0.26×RSWIR]
RNIR+[0.74×RRed+0.26×RSWIR]

[31]

NDGI NDGIMODIS =
0.65×RGreen+0.35×RNIR−RRed
0.65×RGreen+0.35×RNIR+RRed

[21]

NIRv NIRv = NDVI× RNIR [33]
Note: RGreen, RRed, RNIR, and RSWIR are the surface reflectance values in the green, red, NIR, and SWIR
bands, respectively.

Among the five VIs, NDVI is the most commonly used VI for monitoring land surface
phenology. EVI2 was developed from the enhanced vegetation index (EVI) [46] to adapt
to satellite sensors without a blue band [17], while both EVI and EVI2 were designed to
overcome the saturation problem and sensitivity to the soil background with NDVI. The
NDPI and NDGI and NIRv were recently developed and are rather new. Both NDPI and
NDGI were proposed to maximize the contrast between vegetation and soil/snow [21]. The
NDPI assumes that the reflectance of soil and snow increases or decreases monotonically

http://nsidc.org
http://data.ess.tsinghua.edu.cn
http://www.gscloud.cn
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from red to SWIR wavelengths. In contrast, the reflectance of vegetation is high in the
NIR band and low in both the red and SWIR bands [40]. The NDPI is thus designed by
replacing the red band in NDVI with a weighted sum of the red and SWIR bands. As a
result, the NDPI is close to zero for soil and snow but high for vegetation [31,40]. NDGI
is a semi-analytical snow-free VI based on a linear mixture model. It connects a straight
line between the reflectance of the green and NIR bands, and the difference between this
line and the reflectance of the red band is defined as the NDGI [21]. NDGI is positive
for vegetation but is close to zero for snow, soil, and dry grass. NIRv has been proposed
as a proxy for SIF, a very effective indicator of vegetation photosynthesis [47], and has
been successfully used in phenology detection [33]. The comparison of these five typical
VIs would provide a useful reference for the performance of both structural-based and
physiological-based VIs, as well as the traditional VIs and snow-free VIs.

3.2. Spring Phenology Detection and Evaluation
3.2.1. Detection of SOS Dates

Vegetation growth in the alpine grasslands on the Tibetan Plateau has a distinct
seasonal cycle, and the SOS can be detected from the time series of five different VIs. We
first removed the poor-quality/filled values from the original MODIS datasets and then
used a double-logistic fitting method to smooth the noisy time series of VIs in the TIMESAT
program [48], since it is more robust in extracting phenological parameters [49–52]. We
applied two upper-envelope iterations with an adaptation strength of 2 to reduce the
bias of atmospheric effects in the smoothing process [20]. Then, the simple and intuitive
dynamic threshold method [53,54] was used to detect the SOS (Figure 2) for its simplicity
and robustness [55], and a 20% amplitude was used to determine the SOS, which was
consistent with previous studies [20,55,56]. Figure 2 illustrates how the dynamic threshold
method detects the SOS under snow and snow-free conditions. The SOS date was detected
as the point in time when the VI increased to 20% of the amplitude plus the base value.
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Figure 2. A schematic diagram of how the dynamic threshold method detects the start of the season
(SOS). ∆SOS = SOSsnow − SOSsnow-free.

3.2.2. Evaluation of SOS Dates

The SOS detected from the five VIs were compared pixel-by-pixel via scatterplots
on each pair of image combinations. Three indicators, the correlation coefficient (R), the
mean absolute error (MAE), and the root mean square error (RMSE), were calculated to
evaluate the consistency between the SOS detected from different VIs. Then, considering
the influence of elevation on the SOS, the study area was divided into four elevation zones,
including < 3500 m, 3500–4000 m, 4000–4500 m, and ≥ 4500 m. The changes in the detected
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SOS dates with varying elevations were analyzed through zonal statistics. The effect of
snow on the detected SOS was further analyzed in each elevation zone.

3.3. Effect of Snow Cover on Detecting SOS from VIs
3.3.1. Snow Cover Analysis

Four parameters were used to describe the coverage and phenology of snow, including
SCF, SCDc, SCDr, and ESS. The SCF is defined as the snow cover fraction at each location.
The SCDc and SCDr are complementary parameters used to describe snow cover duration.
The SCDc denotes the maximum number of consecutive days with snow cover and is more
specific, while SCDr is defined as the ratio of days with snow to total days and is more
general. The SCDc is more ready-to-use in simulating different snow scenarios if we only
consider the longest snow duration, while the SCDr is difficult to simulate, as the spring
snow cover might include several periods of snow duration. Thus, SCDc was used in both
simulations and satellite data analysis, and SCDr was only used in satellite data analysis.
The ESS is defined as the ending date of snow, i.e., the last day with snow cover. Since our
focus is spring phenology, the SCDc, SCDr, and ESS were calculated for the period from
the day of year (DOY) 001 to 208. The four parameters were calculated from the MOD10A2
snow cover data to reveal the spatial and temporal characteristics of snow in the study
area. Furthermore, they were also used in simulation experiments to generate different
snow scenarios.

3.3.2. Tests with Simulated Data

Since it is very difficult to find appropriate snow-free vegetation pixels as a reference,
we designed simulation experiments to evaluate the effect of snow on SOS detection. A
linear spectral mixture model was used to simulate the pixel reflectance with different SCF
values. For simplicity, it is assumed that each pixel is composed of soil and vegetation;
the snow layer is covered above and only absorbs and reflects the incident light, i.e., the
transmittance of the snow layer equals 0. Assuming that the vegetation and soil components
are both homogeneous, which is reasonable for alpine grasslands, the presence of snow will
not affect the areal compositions of soil and vegetation. As a result, the spectral reflectance
of a snow-covered pixel can be computed as:

Rmixed = (1− fsnow)
[
fveg · Rveg + (1− fveg)Rsoil)

]
+ fsnow · Rsnow (1)

where Rmixed denotes the simulated mixed pixel reflectance; fveg, fsoil, and fsnow are the
coverage fractions of vegetation, soil, and snow, respectively; and Rveg, Rsoil, and Rsnow are
the corresponding endmember reflectances.

To simulate the satellite-derived band reflectance, the spectral reflectance ρ(λ) was
convolved with the spectral response function (SRF) of the MODIS sensor S(λ) as follows:

R =
∫ λ2

λ1

ρ(λ)S(λ)dλ (2)

where λ1 and λ2 are the minimum and maximum wavelengths of each band, respectively.
The ρ(λ) for snow, soil, and vegetation were selected from the Johns Hopkins University
Spectral Library [57], corresponding to medium granular snow, dark brown fine sandy
loam, and green grass, respectively, as in Figure 3.
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Figure 3. Schematic diagram of endmember reflectance spectra and the spectral response of the
MODIS sensor.

Through Equations (1) and (2), the band reflectance and further VIs of a pixel can be
computed using the endmember reflectance with varying FVC and SCF values. To investi-
gate the effect of snow cover on SOS detection, simulation experiments were designed in
the following two aspects.

First, we investigated the effect of snow cover on five VIs. We computed the VI values
when FVC was varied from 0 to 1 for five cases of SCF = 0%, 25%, 50%, 75%, and 100%.
The effect of snow cover on VI values can be described by the difference in VI values
under specific snow scenarios and snow-free conditions (i.e., SCF = 0%), expressed as
∆VI = VISCF > 0 − VISCF = 0. As the values of ∆VI vary with SCF and FVC, we further define
a quantitative indicator, the maximum impact of snow (MIS), to represent the maximum
effect of snow on VI for a specific FVC, expressed as:

MIS =
|VISCF = 100% −VISCF = 0%|

VImax −VImin
(3)

where VISCF = 100% and VISCF = 0% correspond to VI values when SCF = 100% and SCF = 0%
for a given FVC, respectively; VImax and VImin are the maximum and minimum VI values,
respectively. The denominator is the range of VI values and is used to eliminate the effect
of different value ranges of VIs. Both VI and MIS vary with FVC. The numerator represents
the absolute difference in VI between SCF = 100% and SCF = 0%, while the MIS represents
the maximum percentage change in VI caused by snow relative to the range of VI values.
The MIS provides a direct indication of the extent to which a VI is affected by snow and
provides a basis to further investigate the effect of snow cover on SOS detection.

Second, to investigate the effect of snow cover on SOS detection, we designed a series
of experiments to generate different VI time curves under different snow scenarios. We
extracted the NDVI time curve of a typical snow-free vegetation pixel and converted the
time series of NDVI to FVC using the dimidiate pixel model [58]. Using the derived time
series of FVC, the time series of band reflectance and VI were calculated under different
snow scenarios defined by snow parameters, including SCF, SCDc, and ESS. The time
curves of five different Vis were then filtered, and the SOS was detected. As shown in
Figure 2, given the same growth curve of FVC, the red and blue lines represent the VI
trajectories for snow-free and preseason snow conditions, respectively. The preseason snow
caused a bias in the detected SOS, expressed as ∆SOS = SOSsnow − SOSsnow-free, which is
defined as the effect of snow on SOS detection.

Three sets of experiments were designed, and the corresponding settings of snow
scenarios are shown in Table 2. In all experiments, as we were only concerned with the
SOS, only the snow season from DOY 001 to DOY 208 was considered. Experiment I
corresponded to a completely snow-free case with SCF = 0% during the period, which
served as the baseline to assess the effect of snow cover on SOS detection (Figure 4a).
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Experiments II and III were snow cover conditions, where four cases of SCF = 25%, 50%,
75%, and 100% were considered, and in all cases, the SCF remained constant during the
snow season. Experiment II referred to the cases of snow persisting from DOY 001 to ESS.
Three cases of ESS at DOY 104, 136, and 168 were considered, which were the mean ESS
plus or minus its standard deviation analyzed from snow cover data, as shown in Figure 4b.
In experiment III, three cases of SCDc = 32, 64, and 96 days were considered. As the SCDc
could be in any interval during the snow season, we simulated all cases by iterating the
start of the snow season from DOY 001 at 16-day intervals while keeping the ESS no later
than DOY 208. For example, a case with SCDc = 64 can generate 10 different time curves of
a VI with a snow season ranging from DOY 1–64 to 145–208, as shown in Figure 4c.

Table 2. Experimental settings for the investigation of the effect of snow on spring vegetation
phenology detection.

Experiments No. Snow Scenarios *

I Snow free with SCF = 0% constantly during the period from DOY 001 to 208.
II Snow persists from DOY 001 to ESS (DOY 104, 136, and 168) with constant SCF.

III Snow persists from DOY t to ESS with constant SCF, where t is iterated from DOY 001
at 16-day interval; ESS = t + SCDc − 1 ≤ 208; and SCDc = 32, 64, and 96 days.

* In experiments II and III, four cases with SCF = 25%, 50%, 75%, and 100% were considered.
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Figure 4. Temporal trajectories of coverage fractions of vegetation, snow, and soil for experiments I
to III. (a) Experiment I with SCF = 0% constantly from DOY 001 to 208; (b) experiment II with snow
persisting from DOY 001 to ESS with constant SCF; (c) experiment III with snow persisting from DOY
t to ESS with constant SCF.

3.3.3. Tests with Satellite Data

Since snow is prevalent, a direct comparison of VI in snow-covered and snow-free
pixels is difficult. Based on the simulation results, the effect of snow cover on SOS detection
was analyzed from satellite data in two aspects. First, the statistical distribution of the
minimum and maximum values of VI over time for each SCDr interval in each elevation
zone was analyzed. This analysis could help reveal the difference in VI values between
different SCDr intervals in the same elevation zone. Second, the statistical distribution of
the SOS detected from real satellite data for different SCDc and ESS scenarios was analyzed,
which could help reveal the variations in the detected SOS under different SCDc and
ESS cases.

The flowchart of this study is shown in Figure 5.
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4. Results
4.1. Snow Cover Analysis

The snow cover analysis from MOD10A2 data in Figure 6 shows that a large portion
of the study area was covered by snow, while the SCDr varied across the area. Statistically,
the SCDr in 52.27% of the study area was higher than 40%, and the SCDr was lower than
20% only in 21.25% of the study area.
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4.2. Spring Phenology Derived from Different VIs 
Figure 8 shows the SOS detected from five different VIs. Nongrassland pixels (e.g., 

water bodies, forests, etc.) and the pixels whose SOSs were poorly detected were flagged 
as no data. SOS trends derived from different VIs were generally spatially consistent with 
the elevation variations. The SOS dates in the eastern part of the study area were earlier 

Figure 6. The derived SCDr map in the study area. SCDr is the ratio of days with snow to total days
from DOY 001 to DOY 208.

Statistically, approximately 77% of the study area has an elevation ≥ 4000 m, while
only approximately 6% of the area has an elevation < 3500 m. Figure 7 shows the statistical
distributions of ESS, SCDr, and SCDc in each elevation zone. In all four elevation zones, the
ESS values were concentrated on DOY 136. The increase in elevation led to the increase in
ESS. When the elevation increased to ≥4000 m, a significant subpeak in the ESS appeared
on DOY 160. Both SCDr and SCDc increased with increasing elevation. The peak values of
SCDr were 0%, 8%, 36%, and 64%, while the peak values of SCDc were 8, 8, 16, and 88 days,
respectively, for all four elevation zones from elevations <3500 m to ≥4500 m.
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4.2. Spring Phenology Derived from Different VIs

Figure 8 shows the SOS detected from five different VIs. Nongrassland pixels (e.g.,
water bodies, forests, etc.) and the pixels whose SOSs were poorly detected were flagged
as no data. SOS trends derived from different VIs were generally spatially consistent
with the elevation variations. The SOS dates in the eastern part of the study area were
earlier than those in the western parts. As shown in Figure 8, the SOS dates detected
by NDVI were very similar to the SOS dates detected by EVI2, while those from NDPI
and NDGI were highly consistent and those detected by NIRv were in between. The
histograms revealed that the SOS dates detected by the five VIs were generally simi-
lar in terms of the value ranges and peak values. The detected SOS dates ranged from
105 to 175, while the average SOS dates derived from the five VIs followed the order of
NDPI (DOY 154) > NDGI (DOY 152) > NIRV (DOY 150) > EVI2 (DOY 145) > NDVI (DOY 141),
which was very consistent with previous studies in this study area [38,55,59]. This in-
dicates that the SOS dates detected by the five VIs were generally consistent and reliable.
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Scatterplots in Figure 9 compare the SOS dates detected from different VIs on a pixel-
by-pixel basis. According to the consistency between the detected SOS, the five different
VIs were aggregated into two groups. One group included NDGI and NDPI (R = 0.849
and RMSE = 5.957), and the other group included EVI2, NDVI, and NIRv. The SOS dates
detected by EVI2 were highly correlated with those detected by NDVI (R = 0.934 and
RMSE = 6.416) and NIRv (R = 0.938 and RMSE = 6.870), while the SOS detected by NDVI
and NIRv had lower correlations (R = 0.776 and RMSE = 12.722). The SOS detected by the
VIs from different groups showed large discrepancies. For example, the SOS dates from
NDVI and NDPI were poorly correlated (R = 0.445) and had a large bias (RMSE = 17.823).
In addition to the differences in VI calculations, this different performance may also be
attributed to the different effects of snow cover on different VIs.
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Figure 9. Comparison of the SOS detected by different VIs. The color from light gray to dark gray
indicates increasing sample densities. (a–j) are scatterplots of the SOS dates detected from different
VIs on a pixel-by-pixel basis.

4.3. Simulation Results
4.3.1. Effect of Snow Cover on VI

Figure 10 compares the changes in the five VIs under different SCF conditions as the
FVC increases from 0 to 1. For all indices, the values of the five VIs generally decreased
with increasing SCF. In the presence of snow cover, the larger the FVC was, the greater the
decrease in the VI value. The deviation of the data points from the 1:1 line showed the
effect of snow cover on VI values. The dashed line in each subplot of Figure 10 indicates
the difference in VI values between SCF = 0% and SCF = 100%, denoted as |∆VI|max.
MIS values were further calculated for FVC = 0 and FVC = 1 to show the maximum
possible influence of snow on VI values using Equation (3). Thus, the sensitivity of the five
VIs to snow cover is NDPI (MIS range 0.0466–0.9534) < NDGI (MIS range 0.0122–1.0122)
< NIRv (MIS range 0.2335–1.2335) < EVI2 (MIS range 0.3320–1.3320) < NDVI (MIS range
0.5280–1.5280).
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Figure 10. Comparison of simulated VIs under different SCFs with snow-free cases. (a)-(e) are the 
changes of the five VIs as the FVC increases from 0 to 1 under different SCF conditions. 
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Figure 10. Comparison of simulated VIs under different SCFs with snow-free cases. (a–e) are the
changes of the five VIs as the FVC increases from 0 to 1 under different SCF conditions.

4.3.2. Effect of Snow Cover on SOS Detection

Figure 11 shows the temporally filtered time curves of the five VIs and the detected
SOS dates in simulation experiments I and II. Under snow-free conditions, the SOS detected
by the different VIs ranged from DOY 144 to DOY 152, indicating small differences in snow-
free SOS detected by the different VIs. Under snow conditions, the SOS dates detected
by NDVI and EVI2 were earlier, while those detected by NDGI and NDPI were later, and
those detected by NIRv were in between, as shown in all subplots of Figure 11.

Considering the differences in the SOS between SCF = 0 and SCF > 0 in Figure 11, the ef-
fect of snow on the detected SOS generally follows the order of NDPI/NDGI < NIRv < EVI2/NDVI.
Generally, the presence of snow significantly reduced the VI values during the pregrowth
period and advanced the SOS for all five VIs. For all five VIs, the greatest advances in the
SOS were found for the earliest snow season (i.e., for ESS at DOY 104), which ranged from
16 to 56 days. As the ESS increased from DOY 104 to 168, the advances in the detected
SOS decreased rapidly. For the ESS at DOY 168, the SOS estimated by NDVI, EVI2, and
NIRv was only 4–6 days earlier than the snow-free SOS, while those estimated by NDPI
and NDGI were 6 and 2 days later than the snow-free SOS, respectively. This indicates
that the ending date of persisting snow is very important. When persisting snow ends
earlier than the snow-free SOS, the presence of snow reduces the minimum VI value during
the pregrowth period but does not affect the maximum VI value during the peak growth
period, which would increase the gradient of the time curve of VI significantly and cause
the SOS to be detected earlier. As analyzed in Section 4.3.1, the snow-induced decrease
in the VI value is very small at small VI values and is relatively larger at large VI values.
When the snow season ends later than the snow-free SOS, the decrease in VI values around
the SOS is larger than that of the pregrowth period. This may locally smooth the time curve
of VI and delay the detected SOS compared to the case of an early snow season.
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< NIRv < EVI2 < NDVI, which is consistent with the effect of snow on VI values analyzed 
in Section 4.3.1. Both SCDc and ESS are very important in determining the ΔSOS. In gen-
eral, the larger the SCDc value was, the larger the absolute value of ΔSOS. This is reason-
able because the reduction in VI values during a short snow period (i.e., small SCDc) can 
be better recovered by time series filtering performed prior to SOS detection. Specifically, 
for short snow with SCDc = 32, ΔSOS was very close to 0 for all VIs, except NDVI, for 
which ESS was earlier than the snow-free SOS. For longer snow with SCDc = 64 and 96, 
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Figure 11. Time curves and the detected SOS of the five VIs under different SCF and ESS cases in
experiments I and II. (a–c), (d–f), (g–i), (j–l), and (m–o) are the time curves of five VIs, for each of
which three ESS cases at DOY 104, 136, and 168 and five cases of SCF = 0%, 25%, 50%, 75%, and 100%
were plotted.

To further investigate the mechanism of how snow affects SOS detection, simulation
experiment III was implemented to analyze the ∆SOS under different snow scenarios
defined by SCDc, ESS, and SCF, and the results are shown in Figure 12. It clearly shows
that ∆SOS changes with varying SCDc, ESS, and SCF values. Using the absolute val-
ues of ∆SOS as a standard, the effect of snow on SOS detection followed the order of
NDPI/NDGI < NIRv < EVI2 < NDVI, which is consistent with the effect of snow on VI
values analyzed in Section 4.3.1. Both SCDc and ESS are very important in determining
the ∆SOS. In general, the larger the SCDc value was, the larger the absolute value of ∆SOS.
This is reasonable because the reduction in VI values during a short snow period (i.e., small
SCDc) can be better recovered by time series filtering performed prior to SOS detection.
Specifically, for short snow with SCDc = 32, ∆SOS was very close to 0 for all VIs, except
NDVI, for which ESS was earlier than the snow-free SOS. For longer snow with SCDc = 64
and 96, ∆SOS increases from negative to positive values as ESS increases. This also indicates
that an earlier ESS generally advances the SOS, while an ESS much later than the snow-free
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SOS delays the SOS, and ∆SOS approaches 0 when ESS approaches the snow-free SOS.
These findings were consistent with the results of experiments I and II as analyzed above.
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Figure 12. Changes in ∆SOS with increasing ESS under different SCF and SCDc cases derived from
simulation experiment III. (a–c), (d–f), (g–i), and (j–l) are the changes in the ∆SOS with ESS for four
cases of SCF = 25%, 50%, 75%, and 100%, in each group of which three cases of SCDc = 32, 64, and 96
were plotted.

To further investigate the different effects of ESS and SCDc on ∆SOS, we also analyzed
the time curves of Vis under different ESS scenarios based on simulation experiment III.
The medium SCDc = 64 was used. As the ∆SOS was close to 0 around the ESS at DOY 144,
the ESS was varied as DOY 144 minus or plus three 16-day intervals, corresponding to
three cases of ESS at DOY 96, 144, and 192. Figure 13 shows the temporally filtered time
curves of VIs and the detected SOS. It clearly shows that the snow season ending much
earlier than the snow-free SOS (ESS at DOY 96) advanced the SOS by up to 56 days, while
the snow season ending much later than the snow-free SOS (ESS at DOY 192) delayed the
SOS by up to 38 days. When the ESS approached the snow-free SOS (ESS at DOY 144),
the changes in SOS caused by snow were very small. Therefore, the effect of snow cover
on SOS detection depends on snow parameters, specifically SCDc, ESS, and the snow-free
SOS. Because the presence of snow increases the local gradient of the VI growth curve and
causes SOS to be detected, ESS and snow-free SOS determine where and to what extent the
gradient of the VI growth curve increases.
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Figure 13. Time curves and the detected SOS of the five VIs under different SCF and ESS cases at
SCDc = 64. (a–c), (d–f), (g–i), (j–l), and (m–o) are the time curves of five VIs, for each of which three
ESS cases at DOY 96, 144, and 192 and five cases of SCF = 0%, 25%, 50%, 75%, and 100% were plotted.

4.4. Effect of Snow Cover on Spring Phenology Detection from Satellite Data
4.4.1. Effect of Snow Cover on VI

Figure 14 shows the statistical distributions of the maximum, minimum, and range
of the time series of VIs for different SCDr intervals within the same elevation zone. To
ensure a sufficient number of pixels for statistics, the SCDr intervals with too few pixels
were excluded from the subsequent analysis, including the intervals of SCDr = 40–60%
and SCDr > 60% in the zone of DEM < 3500 m. Generally, the decrease in minimum VI
values with increasing SCDr was more significant than the decrease in maximum VI values.
This is because snow always melts before the peak growth season and does not affect the
maximum VI over time. Consequently, the range of VI values increased with the increasing
SCDr for all five Vis. These findings were consistent with the simulation results. However,
the reduction in VI values with increasing SCDr was not as significant as in the simulation
results. This is probably because there were few snow-free pixels, and the minimum VI
in the interval SCDr < 20% was affected by snow. Based on the decrease in the minimum
VI value with increasing SCDr, the effect of snow on the VI value follows the order of
NDPI/NDGI < NIRv < EVI2 < NDVI, which was consistent with the findings from the
simulation experiments described in Section 4.3.1.
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Figure 14. Statistical distribution of the maximum, minimum, and range of the time series of five VIs
for different SCDr intervals and elevation zones. (a–c), (d–f), (g–i), and (j–l) are statistics for elevation
zones of DEM < 3500 m, 3500–4000 m, 4000–4500 m, and ≥ 4500 m, in each of which the maximum,
minimum, and range of the VI values over time were plotted.

4.4.2. Effect of Snow Cover on SOS Detection

Figure 15 compares the statistical distribution of SOS detected from the five VIs at
different SCDr and elevation zones. At the same SCDr, an increase in elevation caused a
delay in the SOS for all five VIs. For less snowy areas with SCDr < 20%, an increase in
elevation from < 3500 m to ≥ 4500 m caused a delay of approximately 19–25 days. Within
the same elevation zone, the increase in SCDr caused different effects on the SOS detected
by different VIs. At elevations ≥ 4500 m, an increase in SCDr from < 20% to > 60% delayed
the SOS by 3 and 5 days for NDGI and NDPI, respectively, but advanced the SOS by 11, 9,
and 4 days for NDVI, EVI2, and NIRv, respectively. Generally, the SOS detected by NDGI,
NDPI, and NIRv was less affected by snow, while the SOS detected by NDVI and EVI2 was
more affected by snow.

Based on the simulation results, the effect of snow on SOS detection depends on
SCDc, ESS, and snow-free SOS. Figure 16 shows the statistical distribution of the SOS for
different SCDc and ESS cases in each elevation zone using real satellite data. To ensure
sufficient pixels for the statistical analysis, we considered three SCDc cases, including
SCDc < 48, 48 ≤ SCDc < 80, and SCDc ≥ 80, and divided the ESS values into 12 cases with
16-day intervals from DOY 32 to 208. In the zone with DEM < 3500 m, the intervals of
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48 ≤ SCDc < 80 and SCDc > 80 had a maximum of two pixels and were excluded from the
statistical analysis.

Remote Sens. 2022, 14, 5725 18 of 26 
 

 

80
100
120
140
160
180

DEM < 3500 m DEM 3500–4000 m

80
100
120
140
160
180

DEM 4000–4500 m DEM ≥ 4500 m

SCDr (%)

(a) (b)

(c) (d)

SO
S 

(D
O

Y
)

<20 20~40 40~60 >60 <20 20~40 40~60 >60

NDVI NDPI NDGIEVI2 NIRv  
Figure 15. Error bars of the SOS detected by five different VIs for different SCDr intervals at each 
elevation zone. Error bars show the mean and standard deviation of the SOS in each case. (a)-(d) are 
the statistical distribution of SOS detected from the five VIs at different SCDr and elevation zones. 

Based on the simulation results, the effect of snow on SOS detection depends on 
SCDc, ESS, and snow-free SOS. Figure 16 shows the statistical distribution of the SOS for 
different SCDc and ESS cases in each elevation zone using real satellite data. To ensure 
sufficient pixels for the statistical analysis, we considered three SCDc cases, including 
SCDc < 48, 48 ≤ SCDc < 80, and SCDc ≥ 80, and divided the ESS values into 12 cases with 
16-day intervals from DOY 32 to 208. In the zone with DEM < 3500 m, the intervals of 48 
≤ SCDc < 80 and SCDc > 80 had a maximum of two pixels and were excluded from the 
statistical analysis. 

100
120
140
160
180

NDVI NDPI NDGIEVI2 NIRv

100
120
140
160
180

100
120
140
160
180

<32 64 96 128 160 192

100
120
140
160
180

<32 64 96 128 160 192 <32 64 96 128 160 192

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(a)

DEM 4000–4500 m

DEM ≥ 4500 m

DEM < 3500 m

DEM 3500–4000 m

ESS (DOY)

SO
S 

(D
O

Y
)

SCDcMean = 9; SCDcSTD = 7.7

SCDcMean = 24; SCDcSTD = 11.5

SCDcMean = 13; SCDcSTD = 9.0

SCDcMean = 30; SCDcSTD = 10.3 SCDcMean = 59; SCDcSTD = 8.9 SCDcMean = 113; SCDcSTD = 24.6

SCDcMean = 103; SCDcSTD = 16.4SCDcMean = 60; SCDcSTD = 9.5

SCDcMean = 56; SCDcSTD = 8.8 SCDcMean = 101; SCDcSTD = 13.6

SCDc < 48

48 ≤ SCDc < 80 SCDc ≥ 80

 

Figure 15. Error bars of the SOS detected by five different VIs for different SCDr intervals at each
elevation zone. Error bars show the mean and standard deviation of the SOS in each case. (a–d) are
the statistical distribution of SOS detected from the five VIs at different SCDr and elevation zones.
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Figure 16. Changes in SOS with increasing ESS under different SCDc cases derived from satellite
data. (a), (b–d), (e–g), and (h–j) are statistics for elevation zones of DEM < 3500 m, 3500–4000 m,
4000–4500 m, and ≥ 4500 m, in each of which three cases of SCDc < 48, 48 ≤ SCDc < 80, and
SCDc ≥ 80 were plotted. SCDcMean and SCDcSTD are the mean and standard deviation of SCDc in
each elevation zone.
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As shown in Figure 16, the effect of snow on the detected SOS followed the order of
NDPI/NDGI < NIRv < EVI2 < NDVI. Generally, the larger the SCDc was, the larger the
effect of snow cover on the detected SOS. For short snow (i.e., SCDc < 48), the fluctuation
in the SOS with varying ESS was the smallest for all five Vis, indicating a negligible effect
of snow. Using the SOS detected for short snow (i.e., SCDc < 48) as a benchmark, the SOS
detected under medium snow (i.e., 48 ≤ SCDc < 80) was generally advanced for NDVI and
EVI2 and was slightly delayed for NDPI, NDGI, and NIRv for ESS later than DOY 144. For
long snow (i.e., SCDc ≥ 80), the detected SOS dates were advanced for ESS earlier than
DOY 160 and delayed for ESS later than DOY 160. For short and medium snows, the effect
of snow on SOS detection was generally small for NDPI, NDGI, and NIRv. Generally, an
earlier ESS results in earlier estimates of the SOS, while a later ESS results in later estimates
of the SOS. These findings were highly consistent with the simulation results and verified
the validity of the simulation experiments.

5. Discussion
5.1. Validity of the SOS Dates Detected by Different VIs

The SOS dates detected by the five different VIs all captured the spatial pattern of the
SOS, which occurred earlier in the eastern areas and later in the western areas (Figure 8).
The SOS dates detected by five different VIs also have very similar data distributions,
ranging from 105 to 175 with peak values of approximately 157. Both the spatial details and
data values were highly consistent with each other and with previous studies [38,55,59],
verifying the validity of the detected SOS dates.

Statistical analysis in Figure 15 revealed that both the mean and standard deviation
values of the SOS detected in less snowy areas (e.g., SCDr < 20%) by different VIs were very
close to each other. However, for more snowy areas, such as for SCDr > 40%, discrepancies
occurred in the SOS detected by different VIs. The SOS derived from NDVI and EVI2
were earlier, while those from NDPI and NDGI were later and those from NIRv were in
between. These discrepancies could be attributed to the different sensitivities of various
VIs to preseason snow cover.

For the entire study area, the SOS dates detected by different VIs have different
correlations with each other, such as the results of NDGI/NDPI, which have relatively low
correlations with those of NDVI/EVI2/NIRv. However, for less snowy areas, very high
correlations were found for the results of all five VIs. Figure 17 compares the different
SOS results for the areas with SCDr < 20%. The R values between the different SOS results
ranged from 0.818 to 0.982, indicating a very high consistency of the SOS detected by
different VIs.

Although previous studies confirmed the accuracy of satellite-derived SOS dates
under snow-free conditions [20,21,31,40], a direct comparison with field data was lacking
in this study due to the unavailability of in situ SOS measurements. However, we referred
to previous studies [20,38,55,59,60] and found a high consistency of our results with the
previous in situ measurements and satellite-derived SOS dates in terms of value ranges and
spatial distribution. Moreover, a high consistency of the SOS results detected by different
VIs was confirmed for less snowy conditions, which was also consistent with previous
findings [19,20]. Since the satellite-derived SOS dates represent the macroscale spring
phenology and cannot be simply equated with the in situ measurement [61,62], the absence
of a direct comparison with in situ measurements does not affect the validity of our results,
yet we hope more evidence from in situ measurements to support our findings in the future.
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5.2. Influence of Snow Phenology Parameters

Both the simulation experiments and satellite data analysis showed that the presence
of snow could significantly reduce the VI values, increase the local gradient of the time
curve of VI during pregrowth periods, and cause the SOS to be detected. The bias in the
SOS (∆SOS) caused by snow cover depends on snow phenology parameters, especially the
SCDc, ESS, and snow-free SOS.

In general, the SCDc represents the maximum duration of snow cover, corresponding
to the length of the reduced values in the VI trajectory, which determines whether the
reduced VI values could be recovered from temporal filtering. Thus, the larger the SCDc
value was, the larger the absolute value of ∆SOS. Compared to the SCDc, the SCDr only
represents overall snow-covered days. A high SCDr does not necessarily imply a high
SCDc, while a high SCDc does lead to a high SCDr. Thus, the relationship between the
SCDr and ∆SOS was rather indirect and was not discussed in detail.

Whether the ESS is earlier or later than the snow-free SOS determines whether ∆SOS
is negative or positive, corresponding to the advancement or delay of the SOS detected
under snow conditions. The further the temporal distance of ESS to the snow-free SOS
was, the larger the absolute value of ∆SOS. These findings were consistent with previous
studies [37,38,63,64]. An earlier ESS results in an earlier estimate of SOS, while a later ESS
results in a later estimate of SOS. For example, Wang et al. [38] analyzed the correlation
between the duration of snow cover and the SOS on the Qinghai–Tibet Plateau and found
that snow cover can advance the SOS in the northeastern, central, and southwestern edges
of the Qinghai–Tibet Plateau; however, in some areas, longer snow cover duration delayed
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the SOS. Xie et al. [64] found that a shortened snow duration advances the SOS, whereas a
prolonged snow duration delayed the SOS in their study in the European Alps.

5.3. Performance of Five VIs under Snow Conditions

Our study showed that the effects of snow cover on the five VIs were NDPI < NDGI
< NIRv < EVI2 < NDVI. For SOS detection, NDPI and NDGI were rather stable even with
winter snow cover, which verified their abilities to minimize the effect of snow cover
for alpine grasslands, such as those also found for the American prairie [65]. Our study
further revealed the variations in the ∆SOS with snow phenology parameters for NDPI
and NDGI. For short and medium snow (i.e., SCDc ≤ 64), preseason snow ending prior
to the snow-free SOS caused insignificant biases in the SOS detected by NDPI and NDGI.
For long snow (i.e., SCDc ≥ 96) or late snow that ends far later than the snow-free SOS,
the biases in the SOS detected by NDPI and NDGI are significant. These findings increase
our knowledge about the specific conditions under which the NDPI and NDGI are reliable
for SOS detection with snow cover. The traditional NDVI and EVI2 are easily and heavily
affected by snow cover. Either an early or a late snow season can cause significant bias in
the detected SOS. The physiological-based NIRv could derive SOS dates highly consistent
with those detected by NDVI and EVI2 and was less sensitive to snow cover than NDVI
and EVI2, indicating its great potential for phenological detection in alpine grasslands.
These findings with respect to the performance of different VIs under snow conditions
were consistent with the study of Yang et al. [21].

5.4. Limitations and Future Improvements

There are several state-of-the-art methods to smooth the temporal profiles of VIs and
extract phenological metrics [11,52,66–68]. Only one of them was used in this study. More
methods can be used and evaluated in further studies. However, we assumed that the
conclusion can hold for other SOS detection method because the affecting mechanism
of snow in increasing the local gradient of the growth curve is still valid. A previous
study using the derivative-based method for SOS detection achieved similar conclusions
that snow cover would advance the SOS, but prolonged snow duration would delay the
SOS date [38].

The design of the simulation experiments made a series of simplifications of the actual
situation. One major simplification is that light cannot penetrate the snow layer. This
assumption is representative of most cases with a thick snow layer but may not apply to
thin snow layers. However, thin snow can melt or form into a thick snow layer quickly,
which will cause negligible effects on the time curves of the VIs. This assumption is thus
reasonable, yet further studies can consider the case of temporary thin snow. The other
major simplification is that we only considered the presence or absence of snow cover
without considering the snowmelt process. Snowmelt can also last for several days and
affect vegetation phenology [39,69]. Although such simplification would cause a sharp
increase in the time curve of the VIs at the ESS, temporal smoothing performed prior to
the SOS detection can locally smooth the VI temporal curve and remedy the problem. In
addition, the simulation experiments showed that a small SCF, such as 25%, can cause a
large reduction in the VI value. Although the snowmelt process leads to a gradual decrease
in SCF, the largest increase in the VI value is expected to be at the stage when SCF decreases
from 25% to 0%, which is a relatively short time interval. Therefore, the presence and
immediate melting of snow in our simulation experiments is reasonable, and more complex
situations can be considered in future work.

For the debate on whether NDVI-based spring phenology trends are overestimated on
the Tibetan Plateau [6,7,30,70], we suggest that snow phenology, particularly ESS, should
be given much attention in related studies. Normally, NDPI, NDGI, and NIRv would be
less affected by snow cover, and their performance in detecting long-term phenology trends
can be further investigated. Based on the findings in this study, we also expect to decouple
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the effect of snow cover on satellite signals and on vegetation physiological phenology,
which will enhance our understanding of vegetation–climate feedbacks.

6. Conclusions

Considering the difficulty in assessing the effect of snow cover on SOS detection, this
study investigated the effect of snow cover on both VI and SOS detection by combining
simulation experiments and real satellite data, aiming to determine how snow affects the
different VIs and the subsequent SOS detection and how different VIs perform in capturing
the SOS for alpine grasslands on the Tibetan Plateau. Five VIs, including NDVI, EVI2, NDPI,
NDGI, and NIRv, were used for SOS detection, and their performance was compared.

Based on the simulation experiments, we found that the presence of snow, even at a
low SCF, can significantly reduce the values of the five VIs and increase the local gradient
of the growth curve, allowing the SOS to be detected. Thus, the bias in the detected SOS
due to snow cover depends on both snow phenological parameters (i.e., ESS and SCDc)
and the snow-free SOS. An earlier ESS results in an earlier estimate of SOS, while a later
ESS results in a later estimate of SOS, and an ESS close to the snow-free SOS results in small
bias in the detected SOS.

The analysis from satellite data showed consistent results with those from the simula-
tions. The presence of snow especially reduced the minimum VI values over time, and the
detected SOS within the same elevation zone varied with snow parameters such as SCDc
and ESS. Generally, an earlier ESS led to an earlier estimate of SOS, while a later ESS led to
a later estimate of SOS.

The sensitivity of the five VIs to snow cover in SOS detection is NDPI/NDGI < NIRv
< EVI2 < NDVI, which has been tested in both simulation experiments and satellite data
analysis. For SOS detection with winter snow cover, NDPI, NDGI, and the physiological-
based NIRv were rather stable, while NDVI and EVI2 were easily and heavily affected by
snow cover. However, the performance of a specific VI in SOS detection also depends on
snow phenology parameters such as SCDc and ESS.

These findings will significantly advance our research on the feedback mechanisms
between vegetation, snow, and climate change for alpine ecosystems.
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