
Citation: Zhang, Y.; Jin, S.; Wang, N.;

Zhao, J.; Guo, H.; Pellikka, P. Total

Phosphorus and Nitrogen Dynamics

and Influencing Factors in Dongting

Lake Using Landsat Data. Remote

Sens. 2022, 14, 5648. https://

doi.org/10.3390/rs14225648

Academic Editor: Igor Ogashawara

Received: 26 September 2022

Accepted: 5 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Total Phosphorus and Nitrogen Dynamics and Influencing
Factors in Dongting Lake Using Landsat Data
Yuanyuan Zhang 1 , Shuanggen Jin 1,2,3,* , Ning Wang 1, Jiarui Zhao 2, Hongwei Guo 4 and Petri Pellikka 5,6

1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and
Technology, Nanjing 210044, China

2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
3 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
4 College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and

Environmental Safety, Nankai University, Tianjin 300457, China
5 Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
6 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, China
* Correspondence: sgjin@shao.ac.cn or sgjin@hpu.edu.cn; Tel.: +86-21-3477-5292

Abstract: Total phosphorus (TP) and total nitrogen (TN) reflect the state of eutrophication. However,
traditional point-based water quality monitoring methods are time-consuming and labor-intensive,
and insufficient to estimate and assess water quality at a large scale. In this paper, we constructed
machine learning models for TP and TN inversion using measured data and satellite imagery
band reflectance, and verified it by in situ data. Atmospheric correction was performed on the
Landsat Top of Atmosphere (TOP) data by removing the effect of the adjacency effect and correcting
differences between Landsat sensors. Then, using the established model, the TP and TN patterns in
Dongting Lake with a spatial resolution of 30 m from 1996 to 2021 were derived for the first time.
The annual and monthly spatio-temporal variation characteristics of TP and TN in Dongting Lake
were investigated in details, and the influences of hydrometeorological elements on water quality
variations were analyzed. The results show that the established empirical model can accurately
estimate TP with coefficient (R2) ≥ 0.70, root mean square error (RMSE) ≤ 0.057 mg/L, mean relative
error (MRE) ≤ 0.23 and TN with R2 ≥ 0.73, RMSE ≤ 0.48 mg/L and MRE ≤ 0.20. From 1996 to 2021,
TP in Dongting Lake showed a downward trend and TN showed an upward trend, while the summer
value was much higher than the other seasons. Furthermore, the influencing factors on TP and TN
variations were investigated and discussed. Between 1996 and 2003, the main contributors to the
change of water quality in Dongting Lake were external inputs such as water level and flow. The
significant changes in water quantity and sediment characteristics following the operation of the
Three Gorges Dam (TGD) in 2003 also had an impact on the water quality in Dongting Lake.

Keywords: water quality; Dongting Lake; Landsat; influencing factors

1. Introduction

Dongting Lake, the second-biggest freshwater lake in China and the largest lake below
the Three Gorges Dam (TGD), is situated in the middle of the Yangtze River. It is the
high-quality water resource in the Yangtze River Basin and an important wetland protec-
tion area in Central China. However, in recent years, under the influence of many factors
such as urbanization and the operation of Three Gorges Dam (TGD), the phosphorus and
nitrogen load and eutrophication in Dongting Lake’s waters have increased significantly [1].
Phosphorus and nitrogen nutrients are important causes of cyanobacterial blooms in lakes.
Blooms may occur when total phosphorus (TP) and total nitrogen (TN) exceed 0.02 mg/L
and 0.4 mg/L, respectively [2]. The eutrophication of water bodies caused by the release
of phosphorus and nitrogen is the direct cause of the formation of blooms in the water.
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The cyanobacteria in the water body often lead to the dominance of the phytoplankton
community succession with the eutrophication of lakes, notably the increase in phosphorus
content [3]. Microorganisms consume large amounts of dissolved oxygen (DO) to break
down algal debris, resulting in a significant drop in DO and even a lack of oxygen with
killing fish. The ecological balance of the water body was destroyed by this biological activ-
ity [4]. The ecological security of the surrounding area is threatened by Dongting Lake’s
deteriorated ecological environment [5]. Therefore, for the environmental management,
control, and treatment of water pollution, monitoring water quality and understanding the
mechanism of water eutrophication in Dongting Lake are of utmost importance.

In situ sampling and laboratory testing have a high degree of accuracy but take a lot of
time and work, which are the mainstays of traditional water-quality monitoring. Moreover,
the monitoring results at limited sampling locations cannot reflect the spatial distributions
of water quality on the whole lake surface. Since the 1970s, satellite remote sensing has been
widely applied in the water quality monitoring for oceanic, coastal, and inland waters [6,7].
Forster et al. determined seawater quality parameters using data from Landsat 5 Thematic
Mapper (TM) over a coastal sewage outfall area [8]. Alparslan et al. established a link
between in situ data and Enhanced Thematic Mapper Plus (ETM+) and assessed the water
quality at the Merli Dam using the first four bands of Landsat 7 ETM+ data [9]. Anttila et al.
used the semi-variogram to analyze the spatial representativeness of the samples, and the
results showed that the discrete sampling data were not conducive to the inversion of water
quality parameters in the study area [10]. Remote sensing compensates the drawbacks
of conventional water quality monitoring techniques by providing long-term, extensive,
regular, and inexpensive monitoring [11].

TP and TN are typical non-photosensitive parameters with low signal-to-noise ratios,
which cannot be directly retrieved by remote sensing [12]. However, phosphorus and nitro-
gen are closely related to optically active components in water, including phytoplankton
and non-algal particulate matter. The phytoplankton can be quantitatively characterized by
chlorophyll-a (Chl-a) concentration, and non-algal particulate matter can be characterized
by suspended particle content [13]. The major investigations employed statistical tech-
niques to find remote sensing bands for phosphorus and nitrogen content inversion [14].
Since the different optical properties and morphology of phosphorus and nitrogen are
presented in different lakes, some wavelengths from visible to near-infrared can be used to
estimate TP and TN concentrations (Table 1).

Table 1. Bands to estimate TP and TN concentrations.

Parameters Refs. Bands (nm)

TP

He et al. (2008) [15] 485, 560, 830, 2230
Wu et al. (2010) [16] 485, 560, 660

Chen and Quan (2012) [17] 485, 560, 830, 2230
Liu and Jiang (2013) [18] 645, 859, 469, 555

Isenstein and Park (2014) [19] 660, 2220
Gao et al. (2015) [20] 475, 560, 660, 830
Du et al. (2016) [21] 490, 680, 745, 865
Li et al. (2017) [13] 443, 482, 561, 655
Du et al. (2018) [22] 798, 803, 827

Xiong et al. (2019) [23] 859, 1240

TN

Lei et al. (2004) [24] 555, 830, 660
He et al. (2008) [15] 660, 1145, 2215
Wu et al. (2010) [16] 485, 560, 660

Chen and Quan (2012) [17] 440, 485, 565, 655
Xu et al. (2013) [25] 455, 528, 1015

Gao et al. (2015) [20] 830, 475, 560
Li et al. (2017) [13] 485, 655, 870

Shang et al. (2021) [26] 440, 485, 565, 655, 865, 2200
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At present, TP and TN inversion models are mainly divided into two types, semi-
analytical modeling, and machine learning modeling. Semi-analytical models estimate
water quality parameters based on inherent optical properties (IOPs), and hence have
relatively good generalization capability. Wu et al. created a TP regression model for the
link between Secchi depth (SD), Chl-a, and TP using Landsat 5, and then acquired the spatial
distribution of TP concentration in the Qiantang River [16]. Liu and Jiang found a good
correlation between TP and total suspended matter (TSS) concentration, and obtained the
TP content in Poyang Lake’s surface layer based on MODIS by indirect inversion [18]. This
method divided the concentration inversion into two steps, with a higher theoretical basis,
and an improvement in accuracy [23]. The complex spectral characteristics of water bodies
indicate that water quality remote-sensing inversion is essentially a nonlinear process.
Machine learning refers to guiding computers through certain algorithms and using known
data to obtain appropriate models, which have strong applicability, organization, and
fault tolerance [12]. Therefore, it is suitable for constructing the intricate relationship
between remote sensing images and water quality parameters. Guo et al. proposed a
non-photosensitive parameter inversion method based on machine learning models and
optimized band selection based on Sentinel-2 data [27]. These studies demonstrated the
advantages of machine learning for inland water-quality remote sensing inversion.

In this paper, we develop and validate a machine learning model for long-term
TP and TN estimation in Dongting Lake using in situ water quality measurements and
synchronized Landsat data with satellite imagery atmospheric correction, continuity, and
adjacency effects. Then, the monthly TP and TN concentrations in Dongting Lake from 1996
to 2021 were estimated, and the interannual temporal and spatial trends were presented.
Finally, the influencing factors of water quality change in Dongting Lake are analyzed
and discussed.

2. Materials and Methods
2.1. Study Area

Dongting Lake is located in the northern part of Hunan Province, China, on the
southern bank of the Yangtze River’s Jingjiang section (Figure 1a). The lake is fed by seven
major rivers and streams, including the Hunan, Zi, Yuan, and Li rivers in the south and the
Ouchi, Taiping, and Songzi rivers in the north. Dongting Lake has a large flood storage
capacity, which effectively reduces flood risks, and conserves water for the Yangtze River’s
middle sections. The watershed of Dongting Lake is the birthplace of China’s traditional
agriculture and a well-known land of fish and rice. In addition, Dongting Lake is one of the
most focused wetland protection areas in China, providing an important guarantee for the
maintenance of biodiversity. In recent years, the comprehensive influences of global climate
change, rapid social and economic development of the watershed, the overutilization of
resources, and the development of hydraulic engineering (e.g., the construction of TGD)
have induced the water quality deterioration in Dongting Lake.

2.2. In Situ Measurements

Field measurements were obtained from two different sources: (1) 4-h water quality
survey data in Dongting Lake from 2020 to 2022 provided by the Ministry of Ecology and
Environment of the People’s Republic of China (https://www.mee.gov.cn/ (accessed on
1 August 2022)). These data provide water quality monitoring data for 11 monitoring sites
in the Dongting Lake region (Dataset 1), covering a total of 182 samples available; (2) Data
were collected from field surveys in Dongting Lake during 2018–2022 (Dataset 2). The
available data for satellite matching are in April and July 2018, September 2020, May 2021,
and July 2022 with a total of 156 pieces of available data. The data sample points are shown
in Figure 1.

A 50 mL polyethylene water sampling device was used to collect water samples,
which were then transported to the lab for additional examination after being kept in
a dark refrigerator. TP concentrations were determined by the Ammonium molybdate

https://www.mee.gov.cn/
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spectrophotometric method [28], and TN concentrations were determined by the Alkaline
potassium persulfate digestion UV spectrophotometric method [29]. The instrument for
the measurement was a Spectrophotometer photoLab 7100 VIS—WTW (https://www.wtw.
com/en/ (accessed on 2 October 2022)).
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Figure 1. The locations of the Dongting Lake, the Yangtze River, and the TGD (a), and the sampling
points and the natural color composite in Dongting Lake (b); (c) and (d) are the locations of sampling
sites in Dongting Lake in May 2021 and July 2022, respectively.

2.3. Remote Sensing Data

Landsat 5 TM, Landsat 7 ETM+, and the Operational Land Imager (OLI) of Landsat
8 provided images with a spatial resolution of 30 m and a revisit period of 16 days. In
order to obtain the long-term water quality data in Dongting Lake with high spatial
resolution, this paper selected the original Landsat satellite data as the satellite data source.
Several standards were used in the picture screening: (1) The amount of cloud cover was
restricted to 70%; (2) The lake’s area was only 20% cloud-covered, as determined visually
from LandsatLook natural color photos. After screening, 344 pieces of level 1 remote-
sensing data with satifying the requirements were obtained, including 53 Landsat-5 images,
65 Landsat-7 images, and 126 Landsat-8 images. Notably, Landsat 7 images taken after
31 May 2003 (when the scan line corrector failed) were only used for training and validating
the models without mapping water quality in order to minimize the effects of data gaps,
with the exception of the observation gap for Landsat-5 and 8 between 5 May 2012 and
11 April 2013.

The Level 2 Surface Reflectance (SR) data provided by Landsat were atmospherically
corrected using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
algorithm and the Land Surface Reflectance Code (LaSRC) algorithm, which were mainly
used to support remote sensing inversion of land surfaces, but had limitations for water
retrievals in several conditions. Acolite (version 20220222.0) is an integrated processing
software for Landsat 5/7/8 and Sentinel-2 that incorporates dark spectral fitting (DSF) and
exponential extrapolation (EXP) algorithms to correct incoming top of atmosphere (TOP)
data (Level 1) to remote sensing reflectance (Rrs) data [30,31]. This study used the DSF

https://www.wtw.com/en/
https://www.wtw.com/en/
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algorithm to conduct atmospheric correction of Landsat TOP data. At the same time, we
used the infrared band closest to 1600 nm to remove clouds and other non-water pixels
with a threshold of 0.0215.

When the radiation from adjacent brighter land pixels may be scattered into the field
of view of dark water pixels, the land adjacency effect results in uncertainty in water
radiance [32]. Due to the higher reflectance contrast between land and water, these effects
tend to grow dramatically with increasing wavelength, producing extremely high radiance
in the SWIR bands [33]. In order to avoid the severe land proximity effect, a 300 m water
boundary buffer was constructed in this paper, and the data in the buffer were removed [34].

When compared to the TM and the ETM+, the OLI has narrower spectral bands,
better calibration and signal-to-noise characteristics, higher 12-bit radiometric resolution,
and more exact geometry. In order to transit between similar sensor bands, Roy et al.
constructed statistical functions, and sensor NDVI values were reported. Ordinary least
squares (OLS) regression was used to develop the transformation functions, which fit pretty
consistently (R2 > 0.7, r < 0.0001) [35]. Before building the model and inverting the results,
this paper utilizes these functions to transform the TM and ETM+ bands with improving
the temporal continuity between TM, ETM+, and OLI sensor data.

2.4. Hydrometeorological Data

The data of water level, flow, precipitation, and temperature were used to analyze
the influence factors of TP and TN changes (Table 2). The monthly precipitation data
and temperature data were collected from the nearest station to Dongting Lake, namely
Changde Station of National Meteorological Data Center (http://data.cma.cn/ (accessed on
1 August 2022)). The water level data were collected daily by the Chenglingji Hydrological
Station from the Hubei Provincial Hydrological Bereau (Figure 1b) and Water Resources
Center (http://slt.hubei.gov.cn/sw/ (accessed on 1 August 2022)).

Table 2. The hydrometeorological data were used in this study.

Data Frequency Time Range Unit

Precipitation 1 m 1996–2021 mm
Temperature 1 m 1996–2021 ◦C
Water level 1 d 1996–2021 m

Flow 1 d 1996–2021 m3/s

2.5. Principles and Methods
2.5.1. Principle of Water Quality Inversion

The concept of bio-optical was proposed by Smith and Baker (1978) [36], which refered
to the optical properties of water bodies due to the combined effect of absorption and
scattering of light by phytoplankton and their decomposed biomass. The bio-optical
properties of water include IOPs, apparent optical properties (AOPs), and the relationship
between AOPs and IOPs of water components [37]. IOPs refer to optical quantities that do
not change with incidental light and are only related to water components, including beam
attenuation coefficient c, absorption coefficient a, scattering coefficient b, and scattering
phase function P, etc. [38]. There are four main substances that determine the intrinsic
optical properties of inland water bodies: pure water; Chl-a; TSS; and CDOM, and each
of them has its own intrinsic optical quantity [39]. The unit absorption and scattering
coefficients are the ratio of the absorption and scattering coefficients of each water body
component to its concentration, respectively.

AOPs are the optical parameters of the water body that vary with the incident light
field [38]. Water-color remote sensing is to inverse the concentration of water quality
components with the use of AOPs. Common AOPs are mainly off-water irradiance Lw and
reflectance Rrs = Lw/Ed(0+), and Ed(0+) is the incident downlink irradiance at the water
surface and just below the water surface irradiance ratio R(0−) = Eu(0−)/Ed(0−), where

http://data.cma.cn/
http://slt.hubei.gov.cn/sw/
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Eu(0−) is the upward irradiance just below the water surface, and Ed(0−) is the downward
irradiance just below the water surface. AOPs of the water body can be measured by
a spectrometer.

R(0−) is less influenced by the solar altitude angle, atmosphere, and water surface
conditions, independent of light intensity. R(0−) is the bridge between AOPs and IOPs of
the water body, which is an important parameter for establishing bio-optical models [40].
Bio-optical modeling is an orthorectified process to simulate the radiation signals received
by remote sensors by using measurements of water quality parameters’ concentrations
and intrinsic optical quantities of water bodies [41]. The water quality inversion based on
the bio-optical model assumes that the unit absorption and scattering coefficients of the
individual water body components are known, and R(0−) is also known, and then the
concentrations of the water quality parameters are calculated from the obtained Rrs:

Rrs ∝ f(Chl− a, CDOM, TSS and others), (1)

TP and TN are not components that affect the AOPs of water bodies, and remote
sensing inversion methods based on bio-optical models cannot be used directly. However,
phosphorus mainly exists in the form of particles in lakes, mainly from soil erosion, and
phosphorus concentration has an important effect on the growth and reproduction of
phytoplankton [14]. TN refers to the content of nitrogen elements in water, including
ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, and organic nitrogen [42]. Aquatic
plants’ roots and stems can grow and develop more rapidly with thanks to phosphorus and
nitrogen. Excessive nutrient content causes algae to multiply, and gradually reduces water
bodies’ transparency. The development of aquatic vegetation was no longer restricted,
and the lake showed the characteristics of eutrophication [43]. Therefore, there is a strong
correlation between the content of TP and TN with the concentrations of Chl-a, CDOM, and
TSS, and the following relationships are established indirectly with remote sensing data:

TP or TN ∝ f(Chl− a, CDOM, TSS and others) ∝ Rrs, (2)

Xiong et al. [14] compared the indirect analysis method and the empirical method
to construct TP inversion models and found that the model results from the empirical
method were better than those from the indirect analysis method, mainly because the
indirect analysis method had two-step errors, which reduced the model accuracy. The
empirical method is based on the theory of indirect analysis method and directly explores
the mathematical relationship between water quality parameters and Rrs, which avoids
more errors brought by the indirect analysis method [23].

2.5.2. Methods of Water Quality Inversion

The empirical modeling of water quality inversion is to fit the relationship between
remote sensing data and water quality measurements using mathematical models. The
model development mainly includes establishment, evaluation and application. Before the
model is established, the optimal features for water quality estimation are selected.

1 Optimal feature selection

Remote sensing indices (RSIs) have provided better sensitivity than a single spec-
trum [44]. In order to provide the model with higher water quality inversion accuracy,
common RSIs are added on the basis of a single band. According to the number of bands
in the feature calculation, all features were divided into three categories, namely F1-band,
F2-band, and F3-band (Table 3). Then, the Pearson correlation coefficient (r) of the band
features with TP and TN are calculated, respectively, with the linear relationship between
remote sensing data and field measurements:

r =
∑
(
X− X

)(
Y− Y

)√
∑ (X− X)2

∑ (Y− Y)2
, (3)
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where X is the value of the band combination; X is the average of all band combinations; Y
is the concentration of TP and TN; and Y is the average of all water quality parameters.

Table 3. List of model input indices, formulas, and references.

Indices Features Formulas References

F1-band F1-6 Individual spectral band B1-6 –

F2-band F7-21 Band ratio Bi/Bj
(i < j, i, j = 1,2,3,4,5,6) –

F22 Normalized Difference Water Index (NDWI) (B2 − B4)/(B2 + B4) McFeeters, 1996 [45]

F23 Modified Normalized Difference Water
Index (MNDWI) (B2 − B5)/(B2 + B5) Xu, 2005 [46]

F24 Normalized Difference Vegetation
Index (NDVI) (B4 − B3)/(B4 + B3) Rouse et al., 1983 [47]

F25 Blue NDVI (B4 − B1)/(B4 + B1) Zhang et al., 2009 [48]

F3-Band F26 Chlorophyll vegetation index B4 × B3/B2 Hunt Jr et al., 2008 [49]
F27 Green-Blue NDVI (B4 − B2 + B1)/(B4 + B2 + B1) Pujiono et al., 2013 [50]
F28 Red-Blue NDVI (B4 − B1 + B3)/(B4 + B3 + B1) Pujiono et al., 2013 [50]

More samples are needed for model training because there are more characteristics.
Therefore, by setting the r threshold, we further filter out the features that contribute
significantly to prediction. For the construction and validation of the model, characteristics
of |r| between 0.1 and 0.9 were employed to match the water-quality measurement data.

2 Model establishment and evaluation

The optical properties of TP and TN are weak, and the signal-to-noise ratio is poor,
so remote sensing data cannot be directly used for inversion [51]. Therefore, TP and TN
inversion requires the help of machine learning method to construct models for water
quality parameters estimation and reduce indirect remote-sensing analysis. In this study,
the linear regression model, regression tree model, support vector machine model, Gaussian
process regression model (GP), and neural network model (NN) in machine learning were
used to construct models for water quality parameters inversion. Then, by adjusting the
model parameters, the optimal models of TP and TN inversion are established. Here 90%
of the measured data were used as the modeling imput data, and the rest were used as
the test data to evaluate the model. Model-checking is to observe whether the created
mathematical model conforms to the actual situation after solving. The model evaluation
includes the coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean
Relative Error (MRE) [22]:

R2 = 1− ∑ (EV−MV)2

∑ (EV−MV)
2 , (4)

RMSE =

√
∑n

i=1 (EV−MV)2

n
, (5)

MRE =
1
n ∑

|EV−MV|
MV

, (6)

where EV is the water quality concentration estimated by the model; MV is the measured
water quality concentration; MV is the mean value of measured water quality parameter
concentration; and n is the total number of measured water quality samples.

3. Results and Analysis
3.1. Feature Selection

Before model construction, we calculated r between RSIs and TP/TN and preliminarily
screened RSIs according to the threshold to avoid the model for acquiring too many
redundant parameters, which improved the model accuracy and efficiency (Figure 2).
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F1–F6 are single bands, including blue, green, red, near-infrared (NIR), shortwave
infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2). There are positive correlations
between TP and F1-band, and the correlation with F6 (SWIR2) is the strongest (r = 0.42). The
correlation between TP and F4 (NIR) is similar to that of F6 (r = 0.41), the correlations with
F1 (blue) and F5 (SWIR1) are between 0.3 and 0.4, and the correlations with the other two
are between 0.2 and 0.3.

Comparing with the correlation between TP and F1-band, the correlation between TN
and F1-band are slightly lower. Among them, F1–F4 show positive correlations with TN, and
F5 and F6 show negative correlations with TN. The correlation between F4 and TN is better,
r = 0.21, and the correlations between the other single bands and TN are not significant.

Besides F1-band, we also computed 22 RSIs to improve the performance of model
learning. F7–F21 are simple band ratios. F7 and F12 show a good positive correlation with
TP (r = 0.39 and r = 0.42), and F9, F13, and F16 have a good negative correlation with TP
(r = −0.40, −0.39, and −0.35). The correlations between TN and band ratios are weak,
only F7 and F12 show good negative correlations with TN, and the other indices have no
significant correlations. F22 and F23 are water body indices, and the correlations between
TP and them are very strong, −0.44 and −0.36, but the correlations between TN and water
body indices are not as good as TP, and the correlations are −0.11 and 0.27. F24–F27 all
show good correlations with TP, with the best correlation for F24 (NDVI) with TP among
all RSIs (r = 0.48), and the second highest correlation for F27 (Green-Blue NDVI) with TP
(r = 0.46). F26 and F28 also show good correlations with TN.

The correlations between TP/TN and F2-band and F3-band are stronger than that of the
single bands. Screening out characteristic bands with high correlation can improve the
accuracy of the model. Finally, 15 feature bands and 7 feature bands were employed as the
input data for the TP model and TN model, respectively.

3.2. Model Establishment and Accuracy Evaluation

When the model is building, a variety of machine learning regression methods are
employed, shown in Figure 3. Among them, the GP shows good performance in the
construction of the TP inversion model (R2 = 0.7, RMSE = 0.057, MRE = 0.23). When TP
is greater than 0.6 mg/L, the model’s estimated value is small, but the model performs
well as a whole. The ensemble tree algorithm (ET) is relatively good in TP model building
(R2 = 0.65, RMSE = 0.11), but its performance from the test set is poor with R2 less than 0.5.
The rest of the algorithms perform poorly in constructing the TP inversion model.

The NN model performs better in the TN inversion model construction (R2 = 0.73,
RMSE = 0.48, MRE = 0.20). The inversion result makes the value of TN slightly larger if
the TN is too small, and the value of the larger TN is slightly smaller, reducing the value
range. Although the performance of the model from the test set is not as good as that from
the training set, the overall performance is well-balanced. The R2 of the rest of the trained
models are all less than 0.5, which were discarded in this study.
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3.3. Long-Time Yearly Spatial Variations of Water Quality

The interannual variation trends of TP and TN in Dongting Lake are investigated
and shown in Figure 4. From 1996 to 2021, the mean concentrations of TP and TN were
0.11 mg/L and 1.60 mg/L, respectively. From 1996 to 2010, TP showed an obvious upward
trend, and particularly from 2003 to 2010, the upward trend was significant. After 2010, TP
showed a downward trend year by year, and appeared its minimum around 2014. After
2014, the TP content showed a slight upward trend, but the overall difference was not
significant. The inter-annual variation of TN was small with an upward trend in bands.
The minimal TN was appeared in 2002, and the maximal TN was appeared in 2019. The
TN content was increased year over year from 1996 to 1999. The TN content was fluctuated
upward between 2000 and 2012. After 2012, it showed an upward trend year after year
again, but the change was minimal.

The TP and TN inversion results from 1996 to 2021 were synthesized into an annual
spatial distribution image with the mean value. TP and TN distribution images are shown
in Figures 5 and 6.

The TP range was from 0 to 0.2 mg/L. The spatial distribution of TP concentration
showed that the TP on the edge of the lake was higher than that in the center of the lake,
and the TP on the southern side of the lake was higher than that in the northern area. From
1996 to 2010, TP in Dongting Lake was increased year by year, and the area with high TP
concentration became wider and gradually spread from the edge to the center of the lake.
By 2010, almost the entire northern area of Dongting Lake was a high concentration area.
After 2011, the TP concentration in the entire Dongting Lake was gradually decreased, and
the areas with high TP concentration were only existed in a small amount at the edge of
the lake.
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The TN was ranged from 0 to 3 mg/L. The distribution of TN in the north–south
direction was the same as that of TP, which was higher in the north and lower in the south.
However, the difference is that the concentration of TN in the center of the lake was much
higher than that at the edge of the lake. Before 2014, the highest value of TN was about
2 mg/L. After 2014, the overall TN concentration became higher, and the high value was
also changed from 2 mg/L to 3 mg/L, but the distribution area of the high value became
smaller, mainly concentrated in the northern area of the lake, and the concentration in the
southern area was relatively low.

3.4. Seasonal Changes in Water Quality Parameters

Dongting Lake is a typical seasonal lake. The water area changes greatly within a year
and the water body forms are different in the four seasons. The seasonal distribution images
are shown in Figures A1 and A2. The seasonal distribution characteristics of TP and TN are
different. Seasonal changes can reflect the water-quality change trend in Dongting Lake
throughout the year. In order to depict the seasonal variation in spring, summer, autumn,
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and winter, we estimated the average seasonal TP and TN in Dongting Lake from March to
May, June to August, September to November, and December to February, respectively.
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Figures 7 and 8 are the seasonal composite images of water quality parameter con-
centrations in the Dongting Lake area from 1996 to 2021. The spatial distributions of TP
concentration have little difference among the four seasons, and the concentration in the
lake edge is higher than that in the lake center. Different from the seasonal distribution
of TP concentration, there was a great difference in the seasonal distribution of TN. TN
was low in spring and winter, only a few high-value areas appeared in the northern part of
the lake, and the TN in the rest of the lake was at a low level. However, in summer and
autumn, the entire Dongting Lake area was in a state of high TN concentration.
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3.5. Comparison of Water Quality Change Trends between Wet and Dry Seasons

From May to September, it is the wet season in the Dongting Lake area, and Dongting
Lake is in the form of a planar lake. From October to April, it is the dry season in the
Dongting Lake area, and most of the Dongting Lake is in the form of a linear river. The TP
and TN contents are also different between these two periods. The contents of TP and TN
in the dry and wet seasons of Dongting Lake from 1996 to 2021 are shown in Figure 9.
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From 1996 to 2021, the content of TP showed a downward trend in both dry and wet
seasons, and the decreasing trend of TP content in the dry season was more significant. In
most years, the TP content was higher in the wet season than in the dry season, but the TP
concentration in the dry season in 2007 reached 0.16 mg/L, which was higher than that in
the wet season. In 1999, 2003, 2011, and 2012, the TP content in the dry season was higher
than that in the wet season, while the difference was not significant.

On the whole, the TN concentration showed an upward trend in both the dry and wet
seasons, and the increasing trend of TN in the wet season was much higher than that in the
dry season. Before 2010, the difference of TN content in the wet and dry seasons had no
obvious characteristics, but after 2010 the TN content in the wet season was higher than
that in the dry season.
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4. Discussion
4.1. Feasibility of Long-Term Water Quality Retrieval

In order to obtain the spatial distribution of TP and TN in Dongting Lake for a long
time series, we used the DSF algorithm to perform atmospheric correction on the Landsat
TOP data and obtained the Rrs data. Compared with the common LaSRC algorithm, this
algorithm is more suitable for large-area water bodies [52]. We used a variation function
to achieve no transition between sensors to reduce errors caused by sensor differences.
The measured sample data covered the entire Dongting Lake area with each month. The
input data of the model used the mean Rrs of the cloud-free pixels in the 3 × 3 grid of
sampling points to reduce the error caused by the image point offset. Subsequently, a
machine learning model was constructed to invert the TP and TN in Dongting Lake using
the Rrs data. Our model was generally more accurate than other inversion models for the
study area with a higher correlation (Table 4).

Table 4. Accuracy of TP and TN inversion models in other studies.

Refs. Study Area Satellite Parameter Method N R2 RMSE
(mg/L) MRE

Xiong et al.
(2022) [14] TaiHu Lake MODIS

TP

Extremely gradient Boosting 120 0.60 0.07 0.43

Guo et al.
(2022) [53] Simcoe Lake Landsat Multimodal deep learning 303 / / 0.37

Shang et al.
(2021) [26] Dongting Lake Landsat Multiple Linear Models 28 0.58 0.0042 /

Xiong et al.
(2019) [23] Hongze Lake MODIS Direct derivation algorithm 57 0.75 0.029 0.39

Liu et al.
(2015) [54] Cihu Lake IKONOS Multiple Linear Models 21 0.84 0.17 /

This study Dongting Lake Landsat Machine learning model 289 0.70 0.057 0.23

Guo et al.
(2022) [53] Simcoe Lake Landsat

TN

Multimodal deep learning 303 / / 0.23

Shang et al.
(2021) [26] Dongting Lake Landsat Multiple Linear Models 28 0.65 0.15 /

Li et al.
(2017) [13] Landsat Empirical algorithms 22 0.58 0.183 0.14

Liu et al.
(2015) [54] Cihu Lake IKONOS Multiple Linear Models 21 0.85 2.5 /

This study Dongting Lake Landsat Machine learning model 260 0.73 0.48 0.20

Geng et al. [55] used the average value of nine stations in Dongting Lake to analyze the
variation law of TP and TN content. A comparison with Geng’s data is shown in Figure 10:

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 28 
 

 

From 1996 to 2021, the content of TP showed a downward trend in both dry and wet 
seasons, and the decreasing trend of TP content in the dry season was more significant. In 
most years, the TP content was higher in the wet season than in the dry season, but the TP 
concentration in the dry season in 2007 reached 0.16 mg/L, which was higher than that in 
the wet season. In 1999, 2003, 2011, and 2012, the TP content in the dry season was higher 
than that in the wet season, while the difference was not significant. 

On the whole, the TN concentration showed an upward trend in both the dry and 
wet seasons, and the increasing trend of TN in the wet season was much higher than that 
in the dry season. Before 2010, the difference of TN content in the wet and dry seasons 
had no obvious characteristics, but after 2010 the TN content in the wet season was 
higher than that in the dry season. 

4. Discussion 
4.1. Feasibility of Long-Term Water Quality Retrieval 

In order to obtain the spatial distribution of TP and TN in Dongting Lake for a long 
time series, we used the DSF algorithm to perform atmospheric correction on the Landsat 
TOP data and obtained the Rrs data. Compared with the common LaSRC algorithm, this 
algorithm is more suitable for large-area water bodies [52]. We used a variation function 
to achieve no transition between sensors to reduce errors caused by sensor differences. 
The measured sample data covered the entire Dongting Lake area with each month. The 
input data of the model used the mean Rrs of the cloud-free pixels in the 3 × 3 grid of 
sampling points to reduce the error caused by the image point offset. Subsequently, a 
machine learning model was constructed to invert the TP and TN in Dongting Lake using 
the Rrs data. Our model was generally more accurate than other inversion models for the 
study area with a higher correlation (Table 4). 

Table 4. Accuracy of TP and TN inversion models in other studies. 

Refs. Study Area Satellite Parameter Method N R2 RMSE (mg/L) MRE 
Xiong et al. (2022) [14] TaiHu Lake MODIS 

TP 

Extremely gradient Boosting 120 0.60 0.07 0.43 
Guo et al. (2022) [53] Simcoe Lake Landsat Multimodal deep learning 303 / / 0.37 

Shang et al. (2021) [26] Dongting Lake Landsat Multiple Linear Models 28 0.58 0.0042 / 
Xiong et al. (2019) [23] Hongze Lake MODIS Direct derivation algorithm 57 0.75 0.029 0.39 

Liu et al. (2015) [54] Cihu Lake IKONOS Multiple Linear Models 21 0.84 0.17 / 
This study Dongting Lake Landsat  Machine learning model 289 0.70 0.057 0.23 

Guo et al. (2022) [53] Simcoe Lake Landsat 

TN 

Multimodal deep learning 303 / / 0.23 
Shang et al. (2021) [26] Dongting Lake Landsat Multiple Linear Models 28 0.65 0.15 / 

Li et al. (2017) [13]  Landsat Empirical algorithms 22 0.58 0.183 0.14 
Liu et al. (2015) [54] Cihu Lake IKONOS Multiple Linear Models 21 0.85 2.5 / 

This study Dongting Lake Landsat  Machine learning model 260 0.73 0.48 0.20 

Geng et al. [55] used the average value of nine stations in Dongting Lake to analyze 
the variation law of TP and TN content. A comparison with Geng’s data is shown in 
Figure 10: 

  

Figure 10. Comparison between remote sensing estimation results and Geng et al.’s results [55].
(a) Annual mean of TP content, and (b) Annual mean of TN content.



Remote Sens. 2022, 14, 5648 14 of 28

Our results are almost consistent in trend with Geng et al. [55], but there is a gap in
the value. Possible reasons are: 1. Geng et al. [55] used the monitoring data of nine stations
to replace the average value of the entire lake, and our data used the average value of
each pixel result; 2. The model used in this study was a data-driven model, and the model
performance was data-dependent. Although this study strictly controled the quality of
the input data, the time and space distributions covered the water quality environment of
Dongting Lake, while the R2 of the model was still only 0.70, so there was a certain error
between the statistical results of TP and TN and the actual measured data.

4.2. Factors Related to TP and TN

The water quality of the Dongting Lake area shows significant trends, inter-annual
and intra-annual differences, which are mostly related to meteorological and human factors.
The relationship between water quality parameters and hydrometeorological elements is
further analyzed.

4.2.1. Hydrometeorological Effects

This paper was focused on the four common hydrometeorological parameters of
precipitation, temperature, water level, and flow. The annual mean values of the four
parameters were calculated, and the Pearson correlation coefficients between them and
TP/TN were calculated (Figure 11).
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There is a positive correlation between temperature and TP, r = 0.27, and the change
trends are highly consistent from 1999 to 2006 and from 2013 to 2018. There was a negative
correlation between water level and TP, r = −0.45, showing an opposite trend in most
years, but inconsistent characteristics were appeared around 2001 and 2010. The correlation
between TP and flow is similar to that between TP and water level, both showing a negative
correlation. However, there was no significant correlation between precipitation and TP.
The correlations between TN and these four parameters are different from that of TP. TN
showed a negative correlation with temperature (r =−0.47), and a good positive correlation
with water level and flow (r = 0.49 and r = 0.48). Likewise, the change of TN was not
significantly related to the trend of precipitation change.

Precipitation and temperature are climatic variables, which have little effect on TP
and TN in Dongting Lake. Although the precipitation is not significantly correlated with
the interannual variation of phosphorus and nitrogen content, the precipitation increases
the surface runoff and thenincreases the total amount flowing into lakes. Temperature
affects the consumption of phosphorus and nitrogen by plankton in water [56]. When
the temperature increases, the growth cycle of plankton accelerates, thereby increasing
the consumption of phosphorus and nitrogen in the water body [44]. Water level and
flow are hydrological variables. Dongting Lake is the storage lake of the Yangtze River.
Its hydrological characteristics are greatly affected by the Yangtze River, and the Yangtze
River’s water will also have an impact on Dongting Lake’s water quality. This is also
supported by the calculated correlation. The effects of water level and flow on TP and TN
in Dongting Lake are divided into two parts: 1. The total amount of water is increased,
which has a diluting effect on TP and TN, and decreases the TP and TN in Dongting Lake;
2. The upstream water brings a large amount of phosphorus and nitrogen to Dongting
Lake, which increases TP and TN. According to the statistical data of the long-term series,
it can be seen that the water level and flow are negatively correlated with TP, and more of
them play a role in dilution, while they have a positive correlation with TN, and more of
them are transported to Dongting Lake.

4.2.2. Human Activities Effects

During the period from 1998 to 2003, the project of returning farmland to Dongting
Lake was successfully implemented by expanding the lake area [57], and the dilution and
self-purification capacity of the lake water were enhanced. It can be seen from Figure 4
that during this period, the trend of TP change is down, and TN has a downward trend of
fluctuation. In the 2000s, the local government restricted the use of phosphate-containing
laundry detergents [58], which effectively controlled the phosphorus pollutants discharged
into Dongting Lake. From 2000 to 2006, the TP content in Dongting Lake did not show an
increasing trend. It can also be seen from the spatial distribution (Figure 5) that the area of
TP > 0.1 is reduced.

From 2003 to 2010, the Three Gorges Reservoir completed the highest water storage
capacity of 175 m during this period, resulting in a larger decrease in the amount of water
entering Sanjin Lake when compared with the previous period (Figure 11c,d). The water
exchange period in Dongting Lake was extended from 18.2 d before the dam was built to
214 d [59], the self-purification capacity of the water body was decreased, and the retention
of phosphorus and nitrogen in the water body was increased.

The water pollution of East Dongting Lake is more serious than in other regions [7].
The papermaking enterprises in the Dongting Lake area are mainly distributed in the East
Dongting Lake, and the pulping capacity accounts for more than half of the lake area.
Beginning in 2006, the local government shut down some paper mills, which alleviated the
water pollution in East Dongting Lake [60].

The main reasons for the deterioration in water quality after 2010 are the combined
effects of industrial pollution, agricultural pollution, domestic sewage, and the operation of
the Three Gorges Project. Previous studies have found that in 2010, the nitrogen fertilizer
application rate in the Dongting Lake area was as high as 290.8 kg/ha [61], and the average
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nitrogen fertilizer utilization rate was about 37% [14]. The content of nitrogen in the
material has been on the rise. In addition, the GDP in Dongting Lake area has doubled
from 90.3 billion yuan in 2001 to 856.4 billion yuan in 2018 [55], and the annual urban
domestic sewage discharged into the lake is as high as 4.03 × 108 t [56]. It is also one of the
main sources of phosphorus and nitrogen content in lakes. During this period, TN always
showed an upward trend, and the change trend of TP also changed from falling to rising,
as shown in Figure 4.

5. Conclusions

In this study, an inversion model of TP and TN estimation in Dongting Lake was
established and validated based on Landsat data and field-measured data. This method
can effectively excavate the relationship between the optical properties of water body in
Dongting Lake and TP and TN. The machine learning models have good applicability
in estimating TP with coefficient R2 ≥ 0.70, RMSE ≤ 0.057 mg/L and MRE ≤ 0.23, and
TN with coefficient R2 ≥ 0.73, RMSE ≤ 0.48 mg/L and MRE ≤ 0.20 in Dongting Lake.
Furthermore, the long-term variations of TP and TN are estimated and investigated in
Dongting Lake from 1996 to 2021. TP in Dongting Lake showed a downward trend, and
TN showed an upward trend. The contents of TP and TN in summer were much higher
than those in other seasons. By analyzing hydrometeorological elements with TP and TN,
it is found that water level, flow, and temperature have a good correlation with TP and
TN contents. The temperature was positively correlated with TP and negatively correlated
with TN. Water level and flow were negatively correlated with TP and positively correlated
with TN. The external nutrient inputs by urbanization and large-scale precipitation in
watersheds are the main factors for the increase in TP and TN contents in Dongting Lake.
The operation of TGD since 2003 also affects the content of TP and TN in Dongting Lake.
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