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Abstract: Nighttime light (NTL) intensity is highly associated with the unique footprint of human
activities, reflecting the development of socioeconomic and urbanization. Therefore, better un-
derstanding of the relationship between NTL intensity and human activities can help extend the
applications of NTL remote sensing data. Different from the global effect of human activities on
NTL intensity discussed in previous studies, we focused more attention to the local effect caused
by the spatial heterogeneity of human activities with the support of the multiscale geographically
weighted regression (MGWR) model in this study. In particular, the Suomi National Polar Orbiting
Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) NTL data within Chongqing,
China were taken as example, and the point of interest (POI) data and road network data were
adopted to characterize the intensity of human activity type. Our results show that there is significant
spatial variation in the effect of human activities to the NTL intensity, since the accuracy of fitted
MGWR (adj.R2: 0.86 and 0.87 in 2018 and 2020, respectively; AICc: 4844.63 and 4623.27 in 2018 and
2020, respectively) is better than that of both the traditional ordinary least squares (OLS) model
and the geographically weighted regression (GWR) model. Moreover, we found that almost all
human activity features show strong spatial heterogeneity and their contribution to NTL intensity
varies widely across different regions. For instance, the contribution of road network density is
more homogeneous, while residential areas have an obviously heterogeneous distribution which is
associated with house vacancy. In addition, the contributions of the commercial event and business
also have a significant spatial heterogeneity distribution, but show a distinct decrement when facing
the COVID-19 pandemic. Our study successfully explores the relationship between NTL intensity
and human activity features considering the spatial heterogeneity, which aims to provide further
insights into the future applications of NTL data.

Keywords: nighttime light; human activities; spatial heterogeneity; MGWR; NPP/VIIRS; Chongqing

1. Introduction

Due to rapid socioeconomic development, artificial nighttime lights gradually alter the
spatial distribution of brightness on the Earth’s surface at night [1]. Nighttime light (NTL)
remote sensing images provide a direct signature of human activity [2], different from
traditional daytime remote sensing data which primarily monitor the surface environment
information. The two commonly used NTL data are the Defense Meteorological Satel-
lite Program/Operational Linescan System (DMSP/OLS) NTL data and Suomi National
Polar-orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) NTL
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data. Some studies have demonstrated that there are statistically significant correlations
between NTL intensity and human activities at the different scales [3–7]. Therefore, the
DMSP/OLS and NPP/VIIRS NTL data are generally associated with socioeconomic top-
ics [8], including gross domestic product [3,9,10], extracting urban built-up area [11,12],
estimating population [13–16], house vacancy [17], poverty [18,19], urbanization [20], and
electricity consumption [21–23]. Recently, NTL data are also used in the perspective of
environmental fields, such as carbon dioxide emissions [24], light pollution [25,26], hu-
man health [27,28], and food security [29]. Compared with the DMSP/OLS NTL data,
the NPP/VIIRS data have significant improvement in spatial resolution and radiometric
detection range [30]. Thus, VIIRS data might specifically be used to characterize the human
activity information from cities, towns, and other places.

Most previous studies have demonstrated that NTL intensity is globally correlated
with human activities by using classical statistical methods and machine learning models.
For instance, Li, et al. [31] used an unmixing model to quantify the land use contribution to
DMSP/OLS and NPP/VIIRS NTL intensity in Berlin and Massachusetts. Ma [32] used the
LULC and POIs data to analyze the relationship between NPP/VIIRS NTL intensity and
land features (e.g., Cropland, water, urban land, built-up land, etc.) at pixel level. Levin
and Zhang [7] found that road network density shows a significant correlation with NTL
intensity in densely populated areas using general linear models (GLMs). Chen, et al. [33]
quantified the contribution of various POI categories to DMSP/OLS NTL intensity using
the ordinary least squares (OLS) regression, and the results showed that shopping centers
and companies were the main contributors to NTL intensity. Wang, et al. [34] used the
LULC and POIs data to construct different artificial surface features at the parcel level and
used random forest (RF) regression models to explore the contribution of each feature to
NTL intensity. The spatial distribution for NTL intensity was uneven due to the inherent
spatial heterogeneity within geographical phenomena including multiple socioeconomic
factors [35]. Nevertheless, the abovementioned relationships between human activity and
NTL intensity are global and non-spatial, with limited consideration of the local differences
and spatial heterogeneity of human activity.

To fill this gap, the geographically weighted regression (GWR) model was proposed
by Brunsdon, et al. [36] to measure the variation trend of factors in space. Based on the
spatial non-stationary characteristics, the GWR model effectively addresses the spatial
heterogeneity that is ignored by the traditional regression models in performing regression
analysis [37]. In practical research, Ye, et al. [38] used the GWR model to downscale
NPP/VIIRS images based on multi-source spatial data. However, GWR assumed that all
variables have the same spatial heterogeneity, and thus does not allow each variable to
have their own bandwidth [39]. In many cases, including human activity, this assumption
is not valid because the human activity features can be different with varying spatial scales.

Owing to the advantage of the multiscale geographically weighted regression (MGWR)
model, the effects of each variable can be distinguished from global and local perspectives
by allowing variables to be varied over space and at different scales [40–43] Generally,
MGWR has been successfully used to analyze socioeconomic topics such as urban heat is-
land [44], obesity [45], and public health crises [41,46]. So far, there is no literature adopting
this model to analyze the local effects of human activity on NTL intensity. To extend the
applications of NTL remote sensing images, it is crucial to explore the relationship between
the NPP/VIIRS NTL intensity and human activities while considering spatial heterogeneity.

In this study, POIs and road network data were selected to measure human activity
features, and the MGWR model was used to analyze the relationship between various
human activity features and NTL intensity in the central urban area of Chongqing. The
main objectives of this study are: (1) to measure the contribution of each human activity
feature to the NPP/VIIRS NTL intensity in 2018 and 2020, and (2) to identify and analyze
the spatial pattern of feature contributions, as well as the drivers behind the change in
feature contributions.
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2. Study Area and Dataset
2.1. Study Area

The urban area from nine core administrative districts within Chongqing, China was
selected as our study area based on the following two reasons: First, Chongqing, located in
the upper reaches of the Yangtze River, is one of the four municipalities in China and has
had rapid economic development and population growth since 1997, especially within the
nine districts. Meanwhile, Chongqing has a complex topography with more than 70% area
of mountainous, resulting in a complex distribution of human activities [47,48]. Based on
this background, this area is suitable for exploring the relationship between NTL intensity
and human activities while considering spatial heterogeneity. Second, the nighttime light
intensity is mainly from the urban area, we hence used global urban boundaries (GUBs)
data to filter out non-urban areas, as shown in Figure 1.
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Figure 1. Location of the study area (DEM: digital elevation model; GUBs: global urban boundaries).

2.2. Data Sources and Preprocessing

The dependent variable (NTL intensity) and the independent variables (human activity
features) defined in this study are composed of overlying eight maps, including NPP/VIIRS
NTL data (Figure 2a), POIs (6 categories, Figure 2b–g), and road network (Figure 2c).
Figure 2 shows the spatial distribution of NTL intensity, POIs, and road network in 2018.
Moreover, the GUB data were used to delineate the urban area in Chongqing. Since
all variables we calculated in this study required the area of each grid, all these spatial
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data were projected to the Albers Equal Area Conic Projection for the convenience of the
subsequent study.
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composed with all levels of roads.

2.2.1. VIIRS Data

In this study, the annual average global NPP/VIIRS NTL data (version 2) in 2018 and
2020 were adopted to provide NTL intensity, which are generated by the Earth Observation
Group (EOG) and can be accessed from https://payneinstitute.mines.edu/eog/nighttime-
lights/ (accessed on 18 May 2021). The data have been stripped of irrelevant features
such as biomass burning, aurora, and background [49], and its spatial resolution is 15 arc

https://payneinstitute.mines.edu/eog/nighttime-lights/
https://payneinstitute.mines.edu/eog/nighttime-lights/
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second (approximately 500 m) with the unit of nW cm−2 sr−1. We resampled the projected
NPP/VIIRS NTL data to generate raster grids with a spatial resolution of 500 m (Figure 2a).

2.2.2. POI Data

The POI data were collected from Amap (https://lbs.amap.com/ (accessed on
5 May 2021)) to reflect the intensity of each human activity type. The original POI data
consist of 23 major categories (such as finance and insurance services, enterprises, shopping,
transportation service, etc.). Based on our research purpose, we reclassified the POI data
into six categories (Table 1) according to the criteria of Gong, et al. [50]. Totally, 152,437 and
155,454 POI records were selected for the years of 2018 and 2020, respectively. Figure 2b–g
shows that POI data cover most pixels with NTL intensity. Due to the lack of a long time
series of POI data, we must analyze the contribution from 2018 to 2020.

Table 1. The description of POI data categories.

Reclassified POI Categories Original POI Categories Count (2018) Count (2020)

Residential Residential 12,987 13,578

Business office Bank, Company, Factory, Finance and Insurance Service
Institution, etc. 45,152 46,008

Commercial service Restaurant, Theatre and Cinema, Recreation Center,
Supermarket, Shopping Related Places, etc. 49,618 48,430

Transportation Airport, Railway Station, Subway Station, Bus Station,
Expressway Service Area, Filling Station, etc. 13,934 14,524

Administrative Governmental Organization, Public service agencies, etc. 19,474 20,545

Sports and cultural Museum, Exhibition Center, Library, Cultural Palace,
Sports Stadium, etc. 11,272 12,369

2.2.3. OpenStreetMap Data

The road network data from OpenStreetMap (http://www.openstreetmap.org (ac-
cessed on 12 June 2021)) was selected to reflect the road network density, since streetlights
and traffic lights are the main sources of NTL in urban areas [51,52]. Figure 2c illustrates
the road network adopted by Chongqing, including motorway, trunk road, primary road,
secondary road, and tertiary road, covering most areas of the city.

2.2.4. GUB Data

The global urban boundaries (GUBs) data can be obtained from http://data.ess.
tsinghua.edu.cn/ (accessed on 2 June 2021). Compared with the NTL and Landsat images
derived results [53,54], GUB data can show more details about urban fringe areas [55]. Due
to the lack of long-term data, we used GUB data for 2018 to delineate urban areas. The final
study area was obtained by clipping the projected NTL data according to GUB, and a total
of 4321 grids with 500 m resolution grids were finally determined.

3. Methods

The framework of the study mainly consists of two steps (Figure 3): (I) Measurement
of human activity features. The POI data and road network data were adopted to construct
7 variables at pixel level to refer human activity features by calculating their density;
(II) and model fitting and results analysis. All the variables were input into the MGWR
model to explore the local relationship between human activities and NPP/VIIRS NTL
intensity, as well as their spatial scale variation.

https://lbs.amap.com/
http://www.openstreetmap.org
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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3.1. Measurement of Human Activity Features

The 7 human activity features adopted in this study contain two parts: The first
6 features are from the 6 categories of POI data by using kernel density estimation (KDE),
and the last feature is from the road network data by calculating the ratio between the
total length of the road network and pixel area. To facilitate comparing the contribution
of each variable to NPP/VIIRS NTL intensity and bandwidths obtained from the MGWR
mode [56], all the independent variables and NTL intensity were standardized to the same
range by Equation (1):

Xk =
Xk0 − µk0

σk0
(1)

where Xk is the standardized value for the kth variable; Xk0 is the original value of the kth
variable; µk0 is the mean value for Xk0; and σk0 is the standard deviation for Xk0.

3.1.1. Human Activity Features from POI Data

The kernel density estimation (KDE) of each POI class was conducted to weaken the
influence caused by the lack of area characteristic in POI data. The KDE can visualize the



Remote Sens. 2022, 14, 5695 7 of 19

spatial variation characteristics of the point element density, which is widely used in the
geological regional analysis [57]. The calculation of the kernel density estimate is as follows:

f (x) =
n

∑
i=1

1
h2 k

(
x − xi

h

)
(2)

where f(x) is the estimated kernel density value at location x; k is the kernel function; x − xi
is the distance between POIs location xi and x; h is the radius; and n is the total number of
POIs contained within radius h.

In this study, the 6 categories of POIs data, as mentioned in Table 1, were separately
input into the KDE model with a radius of 1500 m to obtain the 6 human activity features.
Particularly, these features include transportation index (TI), residential index (RI), ad-
ministrative index (AI), sports and cultural index (SCI), business office index (BOI), and
commercial service index (CSI).

3.1.2. Human Activity Feature from Road Network

The road network density (RND) reflects the development level of urban roads and
can be calculated by the following Equation (3):

RNDi =
Li
Ai

(3)

where Li is the total road network length in the ith pixel; and Ai is the area of ith pixel.

3.2. Regression Models

To comprehensively analyze the relationship between NTL intensity and human
activities, three models are used in this study. One is a traditional global model, named the
ordinary least squares (OLS) regression model, and the other two models are geographically
weighted regression (GWR) and multiscale geographically weighted regression (MGWR),
which are local models.

3.2.1. OLS Regression Model

The OLS has been commonly used in non-spatial linear regression analysis to describe
the correlation of a dependent variable with some independent variables. The OLS is
denoted by:

yi = β0 +
n

∑
i=1

Xiβi + εi (4)

where yi is the dependent variable, representing the NTL intensity of the ith pixel; β0 is the
intercept of the model; Xi corresponds to the ith explanatory variable of the model (i = 1
to n); βi is the regression coefficients, which reflects the contribution of each variable to the
NTL intensity; and εi indicates the random error item.

3.2.2. GWR and MGWR Models

Geographically weighted regression (GWR) is a kind of regression method that can
effectively address and explain the local variation of features, bringing the geospatial
variation in selected features into consideration [36,58]. The GWR model is shown in
Equation (5):

yi = β0(ui, vi) +
n

∑
j=1

β j(ui, vi)Xij + εi (5)

where (ui, vi) is the spatial coordinate of pixel i; β0 is the intercept; βj is the coefficient of
the variable j of pixel i; Xij denotes jth variable of pixel i; and εi is a random error item.



Remote Sens. 2022, 14, 5695 8 of 19

Parameter estimates for each independent variable and at each pixel in matrix form is
denoted by [59]:

β̂(i) =
(

XTW(i)X
)−1

XTW(i)Y (6)

where β̂(i) is the vector of parameter estimates (t × 1), X indicates the matrix of independent
variable (n × t), W(i) is the spatial weights matrix (n × n), and Y is a t × 1 vector of
observations of the dependent variable. W(i) is constructed from the weights of each pixel
based on its distance from location i. To calculate the matrix W(i), the kernel function and
bandwidth should be specified. The Gaussian and bi-square kernel function are commonly
used to implement, and the bandwidth is determined based on Euclidean distance or the
number of nearest neighbors [41,45,46].

The GWR can capture the spatially non-stationarity of variables, which is a significant
improvement over global regression (such as OLS), whereas it assumes that the scale of all
variables is constant in space. Based on this limitation, Fotheringham, Yang, and Kang [39]
developed the MGWR model, which allows variables to use different bandwidths and
can better reflect the spatial variation process of variables and NTL intensity. Moreover,
the model can avoid introducing too much noise and bias to improve the model fitting
performance. It can be calculated by Equation (7):

yi =
k

∑
j=1

βbwj(ui, vi)Xij + εi (7)

where bwj is the jth optimal bandwidth indicating the spatial scale of variables. The
higher the bandwidth, the less the spatial heterogeneity. βbwj represents the jth regression
coefficient; Xij denotes jth variable of pixel i; and εi is a random error item. MGWR assigns
an independent bandwidth for each variable, so theoretically the model can accurately
describe spatial heterogeneity and reduce the bias of regression results compared with GWR.
Moreover, it not only provides more accurate parameter estimates but also diminishes
multicollinearity [41,60].

To avoid the bias of estimation results caused by the interaction between variables [42],
the variance inflation factor (VIF) was firstly used to test the multicollinearity between
variables. In our study, all VIFs are less than 10, which implies that any two variables have
no multicollinearity issue. In the GWR and MGWR models, we used an adaptive bi-square
kernel to eliminate the influence of observations outside the neighborhood, because the
interpretation of the bi-square kernel function is that the bandwidth is the number of
nearest neighbors at which the data are weighted to exactly zero, and further observations
have no influence on each local regression. In this work, the corrected Akaike Information
Criterion (AICc) was employed for selecting the optimal bandwidth, which provides a
balance between model variance and bias [45,61].

4. Results
4.1. Perfoemance of Models

The descriptive statistics for the variables were summarized in Table 2. We standard-
ized all variables and then put them into the OLS, GWR, and MGWR models, successively.
As shown in Table 3, the two local regression models (GWR and MGWR) both have a better
fitting performance than the global regression model (OLS). Specifically, the adjusted R2

of the global regression OLS model was 0.25 and 0.29 in 2018 and 2020, indicating that
75% and 71% of the NTL intensity across Chongqing remains unexplained. Hence, the
OLS model can be due to the neglected scale of spatial processes involved in modeling
the NTL intensity. Meanwhile, compared with GWR, the MGWR model has the highest
adjusted R2 of 0.86 and 0.87 in 2018 and 2020, respectively. Moreover, the corrected Akaike
Information Criterion (AICc) value dropped from 5366.54 to 4844.63 in 2018, and from
4840.46 to 4623.27 in 2020. In addition, the residual sum of squares (RSS) of the MGWR
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model is the lowest, which indicates that the regression results are closer to the true value
with fewer parameters [62]. Therefore, the MGWR model is superior to the GWR model.

Table 2. Descriptive statistics for variables in this study.

Variable *
Mean Standard Deviation Minimum Maximum

2018 2020 2018 2020 2018 2020 2018 2020

RND 7.85 7.92 5.67 5.65 0 0 39.21 41.76
TI 7.50 7.64 7.96 8.45 0 0 94.56 105.37
RI 10.1 11.32 14.87 16.06 0 0 91.77 92.05
AI 12.46 13.76 20.82 11.57 0 0 184.7 180.27
SCI 8.88 8.59 18.35 10.48 0 0 181.85 170.70
CSI 39.79 42.31 74.88 98.59 0 0 739.39 933.63
BOI 27.15 29.25 50.04 39.35 0 0 475.10 380.27

* RND: road network density; TI: transportation index; RI: residential index; AI: administrative index; SCI: sport
and cultural index; CSI: commercial service index; BOI: business office index.

Table 3. Comparing the OLS, GWR, and MGWR model fits.

Model
Adj.R2 * AICc * RSS *

2018 2020 2018 2020 2018 2020

OLS 0.25 0.29 11,046.75 10,811.92 3249.25 3074.89
GWR 0.85 0.86 5366.54 4840.46 503.29 460.76

MGWR 0.86 0.87 4844.63 4623.27 415.30 392.28

* Adj.R2: adjusted coefficient of determination; AICc: corrected Akaike Information Criterion; RSS: residual sum
of squares.

The bandwidths evaluate the spatial scale of each variable, and a larger spatial scale
indicates less spatial heterogeneity of the variable [56]. As seen in Table 4, the bandwidths
calculated from the GWR model is the average spatial scale of variables, with bandwidths
of 58 and 65 in 2018 and 2020, respectively. Nonetheless, the bandwidths obtained from the
GWR model no consideration of the varying spatial scales for different variables [63]. Thus,
it would fail to more accurately depict the spatial differentiation. Based on the calculated
bandwidths of each variable in the fitted MGWR model (Table 4), we found that the effect
of each human activity on NTL intensity has varied spatial heterogeneity. For instance,
the RND has the largest bandwidth compared with the other variables, which increased
from 128 to 142 during the two years. It presents that the effect of RND on NTL intensity
is relatively homogeneous. However, the other six POI categories all have significant
local effects on NTL intensity since their bandwidth values are much lower than RND’s
bandwidth in this study.

Table 4. The spatial bandwidths of the MGWR models.

Variable
GWR Model MGWR Model

2018 2020 2018 2020

Road network density (RND)

58 65

128 142
Transportation index (TI) 43 43

Residential index (RI) 46 46
Administrative index (AI) 43 43

Sport and cultural index (SCI) 43 43
Commercial service index (CSI) 43 43

Business office index (BOI) 43 46

Generally, these results proved that the human activity features indeed have significant
spatial heterogenetic effects on NTL intensity. Therefore, the following analysis are focused
on the results from the MGWR model.
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4.2. Contributions of Human Activity Features for NTL Intensity

The road network density (RND) has a significant positive contribution to NTL in-
tensity in the two years, but the contribution of this feature is small compared with other
features (Table 5). In addition, the mean values of the coefficients show that TI, CSI, and
BOI all have a strongly positive effect on urban NTL intensity. In particular, TI (the mean
coefficients in 2018 and 2020 are 0.885 and 0.826, respectively), CSI (the mean coefficients
in 2018 and 2020 are 0.956 and 0.648, respectively), and BOI (the mean coefficients in 2018
and 2020 are 0.898 and 0.165, respectively) dominate the NTL intensity. In contrast, the
RI (the mean coefficients in 2018 and 2020 are −0.818 and −0.674, respectively), AI (the
mean coefficients in 2018 and 2020 are −0.918 and −0.255, respectively), and SCI (the mean
coefficients in 2018 and 2020 are −0.255 and −0.246, respectively) variables have a negative
effect to NTL intensity in both 2018 and 2020, indicating that these features inhibit NTL
intensity. In addition, we noticed significant changes in the mean coefficients of some
variables show significant changes (such as, CSI dropped from 0.956 to 0.648, and BOI
dropped from 0.898 to 0.165), which is discussed further in Section 5.

Table 5. The MGWR coefficients of 7 variables in 2018 and 2020.

Variable *
Coefficients in 2018 (p < 0.05) Coefficients in 2020 (p < 0.05)

Minimum Maximum Mean Minimum Maximum Mean

RND −0.263 1.281 0.215 −0.383 1.704 0.297
TI −1.360 3.598 0.885 −0.696 2.955 0.826
RI −3.354 2.325 −0.818 −2.289 1.980 −0.674
AI −5.379 1.931 −0.918 −1.903 1.342 −0.255
SCI −4.354 2.158 −0.255 −4.472 2.318 −0.246
CSI −2.833 5.702 0.956 −0.312 1.533 0.648
BOI −3.742 4.338 0.898 −3.611 1.964 0.165

* RND: road network density; TI: transportation index; RI: residential index; AI: administrative index; SCI: sport
and cultural index; CSI: commercial service index; BOI: business office index.

5. Discussion

The spatial pattern of human activity feature contributions was explicitly demon-
strated by the MGWR coefficients (Figures 4–7). The traffic situation has a generally
positive effect on the NTL intensity since the significant coefficients of RND and TI related
to traffic are mainly positive in the two years of 2018 and 2020 (Figure 4). Specifically,
the airport in Yubei (region A in Figure 4(i-a,i-b)) has the highest coefficients of RND and
TI. Airport facilities and surrounding roads provide long-term and stable artificial light
sources [7,64], and the light intensity provided by such facilities is also much higher than
other urban areas. Moreover, different from road network, the contribution of transporta-
tion facilities varies greatly in different regions. The contribution of TI to NTL intensity
has a decrement in the Longxing and Yufu areas (region B and C in Figure 4(ii-a,ii-b)),
which are famous industrial centers in Chongqing and have a high density of expressway
service facilities and gas stations. Originally, this kind of region promoted the NTL intensity
according to its function. However, due to the COVID-19 pandemic in 2020, the human
interactions in this region were restricted, which reduced the contribution of TI to NTL
intensity [28,65,66]. It is worth noting that the contribution of RND to NTL intensity was
not impacted by COVID-19 and the average contribution increased from 0.215 to 0.297
(Table 4). This is because the road network refers to the urban infrastructure construction,
such as streetlights, which were lit during the COVID-19 period for citizens whether they
were outdoors at night or not. Therefore, by comparing the changes in the traffic situation in
the past two years, our model shows the possibility of exploring the industrial development
state of some regions.
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The residential area demoted the NTL intensity since the contribution of RI in most
areas is negative. This is because the overpass time of the NPP satellite is about 1:30 AM,
when most residents have turned off their indoor lights. From the temporal dynamics of
the contribution of RI, there were more regions with negative contribution of RI in 2020
than in 2018, such as the western region of Shapingba (region A in Figure 5). This region,
as a part of the Chongqing high-tech zone built in 2019, has many new residential areas.
However, due to the relatively poor level of commercial, medical, educational, and other
infrastructure in these regions, it has led to a slower inflow of population. These new
residential areas cause a high vacancy issue in Chongqing [67], resulting in a negative
impact on NTL intensity. It is noteworthy that the RI would have a positive effect to
NTL intensity if the residential area was surrounded by commercial centers, such as the
downtown area in Yuzhong (region B in Figure 5). In such an area, due to the high attraction
of commercial centers, the human activity intensity from the nearby residential area can be
much stronger than other residential areas and the interaction between the residential areas
and shopping centers can be strong. Therefore, the light from the surrounding shopping
malls can spill onto the nearby residential area. Our model shows the ability to evaluate
the development level of residential areas in new urban areas.

The administrative area showed a negative contribution to NTL intensity in the
developed areas, but presented a positive contribution in the newly developing area
(Figure 6(i-a,i-b)). Most government agencies mix with residential buildings in developed
areas. These agencies cannot turn too many lights on at night to prevent the residents from
light pollution, which leads to a negative contribution of AI to NTL intensity. In the newly
developing area, the government agencies usually have their own buildings and are able
to have better equipped lights [67]. Therefore, AI shows a positive effect in most of these
areas, including parts of Jiangbei and Yubei (region A and B in Figure 6(i-a,i-b)). Most sport
and cultural facilities (such as museums, libraries, sport stadiums, etc.) present a positive
contribution to NTL intensity, especially when they are concentrated in the downtown area
since they are always open to late at night. However, different from the facilities in the
downtown area, when they are in the university campus (region D in Figure 6(ii-a,ii-b)),
they close at night and turn off the lights to reduce energy consumption, which leads to a
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negative contribution of SCI to NTL intensity in this region. Meanwhile, if the sport and
cultural facilities are discretely distributed, their contribution to NTL intensity is much
worse. For example, the airport area (region C in Figure 6(ii-a,ii-b)) and Xiyong town
(region E in Figure 6(ii-a,ii-b)) are the important transportation hub and industrial center of
Chongqing, respectively. There are few sport and cultural facilities in these regions. These
regions’ NTL intensity are mainly dominated by the traffic activity and production activity,
rather than the sport or cultural activities.
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Our results show that commercial activities and business activities both have a strong
contribution to NTL intensity, which is consistent with previous studies [33]. However, the
average contribution of CSI to NTL intensity has a decrement of 32%, while the contribution
of BOI has a much larger decrement of 81%. This might be caused by the different response
of commercial and business activities when facing the COVID-19 pandemic. For instance,
most commercial facilities (e.g., restaurants and supermarkets) were open in 2020, even
though there were COVID-19 cases [68]. Therefore, commercial service facilities had a
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positive contribution to NTL intensity in most regions (Figure 7), except in some newly
developing areas with the less permanent population (region A and B in Figure 7(i-a,i-b))
where lights were turned off to reduce cost. In contrast, most of the business offices have
been closed during the COVID-19 pandemic, since the employees must work-from-home.
Consequently, the contribution of BOI to NTL intensity has a larger reduction than the
contribution of CSI. It is noteworthy that the business activities around the airport of Yubei
(region C in Figure 7(ii-a,ii-b)) presented a negative contribution to NTL intensity in both
years. This is similar to the negative contribution of SCI to NTL intensity mentioned before.
The light from the transportation area is mainly derived from traffic facilities, instead of the
seldom business activities.

The above analysis shows that the NTL data have greater potential to identify and
monitor human activities and spatial patterns. By analyzing the change in RI’s contribution
in the western of Shapingba (Figure 5), we found that many new residential buildings have
been built here. However, the SCI’s (Figure 6(ii-a,ii-b)) contribution and BOI’s contribution
(Figure 7(ii-a,ii-b)) have not increased significantly. As the prioritized region of the city, in
the future policymakers can consider complementing relevant facilities (such as cultural
facilities and companies) to attract the inflow of population and reduce the waste of land
resources. Moreover, the MGWR model allows the variables to be assigned different
bandwidths, which can avoid introducing too much noise and bias to improve the model
fitting performance (Table 3). This finding has implications for expanding the application
of NTL data. The MGWR model can be applied to downscale the NPP/VIIRS data to obtain
long-term NTL data with higher spatial resolution.

6. Conclusions

Although previous studies have analyzed the relationship between human activities
and light intensity from multiple perspectives, the influence of spatial heterogeneity on
the results was rarely mentioned. In this study, MGWR was used for fitting, and the
relationship between human activities and NPP/VIIRS NTL intensity in the study area
was comprehensively analyzed. The results of the study indicate that the OLS and GWR
regression models have difficulty explaining the spatial heterogeneity of the variables, and
the performance of MGWR (adjusted R2 and AICc) was superior to OLS and GWR models.
The road network density has the largest bandwidth, it represents relatively small spatial
heterogeneity. Moreover, the NTL intensity was more sensitive to POI features, reflecting a
larger spatial heterogeneity. From the comparison of regression coefficients between 2018
and 2020, the results showed that our model not only can explore the relationship between
NTL intensity and human activity features, but also explains the spatial variation in the
feature’s contribution. For example, we found that the contribution of road network density
to NTL intensity changes relatively steady in space, because the streetlights can provide
stable artificial light sources in urban areas. Furthermore, we found that the residential
areas have an obviously heterogeneous distribution which is associated with the house
vacancy. In addition, we noticed that most government agencies in developed areas have
turned off many lights to protect residents from light pollution. Moreover, compared with
the roads, the contribution of commercial service facilities and business offices in 2020
decreased to varying degrees, which was mainly caused by the restrictions on human
activities due to COVID-19. By further analyzing the reasons for the change in the spatial
pattern of feature contributions, which aims to facilitate the applications of NPP/VIIRS
NTL data.

Our study successfully explores the relationship between NTL intensity and human
activity features. However, there are some uncertainties and limitations that remain to be
further improved. Firstly, although fitting results from the MGWR model were better than
the GWR model, we noticed that the performance (adjusted R2 and AICc) improvement
is not significant. The reasons may be due to study area and data quality issues (such as
coarse spatial resolution of VIIRS data, and lack of a long time series of POI data). Since
cities are complex systems and the urbanization process is a long-term process, future work
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is needed to reinforce the conclusions of this study by conducting long-term series studies
in different cities. Second, some studies have shown that aerosol optical depth (AOD) are
sensitive to the quality of NPP/VIIRS NTL images [69]. Limited by data availability, this
paper only explores the influence of human activities to NTL intensity without considering
the physical features. In further study, we should use data (e.g., AOD, LULC, and social
media data) to reflect human and nature features for a comprehensive analysis. Finally,
anisotropic characteristic [70,71] and seasonal changes (e.g., vegetation and snow cover)
can also affect the NPP/VIIRS NTL intensity [7,72]. In order to better evaluate urban
development, these factors need to be taken into account in future studies.
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