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Abstract: The research of Synthetic aperture radar (SAR) target recognition plays a significant
role in military and civilian fields. However, for small sample SAR target recognition, there are
some problems that need to be solved urgently, including low recognition accuracy, slow training
convergence rate, and serious overfitting. Aiming at the above problems, we propose a recognition
method based on Inception and Fully Convolutional Neural Network (IFCNN) combined with
Amplitude Domain Multiplicative Filtering (ADMF) image processing. To improve the recognition
accuracy and convergence rate, the ADMF method is utilized to construct the pretraining set, and
the initial parameters of the network are optimized by pretraining. In addition, this paper builds
the IFCNN model by introducing the Inception structure and the mixed progressive convolution
layer into the FCNN. The full convolution structure of FCNN is effective to alleviate the problem of
network overfitting. The Inception structure can enhance the sparsity of features and improve the
network classification ability. Meanwhile, the mixed progressive convolution layers can accelerate
training. Based on the MSTAR dataset, the experimental results show that the method proposed
achieves an average precision of 88.95% and the training convergence rate is significantly improved
in small sample scenarios.

Keywords: small sample SAR recognition; overfitting; Inception and fully convolutional neural
network; amplitude domain multiplicative filtering; Inception structure

1. Introduction

Synthetic aperture radar (SAR) is a high-resolution active microwave remote sensing
imaging radar. With the popularization and application of SAR technology, the research
on SAR image recognition is more and more extensive. However, compared with the
large-scale optical image datasets, the labeled SAR data are hard to acquire in practice.
When the number of labeled SAR images is limited, there are generally some problems
using deep learning (DL), such as low accuracy, difficult convergence, overfitting, and so
on. This paper mainly aims at these problems in a small sample scenario (the sample size
with labels here is the same as 20-shot [1]) to research.

The study of SAR image target recognition methods based on convolutional neural
network (CNN) [2–4] reveals remarkable performance. However, CNN, as a multi-layer net-
work structure, contains a number of parameters to be learned, these parameters are usually
initialized randomly, which is a very low training starting point. Without a large number of
training samples, not only the network recognition accuracy is low, but also to achieve good
convergence in the network is difficult [5]. In practical research, the researchers usually
utilized methods in limited data scenarios, including data augmentation [3], initialization
network [6], and robust feature extraction and selection of network [7,8] as follows.

Data augmentations are effective means to improve the performance of neural net-
works and are commonly considered in deep learning methods. How to effectively expand
the data for SAR image target recognition has become a subject worthy of study. In recent
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years, scholars at home and abroad have also made some progress. Xiao et al. [9] studied
sample rotation expansion, this method is simple and easy to achieve. Ding et al. [10] dis-
cussed the role of three data augmentation methods: translation, noise addition, and sample
synthesis, and verified the effectiveness of these three methods. Goodfellow et al. [11–13]
studied the generating adversarial networks (GANs). GANs include a generator and a
discriminator. Through the distribution information of the confrontation training data
between the generator and discriminator, they have the ability to generate new data and
utilize the samples generated by GANs as extended data for training. Although these
methods realize data augmentation, these data augmentation methods also have some
problems. For example, the problem of overfitting is easily aggravated by translation
expansion or rotation expansion. The noise addition will reduce the image quality, and
it is difficult to avoid interference with target recognition. There are some problems in
GAN, such as training difficulty, lack of stability, and mode collapse, which need to be
further solved.

In terms of the initialization network, a number of studies have shown that the training
starting point improvement can not only accelerate the network convergence but also help
to improve the recognition rate. Generally, the method of transfer learning [14–19] can
be applied to small samples by improving the starting point of network training. Trans-
fer learning is a method to transfer the knowledge in the source task to the target task.
Houkseini et al. [6] found that a better network initial value is helpful to obtain a higher
recognition rate in the research of the CNN training method, at the same time, they pro-
posed a method of initializing CNN parameters using a convolutional auto-encoder (CAE),
which effectively reduces the operation time of CNN based on ensuring the recognition
rate. Rui et al. [17] proposed a SAR target recognition method based on CAE and HL-CNN.
This method achieves higher testing accuracy than A-ConvNet and traditional CNN in
small samples. Lingjuan et al. [18] further improved CAE and obtained an improved
convolutional auto-encoder (ICAE). ICAE was utilized to initialize the parameters of the
FCNN. The training set is expanded to 20 times the MSTAR data samples by central slicing,
and the average recognition accuracy of FCNN reached 98.14%. The above methods have
improved the starting point of network training to varying degrees and achieved certain
results by transfer learning. However, Huang et al. [15] pointed out that there are the
following problems in the migration in SAR target classification: (1) which network and
source data to select; (2) which feature layer to migrate in; (3) how to effectively migrate.
These are the current problems to be solved.

In increasing the network complexity to robust feature extraction and selection of
network, many novel models are proposed [20–26], such as the model compression tech-
nique [20], multi-scale prototypical network [1], meta-learning methods [21–23], and so on.
Zi et al. [24] proposed a self-attention multi-scale feature fusion network for small sample
SAR image recognition, which has excellent recognition accuracy and good robustness on
MSTAR data sets. Hang et al. [25] combined with a self-encoder to form a deep convolu-
tional self-coding network structure based on CNN. On the MSTAR dataset, 10% of the
samples in the training set are selected as the new training data, and the recognition accu-
racy reaches 88.09%. Pan et al. [26] realized metric learning through the twin convolution
neural network and utilized it to solve the problem of small sample SAR target recognition.
The single-branch network in the twin convolutional neural network is utilized as the fea-
ture extractor, and a classification network is trained behind the single-branch network to
transform the multi-classification problem into a two-classification problem. Although the
recognition accuracy of these methods for small sample SAR images has been improved, the
complexity of the network is significantly higher, making it difficult to design an effective
recognition model in a short time. For example, the model compression technique usually
needs many experiments to determine the optimal scale of model pruning. Meta-learning
methods need to construct a meta-dataset to effectively train the model. The amount of
parameters to be learned is larger also, the difficulty of network training convergence is
increased, and the overfitting problem in a limited sample scenario is not considered. In
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addition, the metric learning method needs to calculate the sample similarity probability
between the test sample and each training sample, which cannot guarantee the operation
efficiency and increases the calculation amount.

In recent years, a fully convolutional neural network (FCNN) has also made great
progress in SAR target recognition. In the literature [27], the experimental result showed
that the SAR image classification method based on FCNN has higher recognition accuracy
compared with that based on traditional CNN on the MSTAR dataset. Ling et al. [28]
constructed a nine-layer FCNN with a combination of mixed progressive convolution
layers and extended the training set to improve the target detection speed and accuracy for
SAR images. Chen et al. [29] verified that both the pooling layer and the fully connected
layer can be replaced into the convolution layer, and replacement for the full connection
layer reduces the risk of overfitting and obtains a better classification effect. Because
of its full convolution structure, FCNN can effectively alleviate the problem of network
overfitting and have better feature extraction ability. Moreover, FCNN is easy to construct
and improve. Therefore, FCNN has advantages in small sample SAR image recognition.

To sum up, based on FCNN, this paper proposes a SAR image target recognition
method based on Inception and fully convolutional neural network (IFCNN) combined
with amplitude domain multiplicative filtering (ADMF) image processing. The method
constructs the pretraining samples based on the ADMF image processing to achieve an
initialization network. In addition, the full convolution structure of FCNN is utilized to
alleviate the problem of network overfitting. At the same time, this paper introduces the
Inception structure and a combination of mixed progressive convolution layers in FCNN
to robust feature extraction and accelerate network training. Finally, it verifies that the
IFCNN model and ADMF method can improve the performance of the network through
experiments on the MSTAR dataset.

Based on the problem mentioned for small sample SAR image recognition, this paper
carried out research, and the contributions of this paper are as follows:

1. We designed the ADMF image processing method to improve image quality and
achieve data augmentation, which avoids problems caused by other data augmenta-
tions. Due to the significant difference in amplitude between target and background
information in radar imaging, the ADMF method is to achieve noise reduction and
other effects from the perspective of the amplitude domain, without changing the po-
sition information, which is very beneficial for SAR image recognition and detection.
In addition, the ADMF method provides a new idea for segmenting the target and
target shadow part of the image, and the ADMF method is simple to implement, easy
to understand and improve, and has an obvious noise reduction effect;

2. We utilize the full convolution structure of the FCNN to alleviate the problem of
small sample overfitting, and introduce the Inception structure and the combination
of mixed progressive convolution layers into the FCNN to improve the generalization
performance of the network and the convergence rate of network training. The small-
scale convolution kernel decomposition methods of the Inception structure not only
accelerate the convergence of the network but also increase the depth of the network.
The mixed progressive convolution layer is also utilized to accelerate the network
training and reduce the computational load;

3. For the initialization of network parameters, we do not follow the method of transfer
learning or metric learning, etc, but construct pretraining samples by the ADMF
method and then complete network initialization by the network pretraining. This
method can initialize network parameters well and avoid problems that transfer
learning creates. No other models are introduced, which avoids the process of data
migration between two or more models, and also avoids the problems [19] in the
migration process. In addition, initial parameters optimization through pretraining
also reduces training time loss and the process of designing more models. Although
the method proposed has a pre-training process, the overall training time loss of the
pre-trained network is significantly less than that of the non-pre-trained network.
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2. Methods
2.1. Overall Architecture

To improve the recognition performance of a small sample SAR target, we design the
ADMF-IFCNN recognition method, as shown in Figure 1.
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Figure 1. The workflow and overall structure of the ADMF-IFCNN recognition method.

The workflow of the method includes three processes: pre-training, training, and
testing. The ADMF method is utilized to generate pre-training samples, and it achieves
better initialization of network parameters by completing network pre-training. Then the
network is trained by training sets. The training set samples have not undergone any
image processing operations, making it possible for the network to obtain all useful image
information in training. Finally, testing the IFCNN.

On the overall structure of the method, one part is the ADMF process in Figure 1
corresponding to contribution 1 and contribution 3 described in Chapter 1. The ADMF is a
processing method to reduce speckle noise, a pre-training set is constructed through the
ADMF method, and it realizes network initialization through the pre-training process. The
other part is the IFCNN network in Figure 1 corresponding to contribution 2 described
in Chapter 1, the full convolution structure of the IFCNN can efficiently alleviate the
overfitting problem. For small samples of SAR image recognition, the features extraction
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capacity is very critical of the network, therefore, the network introduces the Inception
structure, the small-scale convolution kernel decomposition methods of the Inception
structure increase the depth of the network, improve the generalization performance and
the effective feature extraction capability. At last, the combination of mixed progressive
convolution layers is applied to further reduce the computational burden of the network.

Next, we will introduce the ADMF method and the IFCNN model in turn.

2.2. Design of ADMF Method

Here, the ADMF method is a design based on the idea of an attention mechanism [30].
The essence of the attention mechanism is a series of attention distribution coefficients, that
is, a series of weight parameters, which can be utilized to emphasize or select the important
information of the processing object and suppress some irrelevant details. Our method
and the method of attention mechanism are the same in thought, both of which are to
strengthen the model’s attention and learning of target features, but the realization angle is
different. The realization of the existing attention mechanism idea is mainly through giving
the recognition network weight coefficient, hoping that the recognition network can notice
the information that is more critical to the current task in a lot of information, and not pay
too much attention to other non-critical information [31]. This paper proposes the ADMF
method to realize the network’s focus on image targets from the perspective of network
input, that is to say, we use the ADMF method to reduce noise interference, and use a small
number of labeled samples to construct a large number of high-quality image samples for
network parameter learning, which realizes more attention and learning for target from the
network input.

The process of the ADMF method is shown in Figure 2. As shown in Figure 3a, the
sample data of the original SAR image is recorded as a two-dimensional matrix A, and the
mathematical expression of A is:

A =
[
ai,j
]

(1)

where i and j is the element in {1,2, . . . ,128}, ai,j is the pixel value of the original image at
the position (i,j).

Set binarization threshold Bth, the original image A is binarized, and obtain a two-
dimensional matrix X = [xi,j], it represents the binary image data, where xi,j is the pixel
value of the binary image at the position (i,j) and the expression of xi,j is:

xi,j =

{
1 ai,j ≥ Bth
0 ai,j< Bth

}
(2)

Then, the original image A and the binary image X are multiplied by the correspond-
ing pixels to obtain the two-dimensional matrix Y = [yi,j], yi,j is the pixel value of the
multiplicative filtered image at the position (i,j), and the expression of yi,j is:

yi,j= ai,jxi,j (3)

Finally, the data information distribution ratio of the original image A and the multi-
plicative filtered image Y is 1:c, c is the representative of a series of parameters. According
to the experimental feedback, i.e., network selection, a better c can be obtained, and the
matrix Z:

Z =
[
zi,j
]

(4)

zi,j =
yi,jc + ai,j

c + 1
(5)

where matrix Z is the two-dimensional data representation of the proportion-weakened
image, zi,j is the pixel value of the proportion weakened image at the position (i,j). The last
step of image processing is to allocate weight coefficients to the background and target
in the image. For SAR image recognition, the network should focus on the extraction of
target features. Therefore, by allocating a low weight coefficient of 1

1+c to the background
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information of the image, the background is weakened, and the network’s attention to
the target from the perspective of the image is realized. In terms of image processing, the
ADMF method is to process from the image amplitude domain, without changing the
position information of the image, to achieve the enhancement of the target amplitude or
the weakening of the background amplitude and so on.
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Taking the SAR image target D7 as an example. By comparing Figure 3a,d, the ADMF
method reduces speckle noise in the image without changing the target information. The
binary processing of this method provides the possibility of image multiplicative filtering,
as shown in Figure 3b, the process of binarization successfully retains the target area.
It can be seen that the method can control the noise reduction amplitude of the image
by setting the binary threshold and the weakening proportion coefficient. As shown
in Figure 3c, the multiplicative filtered image represents the processing result when the
weakening proportion is 0:1. The final image processing operation of this method is to
achieve the purpose of constructing a large number of SAR image samples by setting the
different weakening proportion coefficients, Figure 3d is the processing result when the
weakening proportion is 1:10. From the perspective of attention mechanism, the learning
of network parameters pays more attention to target characteristics, that is to utilize the
ADMF method to construct a large number of target information prominent samples for
network pretraining in this paper.

The ADMF method not only improves the quality of image samples but also achieves
data augmentation. In addition, because the ADMF method is mainly aimed at image
amplitude domain processing, the speckle noise in the radar imaging process covers a
wide range in the frequency domain but is generally within a small range in the amplitude
domain. At the same time, the location information of the image will not be changed
through the ADMF method. So the ADMF method proposed in this paper is very practical
in small sample SAR image target detection and recognition.
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2.3. Design of IFCNN Model

We construct the IFCNN model by introducing the Inception structure and a combina-
tion of mixed progressive convolution layers into the FCNN, the structure of the IFCNN is
shown in Figure 4.
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As shown in Figure 4, in the feature extraction layer of the IFCNN, the first two
groups of convolution layers form a mixed progressive convolution layer structure through
the exquisite stride and convolution kernel size design; the third group is the Inception
structure, which contains 3 × Inception and 7 × Inception. The last layer is designed to
implement the classification layer of the docking network. In addition, the Relu function
and batch normalization are utilized.

The advantage of the IFCNN model is that it uses the basic framework of FCNN.
With the help of the full convolution structure, we ingeniously designed a combination
of mixed progressive convolution layers, which reduced redundancy calculations on the
premise of weakening the influence of the large step on the network recognition accuracy.
Then the Inception structure is easily introduced and improved. The Inception structure
improves the depth of network feature extraction and accelerates the rate of network feature
extraction through its dense computing mode. The introduction of the mixed progressive
convolution layers and the Inception structure improve model feature extraction ability
and training convergence performance better.

2.4. The FCNN and Mixed Progressive Convolution Layers

FCNN is a full convolution neural network, convolution structure can reduce the
number of network parameters and alleviate the problem of network overfitting. The
convolution layer in FCNN mainly convolutes the feature map of the upper layer with the
learnable convolution kernel and then obtains the output feature map through an activation
function. Each output characteristic graph can be combined to convolute the values of
multiple characteristic graphs [32]:

xl
j= f

(
ul

j

)
(6)

ul
j = ∑

i∈Nj

xl−1
i pl

ij+al
j (7)

where xl
j is the output of the jth channel of the convolution layer l. For an output charac-

teristic graph xl
j , the convolution kernel pl

ij of each input characteristic graph xl−1
i may

be different, ul
j is called the net activation, which outputs the characteristic graph xl−1

i to
the upper layer is obtained after convolution sum and offset. Nj is utilized to calculate
ul

j subset of input characteristics, pl
ij is a convolution kernel matrix, al

j is the offset of the
convoluted characteristic graph. f( ) is the ReLU function.
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In addition, compared with the pooling layer of traditional CNN, the convolution
kernel can extract data features more effectively. As shown in Figure 5, two-dimensional
data have the same data scale after passing through the convolution kernel and pooling
layer, respectively, but the data generated by the convolution kernel is more relevant to the
original two-dimensional data.
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Figure 5. Comparison between pooling layer and convolution layer.

Based on input and output characteristic mode of the convolution layer in FCNN
and the advantages of using the convolution layer instead of the pooling layer, we design
the mixed progressive convolution layers in FCNN. The large step of the convolution
kernel can reduce the computational frequency and increase the network computing speed.
However, if the large step is utilized continuously, some features will be lost and the
recognition accuracy will be affected. However, the mixed progressive method can reduce
the influence of the large step on the network recognition accuracy [28]. So we design the
mixed progressive convolution layer structure, as shown in Figure 6.
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The mixed progressive convolution layers are composed of a stride of 4 and size of
4 × 4 convolution kernel and a stride of 2 and size of 2 × 2 convolution kernel together
with stride of 1 and size of 3 × 3 convolution kernels. The design of mixed progressive
convolution layers in FCNN can save training time and the combination of convolution
kernels with different sizes can increase the diversity of feature extraction.

2.5. The Inception Structure

The Inception structure is the multi-layer perceptron convolution layer. The multi-
layer perceptron convolution layer utilizes the multi-layer perceptron model as a micro
neural network, which is a generalized linear structure composed of a large number of
filters, different from the conventional convolution layer by linear filters and nonlinear
activation functions. The multi-layer perceptual convolution structure converts the full
connection into a sparse connection, and clusters the sparse matrix into a relatively dense
sub matrix, it can not only maintain the sparse characteristics of the filter level but also
make full utilization of the high computing performance of the dense matrix [33]. The
characteristic map is obtained by sliding in the input image. The calculation formula of it:
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f1
i,j,p1

= max((W 1
pi

)T
xi,j+api

, 0)
...

fn
i,j,pn

= max((W n
pn

)T
fi,j

n−1+apn
, 0)

 (8)

where, xi,j represents the image block to be processed when the convolution window is
moved to the position (i,j), WT

P represents the connection weight between the convolution
unit and input characteristic graph, pl the index of the feature graph needs to be extracted,
apl

is the offset value of the convolution unit.
In the Inception structure, a large number of 1 × 1 convolutional kernels are utilized

to reduce the dimension of the data, introduce more nonlinearity, and improve the gener-
alization ability [34]. In addition, considering that the convolution decomposition of the
Inception structure cannot achieve a good effect in the early stage of the network model, it
is usually utilized in the middle stage of the network, and the size of the feature map is
about 12 to 20 [35]. Therefore, through calculation, the two Inception structures are set at
the fifth and sixth layers of network feature extraction respectively, as shown in Figure 7.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22 
 

 

2.5. The Inception Structure 
The Inception structure is the multi-layer perceptron convolution layer. The multi-

layer perceptron convolution layer utilizes the multi-layer perceptron model as a micro 
neural network, which is a generalized linear structure composed of a large number of 
filters, different from the conventional convolution layer by linear filters and nonlinear 
activation functions. The multi-layer perceptual convolution structure converts the full 
connection into a sparse connection, and clusters the sparse matrix into a relatively dense 
sub matrix, it can not only maintain the sparse characteristics of the filter level but also 
make full utilization of the high computing performance of the dense matrix [33]. The 
characteristic map is obtained by sliding in the input image. The calculation formula of it: 

fi,j,p1
1 =max((Wpi

1 )
T
xi,j+api

,0)⋮
fi,j,pn
n =max((Wpn

n )Tfi,j
n-1+apn

,0)
 (8)

where, xi,j represents the image block to be processed when the convolution window is 
moved to the position (i,j), WP

T represents the connection weight between the convolution 
unit and input characteristic graph, pl the index of the feature graph needs to be ex-
tracted, apl

 is the offset value of the convolution unit. 
In the Inception structure, a large number of 1 × 1 convolutional kernels are utilized 

to reduce the dimension of the data, introduce more nonlinearity, and improve the gener-
alization ability [34]. In addition, considering that the convolution decomposition of the 
Inception structure cannot achieve a good effect in the early stage of the network model, 
it is usually utilized in the middle stage of the network, and the size of the feature map is 
about 12 to 20 [35]. Therefore, through calculation, the two Inception structures are set at 
the fifth and sixth layers of network feature extraction respectively, as shown in Figure 7. 

.

.

.

.

.

.

3×Inception.64/Relu

7×Inception.64/Relu

1x1conv

input

3x3conv
S=2

1x1conv 1x1conv

1x3conv1x1conv 3x3conv3x1conv

1x3conv 3x1conv

output

1x1conv

input

3x3conv
S=2

1x1conv 1x1conv

1x7conv1x1conv 1x7conv

7x1conv 7x1conv

1x7conv

output

7x1conv

The fourth layer

The seventh layer

 
Figure 7. The fifth and sixth layers of network feature extraction. 

The two Inception structures are composed of 1 × 1, 1 × 3, 3 × 1, 1 × 7, and 7 × 1 con-
volution kernels in the form of unit blocks. The network performs joint filtering on the 
convolution results of convolution kernels of different sizes. The literature [36] verifies 
that these small-scale convolution kernel decomposition methods not only accelerate the 
convergence speed of the network but also increase the depth of the network and enhance 

Figure 7. The fifth and sixth layers of network feature extraction.

The two Inception structures are composed of 1 × 1, 1 × 3, 3 × 1, 1 × 7, and 7 × 1
convolution kernels in the form of unit blocks. The network performs joint filtering on the
convolution results of convolution kernels of different sizes. The literature [36] verifies
that these small-scale convolution kernel decomposition methods not only accelerate the
convergence speed of the network but also increase the depth of the network and enhance
the nonlinearity of the network. In this paper, the two Inception structures are improved,
and the convolution kernel of a stride of 2 with a size of 3 × 3 is utilized to replace the pool
to improve the model.

3. Experiments
3.1. Experimental Models and Datasets

To verify the effectiveness of the method proposed, we construct these models as follows.
The experimental networks include CNN, the FCNN, the IFCNN, the IFCNN 1, and

the IFCNN 2. See Figure 8a for the CNN structure, Figure 8b for the FCNN structure,
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Figure 4 for the IFCNN structure, Figure 8c for the IFCNN1 structure, and Figure 8d for the
IFCNN 2 structure.
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Figure 8. Network structure: (a) CNN; (b) IFCNN; (c) IFCNN1; (d) IFCNN2.

In order to verify the performance of the proposed method, the Moving and Stationary
Target Acquisition and Recognition (MSTAR) dataset is utilized for experiments. Select
the ten-target samples at 15◦ and 17◦ depression angles from the MSTAR dataset. The
10 classes of targets on the MSTAR dataset are BMP2, BRDM2, 2S1, BTR60, BTR70, D7, T62,
T72, ZIL131, and ZSU234. The samples at a depression angle of 17◦ are utilized for training,
and the samples at a depression angle of 15◦ are utilized for testing.

To study SAR image recognition in the small sample, we build the experiment dataset.
The subset-20 training dataset is established by randomly extracting 20 samples from targets
of each category from the MSTAR dataset. Based on these 200 labeled training samples,
we construct pre-training samples. First, we need to determine the range of parameters
in ADMF, then expand data samples by setting parameters and finally label new data
samples for network pre-training. The weakening proportion coefficient of the ADMF
method is a flexible parameter, and its flexibility is reflected in the different ranges of the
weakening proportion coefficient for different types of image recognition. In this paper,
aiming at SAR image recognition, we have conducted exploratory experiments on the
weakening proportion coefficient range. In Section 2.2, the c in the weakening proportion
coefficient 1

1+c is a natural number. The subset-20 training dataset is processed once on each
weakening proportion coefficient 1

1+c by ADMF method, and each c value corresponds
to 20 × 10 samples. The CNN model in Figure 8 is trained to near convergence by the
200 samples. The results are shown in Figure 9.

We find that the training time of the network changes greatly when c is less than 4.
When c is greater than or equal to 4, the training time decreases slowly as c continues to
increase. In addition, to consider reducing the occurrence of overfitting as much as possible,
we preliminarily chose the weakening fusion ratio: 1:5, 1:10, 1:15, 1:20, and 1:25. Then
10 samples in targets of each category from the subset-20 training set are randomly extracted
for ADMF image batch processing to obtain the subset-50 pretraining dataset, as shown in
Figure 10.

The testing dataset is created by selecting a sample from the MSTAR dataset. The
pre-training samples, the training samples, and the testing sample are listed in Table 1.
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Table 1. The samples dataset of the experiment.

Dataset BMP2 BRDM2 2S1 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234

Training samples 20 20 20 20 20 20 20 20 20 20
Pretraining samples 50 50 50 50 50 50 50 50 50 50
Testing samples 195 274 274 195 197 274 273 196 274 274

3.2. Experimental Results and Analysis
3.2.1. Experimental Simulation of ADMF Method

Here we carry out a four-target classification comparative experiment to verify the
optimization effect of network initial parameters based on the ADMF image processing
method. The network is supervised by the classification label, including the pre-training
label and training label. In the Cuda10-Cudnn10.0-TensorflowGpu2.0 development en-
vironment, the random gradient descent algorithm is utilized to optimize the minimum
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loss function, the momentum is set to 0.95, the learning rate is set to 0.01, and the weight
attenuation coefficient is set to 0.1.

The experiment steps are as follows:

1. Configure the experiment environment and build the CNN, FCNN, and IFCNN. The
convolution kernel weights of three networks are initialized by a normal distribution
with a mean value of 0 and a standard deviation of 1√

n , where n denotes the number
of inputs to each unit [37];

2. Then train three networks by the SAR subset-20 (see 0 for details). When the accuracy
and loss of the training no longer change, adjust the learning rate by 10% until the
learning rate reaches 10−7. Finally test and verify the three models and record the
experimental results (the test sample targets are BMP2, T62, 2S1, and D7);

3. Utilize the ADMF image processing method to structure the pre-training set, subset-50
(see 0 for details), after the pre-training of the network reaches convergence, and then
repeat step 2;

The experiment results are shown in Table 2, Figures 11 and 12.

Table 2. Experimental results of four types of target classification.

Accuracy BMP2 2S1 D7 T62 Average Accuracy Training Time (s)

CNN 70.85% 66.5% 71.33% 64.58% 68.32% 1050
ADMF-CNN 83.85% 82.4% 86.98% 80.39% 83.4% 68

FCNN 74.96% 72. 5% 75.45% 67.33% 72.56% 900
ADMF-FCNN 87.03% 88.15% 89.59% 84.37% 87.28% 56

IFCNN 75.43% 73.58% 74.33% 70.93% 73.58% 850
ADMF-IFCNN 91.11% 88.12% 91.15% 87.25% 89.4% 48
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Figure 11. Training loss curves of classification models.

Table 2 shows the target recognition accuracy and training convergence time of
the three networks through the process of pre-training and no pre-training. Figure 11
records each training convergence process of the three networks, namely the direct training
process, pre-training process, and network training process after pre-training of CNN,
FCNN, and IFCNN. Figure 12 shows the network time characteristic of each training
convergence process.

From Table 2, we can see the testing accuracy and the average testing accuracy of the
four-target. By comparing, the test accuracies of the three networks have been improved
after the pre-training process, from the average testing accuracy data, the difference be-
tween the network pre-training and no pre-training results is close to 15%. In addition, the
training convergence time of every network through pre-training has been greatly reduced;
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as shown in Figure 11, all three networks after pre-training reach convergence in about
60 epochs during the training process, while all three networks converge in about
210 epochs during the pre-training process. At last, all three networks still do not converge
stably in 400 epochs during the direct training, which verifies the effectiveness of the
pr-training method proposed.
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Figure 12. The total time consumption of the pre-training and training process.

In order to directly analyze the effectiveness of the pre-training method based on
the ADMF proposed, we carry out time consumption statistics of the pre-training and
training process, as shown in Figure 12. The data in Figure 12 shows the convergence time
consumption of the pre-training and training process more intuitively. Compared with the
network direct training method, the method adopting pre-training to improve the starting
point of network training greatly saves time, although there is a network pre-training
process, the overall training time does not increase but decreases significantly.

By comprehensively comparing Table 2, Figures 11 and 12, we can verify that the
method adopting pre-training based on the ADMF has an obvious effect on improving
network testing accuracy and convergence rate.

3.2.2. Comparative Experiments of IFCNN

Here we carry out the comparative experiment to study the recognition performance
of the IFCNN model proposed. The model running environment and the experimental
procedure are the same as in Section 3.2.1, and the testing accuracy of each type is listed
in the last column of Tables 3–5. Since the convergence of various networks without a
pre-training process is difficult under the condition of small samples, this comparative
experiment is conducted on the basis of network pretraining.

The data in Tables 3–5 record the testing accuracy of ADMF-IFCNN, ADMF-FCNN,
and ADMF-CNN for ten-target classification. Obviously, the testing accuracy of each
target has been improved under the IFCNN model, including the average testing accuracy.
In addition, the comparison between Tables 3 and 4 shows that the average recognition
accuracy of the ADMF-IFCNN model is 3.35% higher than that of ADMF-FCNN.

To more intuitively explore the reasons for the improvement of ADMF-IFCNN recog-
nition performance compared with the other two models, we consider the differences in
the output feature map size of each feature extraction layer, visualize the output feature
map before classification and make a corresponding analysis [17]. As shown in Figure 13,
Figure 13a is the input image (type of target ZIL131) for testing, and Figure 13b, Figure 13c,
and Figure 13d show feature maps of a test image extracted by the trained ADMF-CNN,
ADMF-FCNN, and ADMF-IFCNN, respectively.
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Table 3. Confusion matrix of testing results of the ADMF-IFCNN model trained on subset-20.

Class BMP2 BRDM2 2S1 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

BMP2 174 9 0 6 4 0 0 2 0 0 88.91%
BRDM2 18 236 7 0 1 2 0 7 3 0 86.13%

2S1 9 15 240 0 0 0 5 5 1 0 87.59%
BTR60 5 9 16 163 14 0 0 2 0 0 83.58%
BTR70 11 0 0 5 181 0 0 0 0 0 91.87%

D7 4 0 6 0 0 248 15 0 0 0 90.51%
T62 0 0 9 0 0 0 233 0 22 7 85.04%
T72 0 0 0 8 11 0 0 177 0 0 90.12%

ZIL131 0 0 1 0 0 5 0 0 255 13 93.06%
ZSU234 0 1 1 0 0 7 0 0 11 254 92.7%

Total 88.95%

Table 4. Confusion matrix of testing results of the ADMF-FCNN model trained on subset-20.

Class BMP2 BRDM2 2S1 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

BMP2 168 0 13 0 5 0 0 0 9 0 86.12%
BRDM2 1 232 0 24 0 0 0 0 17 0 84.94%

2S1 10 29 235 0 0 0 0 0 0 0 86.03%
BTR60 0 8 3 151 33 0 0 0 0 0 78.41%
BTR70 28 0 0 0 169 0 0 0 0 0 85.77%

D7 0 9 0 25 0 240 0 0 0 0 88.13%
T62 0 0 0 0 0 0 227 0 7 39 83.41%
T72 0 0 0 5 21 0 0 170 0 0 86.71%

ZIL131 0 1 5 1 0 7 0 0 246 13 89.95%
ZSU234 0 0 7 0 0 9 0 0 17 241 88.49%

Total 85.6%

Table 5. Confusion matrix of testing results of the ADMF-CNN model trained on subset-20.

Class BMP2 BRDM2 2S1 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

BMP2 162 0 13 0 9 0 0 0 11 0 83.07%
BRDM2 33 210 0 15 11 0 0 1 0 0 77.92%

2S1 17 31 224 0 0 0 2 0 0 0 81.75%
BTR60 0 0 18 157 20 0 0 0 0 0 80.51%
BTR70 20 0 0 12 165 0 0 0 0 0 83.75%

D7 9 0 11 19 0 225 0 0 0 0 82.11%
T62 0 0 13 0 0 0 215 0 7 38 78.75%
T72 1 1 0 14 18 0 0 162 0 0 82.65%

ZIL131 0 0 9 0 0 3 0 0 239 23 86.03%
ZSU234 0 0 0 0 0 8 0 0 35 231 84.57%

Total 82.11%

As shown in Figure 13, the numbers of effective feature maps extracted by ADMF-
IFCNN, ADMF-FCNN, and ADMF-CNN are 116, 99, and 106, respectively, the number
of feature maps extracted by ADMF-IFCNN is more, it preliminarily shows that ADMF-
IFCNN has stronger recognition ability. In addition, comparing Figure 13b–d, it can be
seen that the feature map extracted by ADMF-IFCNN is sparser than ADMF-CNN and
ADMF-FCNN. For example, the red mark in Figure 13b,c show that the sparsity of the
feature map is poor, and the sparsity of the ADMF-CNN feature map is worse than the
ADMF-FCNN. Sparse feature representations can effectively improve the generalization
performance of the network [17,38] and good generalization of the network is conducive
to improving the classification performance. ADMF-FCNN utilizes a full convolution
structure to alleviate network overfitting and enhance the sparsity of the network [39], the
results also show that the FCNN recognition accuracy is higher than that of ADMF-CNN;
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compared with ADMF-FCNN, ADMF-IFCNN introduces the Inception structure to the
feature extraction layer. Theoretically, the joint filtering and the small-scale convolution
kernel decomposition of the Inception structure have the ability to enhance the sparsity, so
ADMF-IFCNN sparsity is further enhanced and network generalization is also enhanced,
consistent with the experimental results.
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The reason for the improvement of ADMF-IFCNN recognition performance is well
explained by comparing the visualization results of feature maps and theoretical analysis,
which also proves the effectiveness of the Inception structure we introduced.
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3.2.3. Ablation Experiment of IFCNN

In order to further explore the influence of Inception structure and a combination
of mixed progressive convolution layers on the performance of the network, two micro
variable networks of IFCNN were constructed for this ablation experiment. As shown in
Figure 8c, IFCNN1 removes 3×Inception (see Figure 7) from the feature extraction layer
of IFCNN; as shown in Figure 8d, IFCNN2 is a micro variable network that changes the
combination of mixed progressive convolution layers into conventional convolution layers
of IFCNN. Then this paper compares each network’s training loss and testing accuracy on
the subset-20, every network has gone through the pre-training process and completes the
initialization of network parameters.

Figure 14 shows the convergence curves of five networks, of which Figure 14a is the
convergence curve when the loss of the training set increases with the number of the epoch,
and Figure 14b is the convergence curve when the classification accuracy of the test set
increases with the number of the epoch. From Figure 14a, it can be seen that ADMF-IFCNN
converges first, ADMF-IFCNN2 and ADMF-IFCNN1 converge successively, and finally,
ADMF-CNN and ADMF-FCNN gradually converge. Comparing the training set loss con-
vergence curves of ADMF-IFCNN and ADMF-IFCNN2 shows that the mixed progressive
convolution layers can accelerate the convergence rate of network training. In Figure 14b,
ADMF-IFCNN has the highest testing accuracy after convergence, testing accuracy of
ADMF-IFCNN1 reveals a certain reduction compared to ADMF-IFCNN. Through com-
prehensive observation and analysis for Figure 14a,b, both the training convergence rate
and testing accuracy of ADMF-IFCNN are higher than ADMF-IFCNN1, which effectively
shows that the Inception structure can not only improve the network training convergence
rate but also improve the network testing accuracy.
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4. Discussion

At present, the experimental simulation results verify that the optimization method of
network initial parameters is effective by pre-training based on the ADMF image processing
method, but our exploratory experimental results also imply that it is easy to aggravate the
network overfitting if we expand a large number of samples only by weakening the scale
coefficient. To increase sample diversity to reduce the risk of overfitting caused by data
augmentation, we adjust Formula (5) and add three parameters: n, m, and w to increase
the diversity of pre-training samples, the parameter values are selected according to the
purpose of image processing and exploratory experiment feedback.
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zi,j =
nyi,j+mai,j

w
(9)

As shown in Figure 15, Figure 15d is the result of target enhancement (parameter n is
greater than parameter w) and Figure 15c is the result of target reduction samples (param-
eter n is less than parameter w). The research of target segmentation and target shadow
region is of great significance for SAR recognition, so we also study target segmentation
and target shadow region location through the ADMF method, the black area in Figure 15e
is the target part and the black concentrated area in Figure 15f is the target shadow part.
Target shadow region segmentation is still under study.
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In addition, the ADMF method has been applied to the SSDD dataset, and it can also
reduce speckle noise well, as shown in Figure 16. Figure 16b is the result of ADMF image
processing when the weakening proportion coefficient is 1:10. Next, we will continue
to study the improvement of the ADMF method and apply it to target detection and
recognition in small sample SAR images.

This paper verifies that the ADMF-IFCNN model has better performance than ADMF-
FCNN and ADMF-CNN in a small sample. To further demonstrate the advancement and
superiority of our proposed method under limited SAR data, we compared the proposed
recognition method with the existing recognition method, as shown in Table 6.
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Table 6. Comparison with the latest SAR recognition methods on MSTAR data subsets.

Methods Dataset Training
Sample Size

Testing
Accuracy

Training
Time(s)

Baseline CNN [40] MSTAR 200 54.20% 956
A-ConvNet [3] MSTAR 200 78.82% -
CAE-CNN [17] MSTAR 200 78.56% 486

Meta- Baseline [41] MSTAR 200 83.25% -
DA-Net [10] MSTAR 200 73.5% -

CAE-HL-CNN [17] MSTAR 200 81.03% 488
LW-CMDANet [40] MSTAR 200 55.34% 450

Unnamed method * [25] MSTAR 275 88.09% -
AG-MsPN [1] MSTAR 200 92.68% -

ARGN [42] MSTAR 200 82.73% -
ADMF-FCNN (ours) MSTAR 200 82.11% 279
ADMF-FCNN (ours) MSTAR 200 85.6% 253
ADMF-IFCNN (ours) MSTAR 200 88.95% 235

* The authors of this paper did not name the proposed overall method.

It should be emphasized that the test results of all methods in Table 6 are for ten
types of target classification and the data sample in reference [40] and reference [17] is
88× 88 patches from the original 128× 128 SAR image chips. We can see that our proposed
network achieves the best classification performance in all the comparison methods and
the training convergence time is also the shortest. It is noteworthy that our ADMF-IFCNN
method is less than 1% more accurate than the method in reference [25], but our training
sample size is less. What is more noteworthy is that the attribute-guided multi-scale proto-
typical network (AG-MsPN) proposed in the literature [1] can achieve 92.68% recognition
accuracy for 200 training samples, and their method can also achieve a better recognition
rate for fewer samples. Our method has not achieved their effect in recognition accuracy,
but their method is highly dependent on the prior information and the method imple-
mentation process is very complex. An extra attribute classification module (ACM) needs
to be constructed based on prior knowledge and then used to complete the end-to-end
training process with the MsPN, the training process also needs the joint supervision of the
one-pot class label information from a few labeled data and the attribute information from
the prior knowledge. Their method does not consider the time loss of end-to-end training
and the subsequent impact when prior information is biased. For example, the results of
subsequent studies may be biased, if the prior information is slightly biased in the design
of ACM. So their methods are greatly affected by the prior information. However, the
method proposed in this paper uses image data directly from model pre-training to training
and does not need to construct abstract ACM to complete model training. Even if the
pre-training sample label is wrong, the model will not continue to learn error information
during training. In addition, we also optimize the training convergence performance, and
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our recognition model IFCNN still has room for improvement. The current research on
the Inception structure is continuing, we also consider increasing the number of Inception
appropriately or improving the Inception structure to improve the recognition capability of
IFCNN for fewer samples.

5. Conclusions

In this paper, we propose a small sample SAR image target recognition method based
on IFCNN combined with ADMF image processing. In Section 2, we introduce the design
of the ADMF method and the IFCNN model. This paper builds IFCNN by introducing
the Inception structure and a combination of mixed progressive convolution layers into
the FCNN. The full convolution structure of FCNN effectively alleviates the problem of
overfitting in limited data scenarios and improves the ability of feature extraction. In
addition, a mixed progressive convolution layer on FCNN can not only achieve the effect
of the pooling layer but also further accelerate the speed of network feature extraction
by mixed strides. The Inception structure utilizes dense computing methods to realize
accelerated training, which avoids the redundant computation of feature extraction to
the greatest extent and enhances feature sparsity through small-scale convolution kernel
decomposition and joint filtering. Based on the MSTAR dataset, the target classification
experiment under a small sample scenario is carried out in Chapter 0. The results show
that the recognition performance of the network is improved through pretraining. At the
same time, through the comparative experiments of the three models, it is verified that
the recognition performance of IFCNN is better, and the advantages of Inception structure
and mixed progressive convolution layers for recognition are explained. In the discussion
in Chapter 0, we further demonstrate the advancement and superiority of our proposed
method by comparing it with the existing recognition methods. Our proposed method
achieves higher testing accuracy and a faster training convergence rate with a simpler
structure than other small sample recognition methods through comparison.

Finally, it is worth emphasizing that the ADMF method proposed in this paper pro-
vides a novel idea for data augmentation and target segmentation. This method utilizes the
amplitude difference between the target and the background to reduce noise and improve
the image quality, which is conducive to the research of small sample SAR image detection
and recognition without changing the target position information of the image. In addition,
the method is simple to implement and easy to improve, so it has very high practical value
and research significance.
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