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Abstract: As the largest groundwater drainage region in China, the per capita water resources in the
North China Plain (NCP) account for only one-seventh of the country’s available water resources.
Currently, the NCP is experiencing a serious water shortage due to the overexploitation of ground-
water resources and a subsequent series of natural disasters. Thus, accurate regional assessments
and effective water resource management policies are of critical importance. To accomplish this
phenomenon, the daily terrestrial water storage anomaly (TWSA) over the NCP is calculated from the
combination of the GNSS vertical deformation sequences (seasonal items) and GRACE (trend items).
The groundwater storage anomaly (GWSA) in the NCP is obtained by subtracting the canopy water,
soil water, and snow water equivalent components from the TWSA. The inversion results of this study
are verified by comparisons with the Global Land Data Assimilation System (GLDAS) data products.
The elevated annual amplitude areas are located in Beijing and Tianjin, and the Pearson correlation
coefficient (PCC), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) between the
two GWSA results are 0.67, 4.01 cm, and 0.61, respectively. This indicates that the methods proposed
in this study are reliable. Finally, the groundwater drought index was calculated for the period from
2011 to 2021, and the results showed that 2019 was the driest year, with a drought severity index
value of −0.12, indicative of slightly moderate drought conditions. By calculating and analyzing
the annual GWSA, this work shows that the South–North Water Transfer Project does provide some
regional drought mitigation.

Keywords: GNSS; GRACE; crustal load deformation; groundwater storage; North China Plain

1. Introduction

Groundwater is an important resource for urban construction, agricultural production,
and residential life, which plays a pivotal role in the development of China’s national
economy [1]. With the process of urbanization accelerating and the improvements in
industrialization, the issue of groundwater overdraft has become increasingly serious
in recent years [2]. This is especially true in the North China Plain (NCP), where the
massive exploitation of groundwater resources has triggered a series of natural disasters,
such as drought, surface subsidence, and soil erosion, which have severely impacted the
economic stability and development of the NCP [3]. Therefore, an appropriate monitoring
of groundwater storage is critical for a macroscopic analysis of the groundwater resources
spatial distribution [4]. Traditional groundwater observation methods mainly monitored
the water level, water quality, soil moisture, and other parameters via observation wells
or monitoring stations. However, the laborious process of station and well construction
consumes a great deal of human and material resources [5]. Although groundwater wells
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can accurately monitor the change of groundwater level over local regions, the uneven
distribution of these wells greatly limits the monitoring of groundwater changes over
large-scale regions. Meanwhile, the construction of groundwater wells consumes a lot
of manpower and material resources. Therefore, it is meaningful to find an alternative
strategy to accurately monitor the groundwater level changes in the large-scale regions.

In 2002, the successful launch of the Gravity Recovery and Climate Experiment
(GRACE) satellites provided an unprecedented opportunity to monitor groundwater stor-
age anomalies (GWSA) [6–10]. As a result, a large number of studies have since been carried
out around the world, such as in Cambodia [11], California [12,13], Northern China [14],
the NCP [15], and Guanzhong region [16]. Monitored data of GRACE satellites can accu-
rately depict regional load changes based on the inversion of local gravity anomalies [17].
However, due to the GRACE satellites’ aging power supply system, it was not possible
to accurately reflect gravity anomalies, and the mission was ended in 2017. The GRACE
satellites’ next-generation successor, GRACE Follow-On (GRACE-FO), was launched in
2018, with a gap of nearly one year between the two missions [8,18,19]. Meanwhile, due
to the inherent characteristics of GRACE satellites, inversion results from GRACE data
have coarser spatial and temporal resolutions, usually 1◦ × 1◦ (spatial) and one month
(temporal), respectively [20,21]. As a result, the GWSA in local areas cannot be monitored
in real time using GRACE gravity satellites [21,22]. Therefore, finding an alternative means
to effectively monitor GWSA with high spatiotemporal resolution is critical.

The seasonal migration of large-scale water masses causes not only changes in regional
gravity but also vertical deformation of the Earth’s crust due to subsidence or uplift; this
process is called crustal nontectonic deformation [23–26]. The factors affecting crustal
nontectonic deformation include atmospheric load, terrestrial water storage, ocean load
disturbance, and human activities [27,28]. Among them, the change in terrestrial water
storage is the most important factor influencing the deformation, and this relationship
can be established by combining Green’s load function and the crustal load model [29–31].
In recent years, the global navigation satellite system (GNSS) observation tools and com-
putational strategies have become more sophisticated. This phenomenon is beneficial to
the wide application of GNSS-observed datasets [32]. Meanwhile, the Crustal Movement
Observation Network of China (CMONOC) project was started in 1997 and can accurately
and continuously monitor the vertical deformation of the Earth’s crust [33–36]. Numerous
scholars have utilized the GNSS data provided by CMONOC to monitor crustal vertical
deformation and study geophysical phenomena in typical regions of China, such as South-
west China [37], Sichuan Province [38], the NCP [15,39], Qinghai–Tibet Plateau [40–42],
etc. Therefore, the GNSS deformation sequence products provided by CMONOC can be
used to accurately analyze crustal deformation characteristics and identify water storage
anomalies with high spatial and temporal resolution to compensate for the limitations of
the GRACE/GRACE-FO dataset.

This study applies the GNSS and GRACE/GRACE-FO to derive the terrestrial water
storage anomalies (TWSA). Then, the components (canopy water, snow water, and soil
water) of the Global Land Data Assimilation System (GLDAS) are deducted from TWSA
to obtain the GWSA over the NCP region between 2010 and 2021. The following sections
are organized as follows. Section 2 introduces the data and methods applied in this study.
Section 3 summarizes the experimental results of this study, including the inversion of the
TWSA, GWSA results, and the validation of the GWSA inversion results. Section 4 calculates
and discusses the drought severity index (DSI) over the NCP. Meanwhile, this section
discusses the effects of the South–North Water Diversion Project. Section 5 summarizes the
results of this study.

2. Materials and Methods
2.1. The Study Area

The North China Plain (NCP), located between 32◦N and 40◦N latitude and from
114◦E to 121◦E longitude, is the most populous of the three major Chinese plains and is
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a major component of China’s eastern plain [43]. The NCP reaches the southern foot of
Yanshan Mountain in the north, the northern side of Dabie Mountain in the south, Taihang
Mountains and Fuyu Mountains in the west, and the Bohai Sea and Yellow Sea in the east.
The total area of the NCP is approximately 300,000 square kilometers and accounts for
3.1% of the total land area of China. The total population is 339 million, accounting for
24.2% of the total population of China. However, the spatial distribution of water resources
over the NCP is extremely uneven, and natural disasters such as droughts and floods are
frequent occurrences. These conditions adversely impact the economic development of the
NCP. To alleviate water shortage in North China, the South–North Water Transfer Project
was implemented in 2002. This project contains three lines (i.e., east, central, and west).
The central line of this project officially began delivering water to North China (including
Beijing, Tianjin, Hebei, and Henan Province) in December 2014, supplying 950 million km3

of water resources per year from the Danjiangkou Reservoir to the north of China. The east
line of this project will gradually expand the scale of water transfer and extend the water
transmission line by using the existing river for the north water transfer project in Jiangsu
Province, which aims to solve the water shortage problems in the east of the Huang-Huaihai
Plain. The western line of this project builts dams and reservoirs in the upper reaches of
the Yangtze River, Tongtian River, Yalong River, and Dadu River. The water-receiving areas
of the west line mainly include Qinghai, Gansu, Ningxia, Inner Mongolia, Shaanxi, and
Shanxi [44,45].

2.2. Data
2.2.1. GNSS Data

In this study, we employed the observation data from 26 GNSS stations located
on bedrock, which were provided by the CMONOC [46]. The software of GNSS at
MIT/Global Kalman filter (GAMIT/GLOBK) (http://geoweb.mit.edu/gg/) (accessed on
2 November 2022) was utilized to calculate the GNSS sequences, and the solution parame-
ters are shown in Table 1 [47]. However, due to the influence of factors such as earthquakes
and antenna replacement, there are clear disruptions in the step signal and anomalies in
GNSS sequences [48]. Thus, GNSS values that exceeded three standard deviations were
removed from this study, and the step signal was corrected to obtain a more accurate GNSS
site deformation sequence. The spatial distribution of GNSS stations in and around the
NCP region is shown in Figure 1.
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2.2.2. GRACE Mascon Dataset

Regional terrestrial water storage variability can be effectively obtained through
inversion of the GRACE and GRACE-FO time-varying gravity fields by using the following
equation [49,50]:

∆h(θ, ϕ) =
Aρeπ

3ρw
×

∞

∑
l=0

l

∑
m=0

2hl + 1
1 + kl

×Wl × Pl,m(cos θ)× [∆Clm cos(mϕ) + ∆Slm sin(mϕ)] (1)

where ∆h denotes the equivalent water height of the TWSA, A denotes the radius of the
Earth (6371.39 km), ρe denotes the mean density of the Earth (5.51× 103 kg/m3), ρw denotes
the density of water (103 kg/m3), hl and kl denote the load Love numbers of order l [51],
Wl denotes the kernel function of Gaussian filter, Pl,m denotes the fully specified connective
Legendre function, and ∆Clm and ∆Slm denote the amount of variation within the spheri-
cal harmonic coefficients of the Earth’s gravity field obtained from GRACE/GRACE-FO
global geopotential models (GGMs) (http://icgem.gfz-potsdam.de/series) (accessed on
2 November 2022).

This paper used GRACE mass concentration (mascon) datasets from the Center for
Space Research (CSR) and Jet Propulsion Laboratory (JPL) for the period from 2011 to
2021 [52,53]. Then, the TWSA sequences of the NCP region were extracted by the boundary
file. To minimize the solution uncertainty of the data products in this study, the average of
the two datasets was taken as the final TWSA of GRACE/GRACE-FO. Furthermore, we
also utilized the method of cubic spline interpolation to transform the GRACE/GRACE-FO
datasets into daily:

∆TWSAGRACE =
∆MasconCSR + ∆MasconJPL

2
(2)

where ∆MasconCSR denotes the TWSA result by CSR and the ∆MasconJPL denotes the
TWSA result by JPL.

2.2.3. GLDAS Dataset

To derive the GWSA over the NCP, this study utilized datasets from the GLDAS Noah
hydrological model at 3 h temporal resolution and daily-resolved data from GLDAS V2.2.
The daily-resolved GLDAS V2.2 dataset begins on 1 February 2003 and extends to the
present and has a spatial resolution of 0.25◦ × 0.25◦. Twenty-six variables are included in
the GLDAS V2.2 dataset, including terrestrial water storage, groundwater storage, canopy
water, snow depth equivalent, evapotranspiration, rainfall rate, and snowfall rate [54]. In
this study, terrestrial water storage, groundwater storage, and canopy water over the NCP
were selected from the GLDAS V2.2 dataset for the period from 2011 to 2022. However,
to accurately calculate the anomalous changes in groundwater storage in the NCP, snow
water and soil water also needed to be deducted from terrestrial water storage. Therefore,
the 3-hourly resolved GLDAS Noah model was also used in this study, which contains
40 variables, including soil water data (0~10 cm, 10~40 cm, 40~100 cm, and 100~200 cm),
snow depth equivalent, and average surface temperature. The snow depth equivalent and
soil water data at each depth were used from the GLDAS Noah model. To maintain a
consistent spatial and temporal resolution, the extracted 3 h snow depth equivalent and
total soil water data were averaged to generate datasets at the appropriate resolution. The
extraction and preprocessing of the variables in the GLDAS dataset provided a robust
database for the NCP groundwater storage inversion [54,55].

2.3. Method
2.3.1. Crustal Load Inversion Theory

The Earth is an elastic sphere, and when the load on the Earth’s surface (e.g., surface
water, snow, ice, etc.) changes, the crust deforms accordingly. This deformation is known
as load deformation [56]. Fortunately, the Green’s function can be used to establish the

http://icgem.gfz-potsdam.de/series
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relationship between the load mass and deformation [57]. The crustal load deformation
mainly manifests in the horizontal and vertical directions. However, crustal load deforma-
tion is more pronounced in the vertical direction where the load-deformation amplitude is
approximately 2~3 times that in the horizontal direction [58,59]. Green’s function describes
the crustal vertical load-deformation as follows [60]:

Ugreen =
∞

∑
n=0

hnΓn
4πGR

g(2n + 1)
Pn(cos θ) (3)

where θ denotes the angular radius from the center of the deformation, Pn denotes the
Legendre polynomial, G denotes Newton’s universal gravitational constant, R denotes the
radius of the Earth, hn denotes the loading Love number, and g denotes the acceleration of
gravity. The derivation of the Γn function is as follows [60]:

Γn =
1
2
[Pn−1(cos θ)− Pn+1(cos θ)], (n > 0) (4)

where θ denotes the angular radius from the center of the deformation and P denotes the
Legendre polynomial. When n equals 0, the expression of the Γ function is as follows [60]:

Γ0 =
1
2
(1− cos θ) (5)

First, this study used the corrected GNSS vertical deformation series as the database
to estimate the water storage variability at a 0.25◦ × 0.25◦ spatial scale. Then, the solutions
were regularized using the curvature smoothing algorithm and were appended to the
solution matrix as a set of constraints [61]. Specifically, for each time period within this
study, the suppressed least squares problem was minimized to estimate the daily TWSA.

LoadTWSA = ((Gx− b)/σ)2 + β2(L(x))2 → min (6)

where G denotes the Green’s function coefficient matrix, σ denotes the standard deviation of
the GNSS vertical displacement series, b denotes the observed sequence of deformation of
the grid and the corrected GNSS vertical deformation series, L denotes the Laplace operator,
and β denotes the smoothing factor. Therefore, the change of TWSA can be obtained by the
cubic spline interpolation.

2.3.2. Groundwater Storage Estimation

TWSA mainly includes GWSA, soil water changes, surface water anomaly changes,
snow water equivalent changes, and biological water quality changes. The effect of biologi-
cally induced changes to water quality on terrestrial water storage variability is extremely
small and can be ignored [62]. Therefore, the groundwater storage changes can be obtained
according to the following equation:

GWSA = TWSA−WCan −Wsoil −Wsnow (7)

where GWSA indicates the groundwater storage anomaly, TWSA indicates the terrestrial
water storage anomaly, Wcan indicates the canopy water change, Wsoil indicates the total
soil water change from 0 to 200 mm—which includes four layers of data from 0 to 10 cm, 10
to 40 cm, 40 to 100 cm, and 100 to 200 cm—and Wsnow indicates the snow water equivalent.
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2.3.3. Groundwater Drought Index

In this study, the groundwater drought index calculation method, as proposed by
Han et al. [63], was used to investigate the groundwater drought conditions over the NCP.
The value of DSI can be calculated by the following equation:

DSIi,j =
GWSAi,j − GWSAj

σj
(8)

where i and j denote the number of years and months, respectively, DSI denotes the
groundwater drought index of the study area, GWSAi,j denotes the groundwater storage
anomaly change in month j of year i, and GWSAj and σj denote the mean and standard
deviation of GWSA, respectively. The classification of groundwater drought classes derived
from DSI is shown in Table 1.

Table 1. DSI values and the corresponding groundwater drought classification [63].

Grade Classification DSI Value

L1 No drought −0.8 < DSI
L2 Mild drought −1.3 < DSI ≤ −0.8
L3 Moderate drought −1.60 < DSI ≤ −1.30
L4 Severe drought −2.00 < DSI ≤ −1.60
L5 Extreme drought DSI ≤ −2.00

2.3.4. Evaluation Index

In this study, we utilized the root mean squared error (RMSE) [64], Pearson’s cor-
relation coefficient (PCC) [28], and Nash–Sutcliffe efficiency coefficient (NSE) [65]. The
accuracy of the inversion results was evaluated by these three metrics, which are calculated
as follows:

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (9)

NSE = 1− ∑n
i=1(Yi − Xi)

2

∑n
i=1
(
Xi − X

)2 (10)

PCC =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(11)

where Y represents the true series, X represents the inversion result, Y and X represent the
mean values of Y and X, respectively, and n represents the number of discrete points in
the sequences. The RMSE can be used to evaluate the deviation of dispersion between the
inversion result and the actual value; the smaller the RMSE value is, the more accurate the
results of the inversion. The NSE is mainly used to evaluate the quality of the hydrological
model, and its value is less than or equal to 1; the larger the value is, the better the
hydrological model is. When NSE is close to 0, it indicates that the hydrological model
effect is close to the average level of the observed values. The PCC is mainly used to
describe the linear correlation between two series. The PCC value ranges between −1 and
1. The closer the value is to 1, the more reliable the inversion result is.

The method impalement in this study primarily consisted of the following three
modules: Module 1 mainly preprocessed the observed GNSS data and obtained the hy-
drological load deformation series by deducting the atmospheric loading and nonmarine
tidal loading. Then, this module derived the seasonal variability of the TWSA in the NCP
by combining Green’s load function and the crustal load model. Module 2 extracted the
TWSA variability in the NCP using the equivalent water height variables provided by the
GRACE Mascon. Meanwhile, the module extracted the trend term of TWSA using the new
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correlation variational mode decomposition (CVMD) algorithm and added this trend term
to the TWSA results of GNSS. Module 3 calculated and analyzed the characteristics of the
GWSA over the NCP. Finally, this module analyzed the impact of the South–North Water
Transfer Project on groundwater storage. The main flow chart of this study is shown in
Figure 2.
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3. Results
3.1. Inversion of TWSA Seasonal Features Based on GNSS

The GAMIT/GLOBK software was used to process the raw observation data and
obtain the GNSS station coordinate sequences (the solution strategy is shown in Table 2).
Since the vertical amplitude of crustal load deformation is much larger than the amplitude
in the horizontal direction, the GNSS vertical deformation sequence was applied as the
initial signal in this study. Due to the effects of earthquake and antenna replacement,
there are step issues and outliers in the original GNSS vertical deformation sequence. To
resolve this problem, the step terms were corrected and outliers that were larger than
three times the median error of the sequence were removed. Additionally, vertical crustal
deformation mainly consists of tectonic deformation driven by the Earth’s internal forces
and nontectonic deformation driven by the Earth’s external force. Nontectonic deformation
of the Earth’s crust is mainly driven by hydrological, atmospheric, and tidal factors. The
GNSS observatory monitors all crustal deformation, so the GNSS vertical deformation
series are detrended, and the preprocessed crustal vertical deformation series are corrected
with non-oceanic atmospheric corrections and non-oceanic tidal corrections using the non-
tidal atmospheric loading (NATL) and non-tidal ocean loading (NOTL) models. Thus,
the hydrological load deformation sequences were obtained and the TWSA in NCP was
inverted by using the Green’s function. The daily TWSA inversion results based on GNSS
and the TWSA fit outcomes by CVMD are shown in Figure 3.

From Figure 3, it can be seen that there are obvious annual and semiannual TWSA
characteristics as derived from the GNSS inversion. Since the South–North Water Transfer
Project was officially completed in December 2014, the whole study period was divided
into two periods, 2011~2014 and 2015~2022. It can be seen from Figure 3a that the TWSA
amplitude after 2015 is significantly higher than that of 2011~2014, which is consistent with
the timing of the South–North Water Transfer Project. Moreover, the annual characteristics
of the TWSA in the NCP are more obvious than the semiannual characteristics, with a
maximum annual amplitude of 170 mm, while the semiannual amplitude is only 27 mm.
For the semiannual amplitude, the peak areas are evidently located in the Beijing and
Tianjin regions. However, due to the limitation of GNSS inversion, only the periodicity of
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the TWSA sequence can be detected. In addition, the trend term is especially important
for the effective management of water resources. Therefore, this study included the TWSA
obtained from GNSS inversion based on the GRACE/GRACE-FO Mascon dataset for the
purpose of more accurate monitoring of regional TWSA.

Table 2. Table of GNSS data resolution strategies [66].

Parameters Value Parameters Value

Reference frame ITRF a 2008 Flat Difference Weighted least squares estimation
+ Kalman filtering

Height cutoff angle 10◦ Ionosphere LC b portfolio observations
A priori troposphere 0.5 m Earth’s rotation parameters Polar shift, UT1 c

Mapping functions HGMF d, DGMF e Inertial coordinate system J2000.0
Satellite phase center IGS f ANTEX g Model Phase movement IAU h 1980

a ITRF: International Terrestrial Reference Frame, b LC: linear combination, c UT: universal time, d HGMF: humid
global mapping function, e DGMF: dry global mapping function, f International GNSS Service for Geodynamics,
g ANTEX: antenna exchange, h IAU: International Astronomical Union.
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3.2. TWSA Trend-Feature Extraction Based on GRACE/GRACE-FO

Since the TWSA obtained from GNSS inversion only include the seasonal terms and
phases of the TWSA signals, GRACE/GRACE-FO mascon data were combined with GNSS
results to derive TWSA trends. To better superimpose the GNSS inversion results on trend
terms obtained from GRACE/GRACE-FO solutions, both GNSS inversion results and
GRACE/GRACE-FO results were corrected with first-order items. The correction of the
first-order items was to deduct the first value of the sequence. Additionally, to calculate the
reliability of the TWSA results obtained from this method, GLDAS V2.2 TWSA data were
used as the validation data. The comparison results are shown in Figure 4.
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Figure 4a shows that the seasonal and trend terms of the TWSA can be effectively
inferred based on the inversion methods applied in this study. Furthermore, the annual
amplitude of TWSA from the GLDAS dataset shows a decreasing trend from west to east,
and there is a funnel region over Beijing (Figure 4b), which shows the color of dark red.
This phenomenon may be caused by the large demand for water in Beijing. The trend term
of the TWSA results shows an increase from north to south, but the spatial resolution of the
TWSA in this study is coarse due to the low spatial resolution of the GRACE/GRACE-FO
dataset. However, the consistency of the sequence trend performance is better, and the
TWSA results derived by this inversion method are more consistent than those of the
GLDAS dataset and have a PCC value of 0.72 and an RMSE of 2.8 cm between the two
sequences. In summary, the TWSA in the NCP region can be accurately derived by using
the method of this study, which provides a large database for the calculation of GWSA.
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3.3. Inversion and Validation of GWSA

In this study, the GWSA over the NCP region was calculated based on the TWSA
derived by GNSS and GRACE/GRACE-FO, the canopy water data in the GLDAS V2.2
dataset, and the snow water equivalent and 0~200 mm soil water data in the GLDAS Noah
dataset. To ensure the uniformity of the data, the first-order term correction process was
applied to each variable in this experiment. The results of the inversion are shown in
Figure 5.
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As shown in Figure 5, the GWSA sequence characteristics and annual variation charac-
teristics of the NCP can be calculated based on the inversion strategy of this study. Figure 5b
represents the spatial characteristics of the annual amplitude of the GWSA, which was
obtained based on the calculation of the longitudinal data of each grid in Figure 5a. In
addition, its annual amplitude has obvious peaks in the western part of the NCP (Shiji-
azhuang) and the Tianjin region, which is consistent with the previous calculation [67].
Figure 5c shows that the groundwater storage in the NCP is decreasing overall. In addition,
the annual amplitude after the completion of the South–North Water Transfer Project (gray
shaded area) is significantly higher than before the South–North Water Transfer Project
(white area). To verify the reliability of the inversion results of this study, the experimental
results were compared with the GWSA variables of the GLDAS V2.2, and the comparison
results are shown in Figure 6.

Figure 6 represents the comparative results of the GWSA in the NCP calculated on the
basis of the inversion method presented in this study. According to Figure 6d, the overall
sequence performance of this result is better than that of GLDAS, with PCC, RMSE, and
NSE values of 0.69, 4.01 cm, and 0.61, respectively. Moreover, the slope of the sequence
calculated in this study (−8.52 mm/y) is closer to that of the previous study [67]. Figure 6a,b
represent the spatial distribution of the annual amplitudes and trends of GWSA in the
GLDAS dataset, respectively. By comparing Figures 5b and 6a, it can be seen that the raised
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areas of the annual amplitudes are all located in Tianjin, Shijiazhuang, and the southern part
of the NCP. However, the annual amplitudes based on the GNSS and GRACE inversions
are slightly larger than those of the GLDAS dataset, because the GNSS observations reflect
the overall crustal vertical deformation, which bias the results, and only the nonmarine
tidal and nonmarine atmospheric corrections were removed in this study. By comparing
Figure 6b,c, we can see that the lowest area of GLDAS and the inversion results of this study
are located in the central part of the NCP, while the trend-term peak areas are located in the
northern and southern parts of the NCP. Meanwhile, the power spectrum of the GWSA
results (this study and GLDAS) are plotted in Figure 6e. It can be seen from Figure 6e that
the inversion results of this study are consistent with the sequence power amplitude of
GLDAS in low frequency and intermediate frequency. Due to the existence of noise in
the GNSS sequences, the amplitude of GWSA in the high-frequency part of the inversion
results in this study is slightly higher than that of GLDAS. This further verifies the reliability
of this inversion method to calculate GWSA in the region.
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4. Discussion
4.1. Analysis of Groundwater Drought Characteristics in the NCP

As the political, economic, and agricultural center of China, the NCP accounts for 30%
of the country’s groundwater consumption. Due to the geographical characteristics of the
NCP, surface water reserves are low, and its freshwater resources are mainly distributed
in groundwater. Nearly 60% of the freshwater resources in Henan Province and Beijing
come from groundwater, with groundwater comprising more than 79% of the water supply
sources in Hebei Province. In recent years, due to the development of industry and
agriculture, groundwater reserves in the NCP have been heavily exploited. Groundwater
drought occurs regularly in some regions owing to groundwater shortages. This issue
seriously affects the economic development and stability of the NCP region. Therefore, it is
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necessary to monitor the terrestrial water variations and drought characteristics of the NCP.
In the last two decades, scholars have also carried out a lot of research, which has made
great contributions [67–70]. This section utilizes the GWSA results obtained in this study
and combines with the groundwater drought index calculation method (Equation (8)) to
calculate the groundwater drought situation over the NCP [63]. The groundwater drought
indices are calculated from 2011 to 2021, and the results are shown in Figure 7.
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As shown in Figure 7, mild drought conditions are prevalent from 2012 to 2013 and
2017 to 2019. The most obvious drought occurred in 2019, and with a DSI value of −0.12,
the conditions were close to moderate drought. The DSI value reached −0.81 in 2017,
which is indicative of mild drought. In terms of spatial distribution, the analysis shows
that the southern part of the NCP is drier than the northern part (Figure 7a,b,e). The
southern part of the NCP suffered from strong convective storms and floods in 2016, and
its groundwater drought index slightly increased; however, a local drought occurred in
the Beijing–Tianjin region. The groundwater drought situation in the NCP from 2020 to
2021 decreased compared with that in 2019, and its DSI showed a positive trend. This
phenomenon is mainly due to the northward shift of the main precipitation region in China
after 2019, which greatly has alleviated the drought problem in the NCP.

4.2. Impact of the South–North Water Diversion Project on GWSA

To alleviate the water shortage in the NCP, China implemented the South–North Water
Transfer Project, the largest water transfer project in the world, to transfer water resources
from the Yangtze River to the NCP. Construction of the project was officially completed at
the end of 2014 and greatly improved the water supply and security of the water-scarce
areas along the project route. Therefore, it is of great interest to analyze the extent to which
the project affected the groundwater storage in the NCP region [71]. In this subsection, the
spatial and temporal changes in groundwater storage are calculated for each year between
2011 and 2021. To facilitate the comparison of the amplitude differences between years, the
annual GWSA series are corrected by their first-order terms. These results are shown in
Figure 8.
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Figure 8 shows that the opening of the South–North Water transfer project significantly
improved the groundwater within the NCP. The spatial distribution shows a gradual GWSA
decrease from south to north, though there are clear amplitude changes within Tianjin and
Hebei Province (Figure 8e–i). The annual amplitude of the GWSA after the south-to-north
transfer began (Figure 8e–k) is significantly higher than that before the south-to-north
water transfer (Figure 8a–d), as shown in the sequence diagram. The amplitude of the
GWSA sequence increased considerably after 2015, yet it still showed a downward trend
(Figure 6d). This is due to the more urgent demand for groundwater from agriculture
and industry after the South–North Water Transfer Project was completed in 2014 and
indicates that groundwater overextraction is becoming a more serious problem. The spatial
distribution of GWSA is most prominent in the NCP from 2017 to 2019 (Figure 8g–i), the
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GWSA amplitude is significantly higher than that in other years, and these issues persisted
until 2020. In summary, the South–North Water Transfer Project does provide some drought
mitigation for GWSA over the NCP.

5. Conclusions

Due to the complexity of GNSS deformation sequence composition, only the seasonal
items of TWSA can be derived, which greatly limits the application of GNSS inversions in
studying TWSA and GWSA. In this study, the GWSA of the NCP was obtained from the
GNSS vertical deformation sequences, GRACE/GRACE-FO datasets, and the GLDAS data.
The details are summarized as follows:

(1) To take full advantage of the high spatiotemporal resolutions provided by GNSS data,
as well as the ability of GRACE to accurately monitor ground water dynamics, the
seasonal terms of TWSA in the NCP region were derived by using the GNSS vertical
series, and the trend term of TWSA was determined by using GRACE mascon data.
The GWSA was then calculated by subtracting values for canopy water, soil water,
and snow water.

(2) This study inverted the TWSA based on the 26 GNSS vertical sequences provided by
CMONOC over NCP. The TWSA results shows that the TWSA amplitude is higher
than that of 2011~2014, which is consistent with the timing of South–North Water
Transfer Project. Meanwhile, the maximum annual amplitude of the TWSA result is
170 mm, which is higher than that of the maximum semiannual amplitude of TWSA.
The results of TWSA sequences are the basis of the inversion for GWSA.

(3) To verify the reliability of the inverted method by combining the GNSS, GRACE/GRA-
CE-FO, and GLDAS, the experimental results were compared with the GWSA vari-
ables in the GLDAS datasets. The comparison results show that the amplitude peaks
are located in the Beijing and Tianjin regions, and the spatial features of the trend
terms show that the high anomalies are located in the north and south of the NCP,
and the low anomalies are found in the middle of the NCP. The PCC, RMSE, and
NSE values are 0.67, 4.01 cm, and 0.61, respectively, while the superimposed power
spectra showed that the two sequences are consistent at low and medium frequencies.
Therefore, the inversion methodology proposed in this study is a reliable way of
determining regional GWSA.

(4) Using the GWSA inversion results obtained in this study, we analyzed the groundwa-
ter drought and the impact of the South–North Water Transfer Project on groundwater
storage in the NCP from 2011 to 2021. The most obvious groundwater drought year in
the NCP was 2019, with a DSI value of −0.12, which was close to moderate drought
conditions. Moreover, the DSI value reached −0.81 in 2017, which was indicative of
mild drought conditions. The South–North Water Transfer Project officially opened for
water transmission at the end of 2014, and the annual GWSA amplitude increased sig-
nificantly compared with that before the opening of the South–North Water Transfer
Project. This suggests that the demand for land water from industry and agriculture
increased after the transfer. Additionally, there is a significant amplitude increase in
the Tianjin and Hebei regions between 2015 and 2020, indicating that the demand
for groundwater in this region is higher than in other regions. In conclusion, the
South–North Water Transfer Project does have an impact on groundwater storage in
Hebei Province.
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