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Abstract: Since its discovery in 1909, the Moho was routinely studied by seismological methods.
However, from the 1950s, a possible alternative was introduced by gravimetric inversion. Thanks to
satellite gravity missions launched from the beginning of the 21st century, a global inversion became
feasible, e.g., leading to the computation of the GEMMA model in 2012. This model was computed
inverting the GOCE second radial derivatives of the anomalous potential by a Wiener filter, which was
applied in the spherical harmonic domain, considering a two-layer model with lateral and vertical
density variations. Moreover, seismic information was introduced in the inversion to deal with the
joint estimation/correction of both density and geometry of the crustal model. This study aims at
revising the GEMMA algorithm from the theoretical point of view, introducing a cleaner formalization
and studying the used approximations more thoroughly. The updates are on: (1) the management
of the approximations due to the forward operator linearization required for the inversion; (2) the
regularization of spherical harmonic coefficients in the inversion by proper modelling the Moho signal
and the gravity error covariances; (3) the inclusion of additional parameters and their regularization
in the Least Squares adjustment to correct the density model by exploiting seismic information.
Thanks to these updates, a significant improvement from the computational point of view is achieved
too, thus the convergence of the iterative solution and the differences with respect to the previous
algorithm can be assessed by closed-loop tests, showing the algorithm performance in retrieving the
simulated “true” Moho.

Keywords: moho discontinuity; gravity inversion; Wiener filter; crustal model; GOCE; GEMMA

1. Introduction

The Mohorovic̃ić discontinuity or Moho, i.e., the discontinuity surface that approxi-
mates the boundary between the Earth’s crust and mantle, has been traditionally studied
by analysing seismic and seismologic data. In particular, since its discovery in 1909 by
Mohorovic̃ić [1] a number of seismologist (starting from Gutenberg, Caloi, Rizova, and
others in the 1940s and the 1950s) have studied it by exploiting data acquired by local
seismic networks [2]. With the advent of the “deep seismic sounding”, especially thanks
to the hydrocarbon industry, it became possible to recover seismic sections along several
profiles and to estimate the first global Moho map in 1982 [3]. In this respect, a noteworthy
result was the CRUST5.1 global model [4] based on seismic refraction and, later on, its
updated versions, i.e CRUST2.0 [5] and CRUST1.0 [6]. These models describe the crustal
structure by giving information on the thickness and density of a number of global layers
(e.g., ice, oceans, soft and hard sediments, upper, middle, and lower crust) on a grid with
a resolution of 5◦, 2◦, and 1◦, respectively. Moreover, for each cell of the grid, the crustal
type (e.g., oceanic, continental plateaus, rifts, orogenetic regions, etc.), and the crust and the
upper mantle densities are also given. The models of the CRUST series are based on seismic
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refraction data published from 1950 [7], on a detailed compilation of ice and sediment
thickness, and on statistical predictions for regions such as most of Africa, South America,
Greenland, and oceans, where no or very few seismic measurements are available.

An alternative tool to study the Moho surface is the use of gravity observations. The
first attempts to determine its depth from gravity anomalies date back to the fifties thanks
to the work of Heiskanen [8]. In the 1960s, Talwani derived rapid formulas to compute the
gravitational effect due to bodies of arbitrary shape and applied them to the estimate of
crustal structure of the Earth by means of a trial and error approach [9,10]. In the seventies,
Oldenburg [11], rearranging the Parker formula to compute the gravitational anomaly
of an uneven, non-uniform layer of material [12], derived an iterative procedure based
on the Fast Fourier Transform to retrieve the shape of the density anomaly causing the
observed anomalous signal. In the nineties, several methods started to be proposed in
the literature, for instance Braitenberg et al. [13] suggested an iterative method based
on isostatic assumptions and Barzaghi et al. [14] proposed an inversion method based
on a Least-Squares Collocation approach. Since 2000, the availability of satellite gravity
observations allows for global inversion of the Moho (see for instance [15–20]), e.g., exploit-
ing a linearized expression relating the undulation of an uneven surface over a reference
sphere to the coefficients of a spherical harmonic expansion of the anomalous potential
[21,22]. Another possible option for a global inversion is the Moritz’s generalization of
the Vening-Meinesz inverse problem of isostasy [23–25]. In this context, Reguzzoni and
Sampietro [26] improved the method proposed by Barzaghi et al. [14] by extending it from
the inversion of gravity anomalies to other functionals of the gravitational potential, such
as the potential itself and its first and second vertical derivatives, and by applying it in the
frequency domain. This approach, globally applied in the spherical harmonic domain, led
to the computation of the global GEMMA model [18].

The goal of this paper is to develop a revised version of the inversion algorithm used
to compute the GEMMA model [18,19], also introducing a cleaner formalization from
the theoretical point of view, and studying the used approximations more thoroughly.
The main updates are on: (1) the management of the approximations due to the forward
linearization required for the inversion; (2) the regularization of the spherical harmonic
coefficients in the inversion, by proper modelling the Moho undulation signal and the
gravity error covariances; (3) the inclusion of additional parameters and their regularization
in the Least Squares adjustment designed to correct the density model according to the
available seismic observations of the Moho surface. The effects of the updates will be
shown through closed-loop simulations, also used to test the algorithm convergence that
was not assessed in the GEMMA solution computed in 2015 [18].

The revised version of the algorithm is presented in Sections 2–5, describing the
inverse operator, the data reduction required to manage vertical variations in the crustal
density profiles, and how the seismic information is introduced in the inversion procedure
to correct the a priori density profiles. The setup of the closed-loop tests is presented in
Section 6. Sections 7 and 8 show the algorithm convergence tests and the impact of the
linearized forward equations used for the inversion, respectively. In Section 9 both the
revised and the original inversion algorithms are applied to the same closed-loop scenarios,
to verify their consistency and to evaluate their performances in view of computing a new
global crustal model exploiting updated input than those of the GEMMA solution. Finally,
conclusions and future perspective are drawn in Section 10.

2. The Inversion Operator

Global gravity inversion is usually solved in spherical approximation, by means of
spherical coordinates, namely latitude ϕ or co-latitude ϑ, longitude λ, and radial distance
r. According to this approximation, the Moho discontinuity can be thought of as an
undulation δR(ϑ, λ) with respect to a reference sphere with radius R̄. This means that
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the Moho discontinuity depth D(ϑ, λ) with respect to the mean Earth radius RE can be
written as:

D(ϑ, λ) = RE − [R̄ + δR(ϑ, λ)] = D̄− δR(ϑ, λ) (1)

where δR(ϑ, λ) is the Moho undulation, D(ϑ, λ) is positive downward, and D̄ is the depth
of the reference sphere. To introduce the two-layer approximation, it is required to reduce
the data for the effect of the main anomalous masses such as sediments and water (with
ρS and ρW mass densities, respectively), and for the contribution of a layered Earth with a
reference Moho equal to a sphere of radius R̄ (or depth D̄, see Figure 1).

−Δ𝜌 𝜗′, 𝜆′, 𝑟′

ത𝑅

𝑅𝐸𝛿𝑅(𝜗′, 𝜆′)

Δ𝜌 𝜗′, 𝜆′, 𝑟′

𝛿𝐷(𝜗′, 𝜆′)

ഥ𝐷

=

- -
𝜌C(𝜗′, 𝜆′, 𝑟′)

𝜌M(𝜗, 𝜆, 𝑟)

𝜌S(𝜗′, 𝜆′, 𝑟′)

𝜌W(𝜗′, 𝜆′, 𝑟′)
𝜌C(𝜗′, 𝜆′, 𝑟′)

𝜌W(𝜗′, 𝜆′, 𝑟′)

𝜌C(𝜗′, 𝜆′, 𝑟′)

𝜌M(𝜗′, 𝜆′, 𝑟′)

𝜌S(𝜗′, 𝜆′, 𝑟′)

Figure 1. Data reduction to isolate the contribution of the Moho undulation δR(ϑ′, λ′). The geom-
etry of the problem is depicted on the reduced model. The arrows show the positive direction of
each quantity.

Considering the obtained spherical two-layer model, the gravitational effect due to
the density contrast between crust and mantle inside the Moho undulation at a generic
point P(ϑ, λ, r) can be written, in terms of anomalous potential δT, as:

δT(ϑ, λ, r) = G
∫∫

Σ

∫ R̄+δR(ϑ′ ,λ′)

R̄

∆ρ(ϑ′, λ′, r′)
d(ϑ, λ, r, ϑ′, λ′, r′)

r′2dr′dσ′ (2)

where:
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• d(ϑ, λ, r, ϑ′, λ′, r′) is the distance between the computational point P(ϑ, λ, r) and the
running point inside the masses Q(ϑ′, λ′, r′) that can be expressed as [27]:

1
d(ϑ, λ, r, ϑ′, λ′, r′)

=
+∞

∑
n=0

(r′)n

rn+1 Pn(cos ψ) (3)

where Pn(cos ψ) are the Legendre polynomial of degree n and ψ = ψ(ϑ, λ, ϑ′, λ′) is the
spherical distance between the points P and Q;

• ∆ρ(ϑ′, λ′, r′) is the density contrast between the crust and mantle at point Q, given the
laterally and vertically varying densities of the crust ρC and mantle ρM, i.e.,:

∆ρ
(
ϑ′, λ′, r′

)
= ρM

(
ϑ′, λ′, r′

)
− ρC

(
ϑ′, λ′, r′

)
; (4)

• Σ is the integration domain that in our case is a spherical domain;
• dσ′ = sin ϑdλdϑ is the infinitesimal area element over the spherical domain;
• G is the universal gravitational constant.

Now, assuming to deal with a density contrast without any vertical variation, i.e.,
∆ρ(ϑ′, λ′, r′) = ∆ρ(ϑ′, λ′) ∀ r′, we can linearize Equation (2) with respect to δR around the
reference Moho R̄, i.e., considering δR ≈ 0. By applying the Leibnitz rule to Equation (3),
we obtain:

δT(ϑ, λ, r) ≈ G
∫∫

Σ

[
∆ρ(ϑ′, λ′)

R̄2

d(ϑ, λ, r, ϑ′, λ′, r′ = R̄)
dσ′
]

δR(ϑ′, λ′) =

GR̄
∫∫

Σ ∆ρ(ϑ′, λ′)δR(ϑ′, λ′)∑+∞
n=0

(
R̄
r

)n+1

Pn(cos ψ)dσ′.

(5)

For the sake of simplicity we can define a new variable δω(ϑ′, λ′) as the product of the
Moho undulation by the density contrast [22]:

δω
(
ϑ′, λ′

)
= ∆ρ

(
ϑ′, λ′

)
δR
(
ϑ′, λ′

)
. (6)

Recalling the summation rule (Equation (7)) and the spherical harmonic analysis operator
(Equation (8)):

Pn(cos ψ) =
∑m Ynm(ϑ, λ)Ynm(ϑ′, λ′)

2n + 1
, (7)

δωnm =
1

4π

∫ ∫
Σ

δω
(

ϕ′, λ′
)
Ynm
(
ϑ′, λ′

)
dσ′ , (8)

where n is degree, m is the order and Ynm(ϑ, λ) are the spherical harmonic functions, we
can introduce Equation (6) into Equation (5), obtaining:

δT(ϑ, λ, r) = 4πGR̄ ∑
n

(
R̄
r

)n+1 1
2n + 1 ∑

m
δωnmYnm(ϑ, λ) . (9)

We can now derive the relation between the spherical harmonic coefficients of the
gravitational potential δT and the ones of δω, by firstly recalling the classical spherical
harmonic expansion of the gravitational potential [27]:

δT(ϑ, λ, r) =
GME

RE
∑
n

(
RE
r

)n+1

∑
m

δTnmYnm(ϑ, λ) (10)

where ME is the total mass of the Earth. Then, by imposing the equality condition between
Equations (9) and (10), we obtain [19,22]:

δTnm =
3

ρER̄

(
R̄

RE

)n+3
δωnm

2n + 1
=

1
ρER̄

δωnm

βn
= Knδωnm , (11)
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where ρE is the mean density of the Earth depending on ME and RE and, accordingly to
the GEMMA algorithm [19]:

βn =
2n + 1

3(1− D̄/RE)
n+3 . (12)

Consequently, we obtain:

Kn =
1

ρER̄βn
=

3
ρER̄(2n + 1)

(
R̄

RE

)n+3

. (13)

Starting from the linearized forward operator of Equation (11), we can derive an
inversion operator I(·) to estimate the spherical harmonic coefficients of the product
between the Moho undulation and the density contrast from the coefficients of the observed
gravitational potential, i.e.,:

δ̂ωnm = I
(

δTobs
nm

)
. (14)

Here, we assume that the observed functional of the gravity signal, e.g., the second radial
derivative δTobs

rr (ϑ, λ), has been already reduced to isolate the signal of the Moho undulation
only (consistently with the forward modelling presented in Equation (2)) and analysed to
reckon the gravitational potential spherical harmonic coefficients δTobs

nm . We leave further
details about the reduction of the real gravity observations to Section 3.

Then, assuming to know the density contrast and recalling Equation (6), we can
estimate the Moho surface as:

D̂(ϑ, λ) = RE −
[

R̄ +
δ̂ω(ϑ, λ)

∆ρ(ϑ, λ)

]
= D̄− δ̂ω(ϑ, λ)

∆ρ(ϑ, λ)
= D̄− ∑n ∑m δ̂ωnmYnm(ϑ, λ)

∆ρ(ϑ, λ)
. (15)

Since Equation (11) is a linear expression in its general form, the operator I
(

δTobs
nm

)
presented in Equation (14) could be straightforwardly derived as:

δ̂ωnm = ρER̄βnδTnm =
1

Kn
δTobs

nm . (16)

However, this inverse operator is strongly unstable and can significantly amplify the noise
of the observed gravitational signal [19]. To overcome this problem, a regularization is
required. According to the Wiener–Kolmogorov principle, i.e., the minimization of the
mean square estimation error, the optimal regularization can be found by implementing a
Wiener filter [28] and therefore using the following inversion operator:

δ̂ωnm =
Knσ2

δωn

K2
nσ2

δω,n + σ2
ν,n

δTobs
nm , (17)

where, under the assumption to deal with homogeneous and isotropic fields, σ2
δω,n and σ2

ν,n
are the degree variances of δω and the observation noise ν, respectively.

It is worth to remark that Equation (17) is a generalization with respect to the solution
of the original GEMMA algorithm, in which the estimation of the spherical harmonic
coefficients δ̂ωnm was performed in two steps: the first one was the straightforward trans-
formation of the spherical harmonic coefficients of the observed gravity potential δTobs

nm by
means of Equation (16), the second one was a regularization of δ̂ωnm by means of a Wiener
filter. The implemented generalization simplifies the way in which the input to the Wiener
filter has to be supplied. In fact, it is enough to know the covariance function of δω, e.g., by
exploiting geological a priori information, and of the observation noise, usually directly
provided with the global gravity model coefficients to be inverted. The previous approach,
instead, required to propagate the covariance function of the observed gravity signal to
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δω (e.g., by means of Monte Carlo samples) in order to setup a proper regularization.
Furthermore, it has to be stressed that Equation (17) represents the solution of the Wiener
filter assuming that the noise of the signal can be expressed in terms of degree variances.
This is not generally true and a more reliable filter can be implemented by considering
e.g., the variances of the spherical harmonic coefficients that are usually provided with
global models, or even the (block diagonal) error covariance matrix of the coefficients.

3. The Data Reduction

We assume to work with satellite-based observations, i.e., the ones coming from the
GOCE mission [29,30], after the reduction for the contribution of the normal gravity field.
This can be interpreted as the subtraction of the contribution of the global Earth mass
assuming that it is homogeneously distributed over layers with ellipsoidal boundaries and
allows to treat the problem in spherical approximation. To isolate the effect of the Moho
undulation we have to remove the effect of the known mass anomalies above the crystalline
basement from the anomalous observations. Considering the second radial derivative of
the gravitational potential, we obtain:

Tres
rr (ϑ, λ) = Tobs

rr (ϑ, λ)− Tice
rr (ϑ, λ)− Toce

rr (ϑ, λ)− Tsed
rr (ϑ, λ) (18)

where Tobs
rr (ϑ, λ) is the observation at satellite altitude, Tice

rr , Toce
rr , and Tsed

rr the effect of
oceanic masses, ice sheets and sediments, respectively, assuming to know their density and
shape. The dependency from r is omitted, since we assumed to work with gridded data at
a constant radial distance r = RE + hsat, where hsat is the mean satellite altitude.

The effect of the anomalous masses of the layer ` (in Equation (18) ` = ice, oce, sed),
in terms of second radial derivative of the gravitational potential, can be computed as:

T`
rr(ϑ, λ) = Frr

(
ρ
(̀
ϑ′, λ′, r′

)
, rT

`

(
ϑ′, λ′

)
, rB

`

(
ϑ′, λ′

)
, ϑ, λ

)
(19)

where Frr(·) is the forward operator, e.g., based on point masses numerical integration,
depending on the density distribution of the layer ρ (̀ϑ′, λ′, r′) and its top and bottom
boundary surfaces rT

`(ϑ
′, λ′) and rB

`(ϑ
′, λ′), respectively. Note that, by directly using the

actual density ρ (̀ϑ′, λ′, r′) instead of the density contrast, the resulting forward modelling
changes by a constant value thanks to the spherical approximation. This constant effect
will be managed during the inversion procedure (see Section 4).

In order to apply Equation (17), the contribution of the Moho undulation only has
to be isolated. To this aim, a further reduction of the observations is required to remove
the contribution of crystalline crust and upper mantle, above and below the linearization
radius R̄, respectively. Nevertheless, consistently to Equation (17), this reduction can be
performed only if there are no vertical variations in crust and mantle densities, i.e., con-
sidering two densities ρC(ϑ

′, λ′) and ρM(ϑ
′, λ′), respectively. This assumption lead to the

following reduction:

δTobs
rr (ϑ, λ) = Tres

rr (ϑ, λ)−Frr
(
ρC(ϑ

′, λ′), rT
C(ϑ
′, λ′), R̄, ϑ, λ

)
−Frr

(
ρM(ϑ

′, λ′), R̄, rB
M, ϑ, λ

)
.

(20)

Note that also in this case the reduction is performed apart from a constant, recalling
that we are working in spherical approximation, and that no further density anomalies are
considered below the bottom of the upper mantle rB

M. The reduced gridded observations
coming from Equation (20) can be analysed to retrieve the spherical harmonic coefficients
of the potential δTobs

nm to be used in Equation (17).
However, considering lateral variations only is usually too approximated. On the other

hand, this condition is strictly required by the linearization introduced into Equation (5),
thus not allowing to apply the inversion algorithm in presence of vertical density variations.
A possible solution is to apply a further reduction step, “replacing” the vertical varying
densities ρC(ϑ, λ, r) and ρM(ϑ, λ, r) inside the Moho undulation with some approximated
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lateral only varying densities ρC(ϑ, λ) and ρM(ϑ, λ). This leads to the following expression
of the observed signal:

δTobs
rr (ϑ, λ) = Tres

rr (ϑ, λ)−Frr
(
ρC(ϑ

′, λ′, r′), rT
C(ϑ
′, λ′), R̄, ϑ, λ

)
−Frr

(
ρM(ϑ

′, λ′, r′), R̄, rB
M, ϑ, λ

)
+Frr

(
ρC(ϑ

′, λ′, r′), R̄ + δ̃R(ϑ′, λ′), R̄, ϑ, λ
)

+Frr

(
ρM(ϑ

′, λ′, r′), R̄, R̄ + δ̃R(ϑ′, λ′), ϑ, λ
)
− F̃rr

(
ρC(ϑ

′, λ′), R̄ + δ̃R(ϑ′, λ′), R̄, ϑ, λ
)

−F̃rr

(
ρM(ϑ

′, λ′), R̄, R̄ + δ̃R(ϑ′, λ′), ϑ, λ
)

= Tres
rr (ϑ, λ)−Frr

(
ρC(ϑ

′, λ′, r′), rT
C(ϑ
′, λ′), R̄ + δ̃R(ϑ′, λ′), ϑ, λ

)
−Frr

(
ρM(ϑ

′, λ′, r′), R̄ + δ̃R(ϑ′, λ′), rB
M, ϑ, λ

)
+F̃rr

(
ρC(ϑ

′, λ′), R̄, R̄ + δ̃R(ϑ′, λ′), ϑ, λ
)
+ F̃rr

(
ρM(ϑ

′, λ′), R̄ + δ̃R(ϑ′, λ′), R̄, ϑ, λ
)

(21)

where δ̃R(ϑ′, λ′) is an approximated Moho undulation, Frr(·) is the previously mentioned
forward operator (see Equation (19)), F̃rr(·) the linearized forward operator, defined by de-
riving Equation (9) two times with respect to the radial direction, and where forwards with
the same operator and the same density model are grouped by changing the boundaries
of the integral, leading to the scheme of Figure 2. By following this strategy, the inversion
operator can be applied even in presence of vertical density variations, also taking into
account the approximation introduced by the linearized forward operator. It is worth
to notice that Equation (21) depends on an approximated value of the Moho undulation
δ̃R(ϑ′, λ′), therefore an iterative procedure is needed to estimate the undulation, assuming
the previous iteration Moho undulation estimate as δ̃R(ϑ′, λ′).

𝜌C 𝜗′, 𝜆′, 𝑟′

𝜌M 𝜗′, 𝜆′, 𝑟′

𝜌S

𝜌W
𝜌C 𝜗′, 𝜆′, 𝑟′

𝜌M 𝜗′, 𝜆′, 𝑟′

𝜌S

𝜌W
ҧ𝜌M(𝜗

′, 𝜆′) − ҧ𝜌C(𝜗
′, 𝜆′)

- +
ҧ𝜌C(𝜗

′, 𝜆′) − ҧ𝜌M(𝜗
′, 𝜆′)

ഥR + ෪𝛿𝑅(𝜗′, 𝜆′)

Figure 2. Scheme of the updated data reduction procedure according to Equation (21), considering
also vertical density variations. The approximated shape of the Moho undulation δ̃R(ϑ′, λ′), required
for the iterative procedure, is depicted with a red dashed line.

As for the value of the laterally only varying densities ρC(ϑ, λ) and ρM(ϑ, λ), a possi-
bility is to compute them as the mean value inside the Moho undulation, namely:

ρC(ϑ, λ) =
1

δR(ϑ, λ)

∫ R̄+δR(ϑ,λ)
R̄ ρC(ϑ, λ, r)dr

ρM(ϑ, λ) =
1

δR(ϑ, λ)

∫ R̄+δR(ϑ,λ)
R̄ ρM(ϑ, λ, r)dr .

(22)

Note that these densities depend on δR(ϑ, λ), therefore they have to be updated at each
iteration too.

4. Seismic Data Integration

In principle, when we reduced the observed signal by means of Equations (18) and (21)
we are working with anomalous quantity. However, we removed the effect of the anoma-
lous masses (ice shields, oceans, sediments, crystalline crust, and upper mantle) by intro-
ducing their actual density values, without making any hypothesis on the mass distribution
of the Earth generating the normal potential. Given the total Earth mass and choosing the
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reference ellipsoid (e.g., WGS84), there exists one and only one normal potential [27], but
infinite mass distributions inside the ellipsoid generating the same normal potential. It
has to be stressed that considering anomalous quantities allows to work in spherical ap-
proximation. Therefore, changing the reference (layered) Earth mass density by a constant
would result in changing δTobs

rr by a constant too. According to the inversion operator
(Equation (17)), this would result in changing the δ̂ω estimate by a constant value.

To face this problem we can proceed in two ways: the former is to assume an
Earth mass distribution generating the normal potential, e.g., by introducing the PREM
model [31], the latter is to estimate the constant to be added to δω by means of external
data sources, e.g., seismic observations of the Moho surface. The first strategy makes the
solution dependent from the chosen density model, while the latter allows to rely on an
independent set of observations, which is generally preferable. Therefore, the constant µω

is introduced in Equation (15) to solve this problem, obtaining:

D̂(ϑ, λ) = D̄− δ̂ω(ϑ, λ) + µω

∆ρ(ϑ, λ)
. (23)

If at least one seismic observation of the Moho surface depth Dobs(ϑ, λ) is available, it
can be used into Equation (23) to estimate

µ̂ω =
(

Dobs(ϑ, λ)− D̄
)

∆ρ(ϑ, λ) + δ̂ω(ϑ, λ) (24)

where ∆ρ(ϑ, λ) = ρM(ϑ, λ)− ρC(ϑ, λ) and δ̂ω(ϑ, λ) is synthesized from the spherical har-
monic coefficients estimated by Equation (17). If more than one seismic observation is
available, a set of Equation (24) can be used to estimate µ̂ω by means of the Least Squares
principle. When the iterative procedure required by Equation (18) to properly manage
vertical density variation is started, the estimation of µω has to be repeated at each iteration
to update the estimate of δR(ϑ′, λ′).

Moreover, we have to consider the non-perfect knowledge of the density models used
for the inversion. To make them more flexible and exploiting a priori information on Moho
depth, the crystalline crust above the Moho surface can be divided into a set of “geological
provinces”, i.e., regions where all points have the same density profile along the vertical
direction. Examples of such geological provinces and the corresponding functions relating
the mass density with the depth can be found in Mooney et al. [32]. Since these functions
are just approximated, they could be “calibrated” by introducing two parameters for each
province i, namely a scale factor hi and a bias ki. According to these hypotheses, the crustal
density can be modelled as follows:

ρC(ϑ, λ, r) =
N

∑
i=1

(hiρC,i(r) + ki)χi(ϑ, λ) (25)

where i = 1, 2, . . . , N is the index identifying the geological province, χi(ϑ, λ) is the charac-
teristic function defining the domain of the geological province, ρC,i(r) is the given density
profile and (hi, ki) are the corresponding scale factor and bias. Note that the choice of
applying a linear transformation to the a priori density profiles is not driven by any geo-
physical motivation, but to the need of leaving the “shape” of the profiles unmodified.
Moreover, recalling the linearity of the forward operator with respect to the densities, we
can generalize the data reduction in Equation (21) as:
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δTobs
rr (ϑ, λ) = Tres

rr (ϑ, λ)−Frr
(
ρM(ϑ

′, λ′, r′), R̄ + δR(ϑ′, λ′), rB
M, ϑ, λ

)
−∑N

i=1
[
hiFrr

(
ρC(r′)χi(ϑ

′, λ′), rT
C(ϑ
′, λ′), R̄ + δR(ϑ′, λ′), ϑ, λ

)
+kiFrr

(
χi(ϑ

′, λ′), rT
C(ϑ
′, λ′), R̄ + δR(ϑ′, λ′), ϑ, λ

)]
−∑N

i=1

[
hiF̃rr

(
ρC,i(ϑ

′, λ′)χi(ϑ
′, λ′), R̄ + δR(ϑ′, λ′), R̄, ϑ, λ

)
+kiF̃rr(χi(ϑ

′, λ′), R̄ + δR(ϑ′, λ′), R̄, ϑ, λ)
]

−F̃rr(ρM(ϑ
′, λ′), R̄, R̄ + δR(ϑ′, λ′), ϑ, λ),

(26)

where ρC,i(ϑ
′, λ′) is computed by applying Equation (22) to the crustal density obtained

introducing the density profiles ρC,i(r′) into Equation (25) fixing hi = 1, ki = 0 ∀ i. Calling
Arr(·) the spherical harmonic analysis operator to derive the potential coefficients from its
second radial derivative [27], namely:

Arr(Trr(ϑ, λ)) =
rn+3

GMERn+3
E (n + 1)(n + 2)

∫∫
Σ

Trr(ϑ, λ)Ynm(ϑ, λ)dσ (27)

for the sake of notation simplicity, we can define the following quantities:

Tres
nm = Arr(Tres

rr (ϑ, λ))

TC,i
nm = Arr

(
Frr
(
ρC(r′)χi(ϑ

′, λ′), rT
C(ϑ
′, λ′), R̄ + δR(ϑ′, λ′), ϑ, λ

))
T1,i

nm = Arr
(
Frr
(
χi(ϑ

′, λ′), rT
C(ϑ
′, λ′), R̄ + δR(ϑ′, λ′), ϑ, λ

))
TM

nm = Arr
(
Frr
(
ρM(ϑ

′, λ′, r′), R̄ + δR(ϑ′, λ′), rB
M(ϑ

′, λ′)ϑ, λ
))

T̃C,i
nm = Arr

(
F̃rr

(
ρC,iχi(ϑ

′, λ′), R̄ + δR(ϑ′, λ′), R̄, ϑ, λ
))

T̃1,i
nm = Arr

(
F̃rr(χi(ϑ

′, λ′), R̄ + δR(ϑ′, λ′), R̄, ϑ, λ)
)

T̃M
nm = Arr

(
F̃rr(ρM(ϑ

′, λ′), R̄, R̄ + δR(ϑ′, λ′), ϑ, λ)
)

(28)

Now, recalling that the inversion operator I(·) is linear, we obtain:

δ̂ωnm = I(Tres
nm)− I

(
TM

nm
)
−∑N

i=1

[
hiI
(

TC,i
nm

)
+ kiI

(
T1,i

nm

)]
−∑N

i=1

[
hiI
(

T̃C,i
nm

)
+ kiI

(
T̃1,i

nm

)]
− I
(

T̃M
nm

)
= ω̂res(ϑ, λ)− ω̂M(ϑ, λ)−∑N

i=1
[
hiω̂

C,i(ϑ, λ) + kiω̂
1,i(ϑ, λ)

]
−∑N

i=1

[
hi ̂̃ωC,i

(ϑ, λ) + ki ̂̃ω1,i
(ϑ, λ)

]
− ̂̃ωM

(ϑ, λ)

(29)

where ω̂ (̀ϑ, λ) and ̂̃ω`
(ϑ, λ) represent the synthesis of the coefficients computed ap-

plying the corresponding inversion operator I
(

T`
nm

)
or I

(
T̃`

nm

)
on the computational

points, i.e.,: 
ω̂ (̀ϑ, λ) = ∑n ∑m I

(
T`

nm

)
Ynm(ϑ, λ)

̂̃ω`
(ϑ, λ) = ∑n ∑m I

(
T̃`

nm

)
Ynm(ϑ, λ)

(30)
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Moreover, the spherical harmonic analysis operator is linear. Therefore, we can replace
δ̂ω in Equation (23) with the synthesis of the terms of Equation (29) and compute the Moho
depth as:

D̂(ϑ, λ) = D̄−
ω̂res(ϑ, λ)− ω̂M(ϑ, λ)−∑N

i=1
[
hiω̂

C,i(ϑ, λ) + kiω̂
1,i(ϑ, λ)

]
ρM(ϑ, λ)−∑N

i=1

(
hiρC,i(ϑ, λ) + ki

)
χi(ϑ, λ)

−
−∑N

i=1

[
hi ̂̃ωC,i

(ϑ, λ) + ki ̂̃ω1,i
(ϑ, λ)

]
− ̂̃ωM

(ϑ, λ) + µω

ρM(ϑ, λ)−∑N
i=1

(
hiρC,i(ϑ, λ) + ki

)
χi(ϑ, λ)

.

(31)

If seismic observations of the Moho surface are available, starting from Equation (31)
a joint estimate of the scale factors hi, the biases ki and the constant µω applying the
Least Squares principle can be performed, thus generalizing the solution presented in
Equation (24) for the estimation of the µω parameter only. Note that this Least Squares
system requires a regularization to prevent unphysical estimates of biases and scale factors.
To this aim, for each geological province we introduced pseudo-observations of the expected
values of crustal density at ground, of crust-mantle density contrast at the Moho, and of
the hk scale factors (that should be close to 1). These pseudo-observations are weighted
according to the a priori level of geophysical knowledge.

It is worth to recall that, as it happens in Equation (21), the laterally only varying densi-
ties depend on the Moho undulation δR(ϑ, λ), i.e., ρC,i(ϑ, λ), ρM(ϑ, λ), ω̂C,i(ϑ, λ), ω̂1,i(ϑ, λ),

ω̂M(ϑ, λ), ̂̃ωC,i
, ̂̃ω1,i

and ̂̃ωC,i
depend on δR(ϑ, λ) (see Equations (28) and (29)). This depen-

dency implies a non-linearity in the system, thus requiring an iterative solution starting,
e.g., from δR(ϑ, λ) = 0 ∀(ϑ, λ) or from an a priori model.

5. Overall Scheme of the Inversion Algorithm

Combining all the steps presented into Sections 2–4 we can define the revised in-
version algorithm according to the flow chart depicted in Figure 3 to summarize the
whole procedure.

The main differences of the presented algorithm with respect to the “original” one,
used to compute the GEMMA model in 2015 [18], are related to the data reduction de-
scribed in Equation (21) and to the density modelling introduced in Equation (25). In
particular, the way in which the data reduction is performed allows to consider also the
approximation related to the linearized forward F̃(·). This was not performed with the
older formulation of the algorithm, where a further reference Moho refinement step was
applied after the inversion by inverting the gravity residuals (see Section 2.4 of [18]). This
step increases the computational burden of the algorithm and is not completely rigorous
with the formalization of the procedure. The non-strictly need of this further step in the
presented algorithm will be shown by a numerical example in Section 8.

The scheme highlights how to use the equations in the inversion procedure, which
data reduction steps can be performed once and for all before the inversion procedure and
which must be performed iteratively, due to their dependency on the current estimation of
the Moho surface depth.

As for the vertical density profiles, only scale factors were considered for their adjust-
ment in the original algorithm. Therefore, the new formulation is more general introducing
both a scale factor and a bias for each geological province.
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Convergence?

Figure 3. Flow chart of the algorithm.

6. Closed-Loop Test Setup

The performances and the convergence of the iterative inversion algorithm were tested
by means of closed-loop tests. Starting from a known model of the Earth, we generated the
corresponding gravitational signal in terms of second radial derivative of the anomalous
potential and then we inverted it. The inversion was performed by evaluating the impact of
different a priori knowledge on the crustal density profiles. Moreover, we applied both the
original GEMMA algorithm [18] and the revised one (presented in the previous sections)
to test their consistency. Thanks to closed-loop also the impact of forward linerization
was tested. In the following subsection the “true” model and the possible scenarios will
be described.

6.1. The “True” Model

The second radial derivative to be inverted was computed on a global 1◦ × 1◦ grid
at a constant altitude of 250 km, i.e., at the mean GOCE altitude, performing the forward
modelling of the following layers: ice sheets, oceans, sediments, crystalline crust and
uppermost mantle. The surfaces defining the interfaces between these layers are sampled
on a 1◦ × 1◦ spherical grid. The forward model was performed by numerical integration of
dense point masses, generating a 3D simulated Earth model with point masses on a regular
0.1◦ × 0.1◦ × 100 m lattice. Note that, according to the simulated gravity signal, all the
inverse solutions computed in the following will have a 1◦ × 1◦ resolution.

The boundaries of ice sheets, bathymetry and topography (the latter used as the top
of sediments or of the crystalline crust, depending on the considered region) are taken
from ETOPO1 [33], while the densities of ice and water are fixed to ρICE = 980 kg/m3 and
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ρOCE = 1020 kg/m3, respectively. Sediments boundaries and densities are taken from the
CRUST 1.0 model [6].

The crust density ρC(ϑ, λ, r) is defined by dividing it into 139 geological provinces
according to the USGS map [34], adding the mid-oceanic ridges taken from the model by
Coffin et al. [35]. Each province is classified as one of the main eight crustal types, i.e., shield,
platform, orogenetic crust, basin, large igneous province, oceanic crust and mid-oceanic
ridge (see Figure 4). As for the vertical density profile ρC,i(r) of the i-th geological province
(see Equation (25)), it is chosen depending on the type of the province itself (see [32,36,37]),
according to the modellization introduced in the GEMMA model [18]. The chosen profiles
are shown in Figure 5.

The upper mantle density ρM(ϑ, λ) is taken from the GyPSuM model [38] and does
not contain any vertical variation. The upper mantle layer is modelled down to 100 km
depth, assuming that there are no lateral density variations in the middle and lower mantle
and inside the core. In fact, even if modelled, these lateral density variations would have an
impact to the observed signal that is orders of magnitude smaller than the one due to crustal
masses, and, in any case, they would be mainly concentrated at very long wavelengths [39].

Figure 4. Map of geological provinces used to simulate the observed gravity signal.

Figure 5. Density profiles of each type of crust used to simulate the observed gravity signal.
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6.2. Tested Scenarios

To perform our closed-loop tests we are going to define three scenarios, where a
decreasing level of knowledge (with respect to the true model) on the a priori density
profiles is supposed. In particular, the three considered scenarios are:

s1. the a priori density profiles of all geological provinces are assumed to be the same as
the “true” ones;

s2. the a priori density profiles of all geological provinces are assumed to be the same as
the “true” ones apart from a scale factor (a different value of the scale factor for each
geological type was applied, see Table 1);

s3. the a priori density profiles of all geological provinces are assumed to be the same as
the “true” ones apart from a scale factor and a bias (a different couple of scale factor
and bias for each geological type was applied, see Table 1).

Table 1. “True” scale factors (h) and biases (k) chosen in the three different scenarios for all the
provinces belonging to the same crustal type.

Crustal Type
h k [kg/m3]

s1 s2 s3 s1 s2 s3

Oceanic 1.0000 0.9987 1.0020 0.00 0.00 0.00
Mid oceanic ridge 1.0000 1.0013 0.9977 0.00 0.00 0.00
Extended crust 1.0000 0.9910 0.9800 0.00 0.00 31.07
Platform 1.0000 1.0068 1.0150 0.00 0.00 −15.39
Shield 1.0000 1.0045 1.0100 0.00 0.00 −6.26
Orogenetic crust 1.0000 1.0090 1.0200 0.00 0.00 −66.60
Igneous provinces 1.0000 0.9955 0.9900 0.00 0.00 40.26
Basin 1.0000 0.9932 0.9850 0.00 0.00 49.39

As for the seismic information, it provides the geometrical shape of Moho surface. The
observations of the Moho depth are simulated by corrupting its “true” value with a white
random noise. The standard deviation of this noise is defined according to the reliability of
the CRUST 2.0 model, which spatial distribution is shown in Figure 6 (for further details
see [19]).

Figure 6. Standard deviation of the error of the input a priori seismic observations according to the
CRUST2.0 model.

Finally, the gravity observations are simulated by forward modelling from the “true”
geometries and densities by adding a randomly sampled noise, according to the degree



Remote Sens. 2022, 14, 5646 14 of 23

variances provided by the GO_CONS_GCF_2_TIM_R6 model [40,41]. The mentioned
degree varainces and the sampled noise realization are shown in Figure 7.

(a) Noise degree variances (b) Noise spatial distribution

Figure 7. Noise of the simulated gravity signal in terms of second radial derivative.

7. Algorithm Convergence

The convergence of the solution was tested by initializing the iterative procedure with
different shapes of the Moho undulation. The s2 scenario was used for this purpose, even
though completely similar results can be found by s1 or s3. In particular, two cases were
mainly tested:

s2a. the Moho undulation at the beginning of the first iteration is equal to 0 everywhere,
i.e., δR0(ϑ, λ) = 0 ∀ (ϑ, λ);

s2b. the Moho undulation at the beginning of the first iteration is equal to the “true” one,
i.e., δR0(ϑ, λ) = δRtrue(ϑ, λ).

In both the cases, the convergence threshold was chosen as twice the vertical dis-
cretization step in the forward algorithm, in this case 2× 100 m = 200 m. The iterative
procedure is stopped when the maximum of the absolute difference between the Moho
depth estimated at the current iteration and the previous one is below the chosen conver-
gence threshold. Both the tests satisfied this convergence criterion in about 10 iterations.
Nevertheless, most of the points of the Moho surface reach stability after three or four
iterations, as shown by Figures 8 and 9, where the evolution of the iterative procedure is
represented for s2a case.

Figure 8. Maps of the Moho depth differences between an iteration and the previous one, showing
the evolution of the algorithm for the s2a case (δD0(ϑ, λ) = 0 ∀ (ϑ, λ)).
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Figure 9. Statistics (standard deviation in blue and maximum of the absolute value in red) of the
Moho depth differences between an iteration and the previous one, showing the convergence of the
algorithm for the s2a case (δR0(ϑ, λ) = 0 ∀ (ϑ, λ)).

The behaviour of the iterative procedure is quite similar for the s2b case, showing
that the solutions obtained by changing the starting point are basically equivalent. Their
differences are always smaller than twice the modulus of the convergence threshold,
i.e., the maximum admitted difference given the chosen convergence criterion, as shown
in in Figure 10. Here the differences between the two solutions (s2a vs. s2b) in terms of
estimated Moho depth are depicted.

Figure 10. Map of the differences between the estimated Moho obtained starting from two different
initial points (zero undulation vs. true Moho, namely s2a and s2b, respectively).

As for the estimated values of the hi and ki parameters for each geological province the
estimations obtained changing the starting point are completely consistent too. In fact, they
show a relative difference smaller than 0.003% for all the hi parameters and an absolute
difference smaller than 0.01 kg/m3 for all the ki parameters, as shown in Figure 11.

These tests show that the algorithm is converging to the same solution if the algorithm
is initialized to a reasonable starting point, and that the flat Moho is included in the set
of allowed starting point. This is fully compatible with the assumption performed by
linearizing the Newton integral in Equation (5).
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Figure 11. On the left panel, relative differences between the parameters hi estimated for each
geological province changing the starting point of the iterative solution (zero undulation vs. true
Moho, namely s2a and s2b, respectively). On the right panel, absolute differences between the
parameters ki estimated for each geological province changing the starting point of the iterative
solution (zero undulation vs. true Moho, namely s2a and s2b, respectively). In both the graphs the
geological provinces are represented on the abscissa and the differences on the ordinate.

8. Impact of the Forward Approximations

To check the impact of the approximations introduced in the inversion procedure by
the linearization of the forward operator (see Equation (5)), two solutions were computed
considering the s2 scenario. The two tests differ in the kind of forward operators used
in the data reduction of Equation (21). The former solution (s2c) is obtained by applying
Equation (21) as is, i.e., it is applied as explained in the revised algorithm. The latter
solution (s2d) is obtained by introducing the Frr(·) operator instead of the F̃rr(·) linearized
one F̃rr(·) into Equation (21), as it was performed in the original GEMMA algorithm, but
without implementing the last step for the reference Moho improvement (Section 2.4
of [18]). The results of the s2c and s2d solutions show that the standard deviation of the
gravity gradient residuals is 3.2 mE in the first case, while it grows up to 36.2 mE in the
second one. To give an interpretation to this discrepancy, it is interesting to compare the
inversion residuals with the forward linearization approximation. This approximation
is represented in Figure 12 and can be seen as the difference between the forward of the
density contrast inside the “true” Moho undulation computed by Frr(·) and the same
quantity computed by F̃rr(·). The standard deviation of this approximation effect is about
36 mE.

The comparison between the inversion residuals and the forward approximation is
performed in terms of linear correlation coefficients as shown in Figure 13. Here, it is clearly
visible that the s2d solution (without considering linearized forward in Equation (21)) is
highly correlated with the forward approximation. Therefore, the proper combination of
the two kinds of forward operators (Frr(·) and F̃rr(·) in Equation (21) allows to overcome
this drawback.

Since the solution with the “full” original GEMMA algorithm, also including the
reference Moho improvement step, is substantially equivalent to the one of the revised
algorithm, as we will see in the next section, it is clear that the main goal of the reference
Moho improvement step was to filter out the linearization error shown in Figure 12. On the
other hand, it is also clear that this step is not anymore required in the revised algorithm,
also implying a gain in terms of computation time.

Repeating the comparisons performed in this section for the s1 or s3 scenarios, the
obtained results would show an analogous behaviour.
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Figure 12. Differences between the forward of the Moho undulation computed applying the Frr(·) or
F̃rr(·) operator.

Figure 13. Linear correlation between the residuals of the inversion and the linearization approxima-
tion in: solution using Equation (21) as is (s2c), and solution with the Frr(·) operator in place of the
F̃rr(·) one into Equation (21) (s2d).

9. Comparison of the Original and Revised Algorithms

In this section the results of the closed-loop gravity inversion by using the original
(denoted with O, see [18,19]) and the revised (denoted with R, see Sections 2–5) algorithms
with the input of the three scenarios presented in Section 6.2 are compared. These com-
parisons aim at verifying the consistency between the two algorithms, as well as their
capability of retrieving the “true” shape of the model. In particular, the differences between
the estimates of the Moho surface coming from the two algorithms, i.e., D̂R − D̂O, and the
differences between the forwarded gravitational signal coming from the solutions of the
two algorithms, i.e., T̂R

rr − T̂O
rr , are first evaluated and then used to set up some statistical

tests at both global and local level.
In particular, we performed the following tests assuming a significance level α = 5%:

1. a global test on the differences between the Moho estimates, i.e.,

M
[

D̂R − D̂O
]

S̄
[

D̂R − D̂O
] ∼ Z (32)
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where the operatorsM[·] and S̄[·] are the mean and standard deviation computed
over all Moho grid nodes, respectively;

2. a global test between the differences of the forwarded gravitational signal of the
estimated models, i.e.,

M
[

T̂R
rr − T̂O

rr

]
S̄
[

T̂R
rr − T̂O

rr

] ∼ Z (33)

3. local tests on the Moho differences, by comparing the discrepancy of the two solutions
on subsets of grid nodes defined on the basis of the “true” Moho depth. In particular,
the subsets are obtained by splitting the “true” Moho depth in 1 km classes. The
statistic of the test becomes

M
[

D̂R
j − D̂O

j

]
S̄
[

D̂R
j − D̂O

j

] ∼ Z (34)

where the index j identifies the class corresponding to a given reference Moho depth.
4. local tests on the Moho differences, by comparing the discrepancy of the two solutions

on subsets of grid nodes defined as the geological provinces, i.e.,

M
[

D̂R
i − D̂O

i

]
S̄
[

D̂R
i − D̂O

i

] ∼ Z (35)

where the index i identifies the given geological province.

The statistics and the outcome of the global tests (1 and 2) are summarized in
Tables 2 and 3, while Figures 14 and 15 show the results of the tests 3 and 4, respectively.

Table 2. Statistics on the differences of the Moho estimated by the two algorithms, D̂R − D̂O, for the
three tested scenarios.

Scenario Mean [km] Std [km] Max [km] Min [km] Test 1

s1 0.22 0.66 9.95 −13.25 0.33 < 1.96
s2 0.55 1.01 10.31 −12.91 0.55 < 1.96
s3 0.48 0.99 10.02 −12.78 0.49 < 1.96

Table 3. Statistics on the differences of the forwarded gravitational signal from the solutions estimated
by the two algorithms, T̂R

rr − T̂O
rr , for the three tested scenarios.

Scenario Mean [mE] Std [mE] Max [mE] Min [mE] Test 2

s1 −6.47 3.58 15.71 −72.01 1.80 < 1.96
s2 0.59 3.67 22.91 −63.89 0.16 < 1.96
s3 −1.32 3.60 20.19 −67.67 0.37 < 1.96

From the outcome of these tests it is quite clear that the two algorithms perform in a
very similar way, with no significant differences from a statistical point of view at a global
level (see the results of tests 1 and 2) and with small differences at local level. The latter
could depend on slightly different regularization procedures when the vertical density
profiles of the geological provinces have to be adjusted by Least Squares (see Section 4).
Note that the regularization procedures are different because the set of parameters to be
estimated is different, due to the introduction of biases ki in the revised version. Therefore,
in the following, we will consider the revised algorithm only, comparing it with the truth
to assess its performances. Tables 4 and 5 show the differences between the solution
and the truth for the different scenarios in terms of estimated Moho depth and gravity
gradient residuals.
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(a) Scenario s1 (b) Scenario s2

(c) Scenario s3

Figure 14. Results of test 3. On the abscissa the reference Moho depth, on the ordinate the statistics of
the Moho differences for the corresponding subset of grid nodes. Blue line represents the mean of the
differences, and the red ones represent the confidence interval depending on the standard deviation
and the level of significance.

Table 4. Statistics on the differences between the estimated and “true” Moho, D̂R − Dtrue, for the
three tested scenarios. The test 1 is implemented as in Equation (32) by replacing D̂O with Dtrue.

Scenario Mean [km] Std [km] Max [km] Min [km] Test 1

s1 0.01 0.76 12.10 −8.18 0.01 < 1.96
s2 0.01 1.26 12.03 −12.14 0.01 < 1.96
s3 0.06 1.23 12.18 −10.24 0.05 < 1.96

Table 5. Statistic on the differences between the forwarded gravitational signal from revised algo-
rithm solution and from the “true” model, T̂R

rr − Ttrue
rr , for the three tested scenarios. The test 2 is

implemented as in Equation (33) by replacing T̂O
rr with Ttrue

rr .

Scenario Mean [mE] Std [mE] Max [mE] Min [mE] Test 2

s1 −6.25 3.20 13.66 −24.54 1.95 < 1.96
s2 0.72 3.22 20.55 −17.70 0.22 < 1.96
s3 −1.15 3.21 18.28 −20.03 0.36 < 1.96

The comparison with respect to the “true” model in terms of estimated Moho depth
(see Table 4) clearly show the ability of the algorithm in retrieving the original shape of the
Moho with an accuracy of the order of 1 km, although the range of the differences is one
order of magnitude larger. However, the highest values in the differences are related to the
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high frequencies patterns of the true Moho surface, e.g., close to the continental-oceanic
boundaries or the mid-oceanic ridges, that are over-smoothed in the Moho estimate. This
effect is mainly related to the isotropic assumption in the definition of the Moho spectrum
to be used in the Wiener filtering procedure (see Equation (17)). This unique global Moho
spectrum cannot follow the local high frequencies of the Moho surface.

(a) Scenario s1

(b) Scenario s2

(c) Scenario s3

Figure 15. Results of test 4. For each scenario, the empirical value of the statistics on the left, and in
red the geological provinces for which the consistency hypothesis is rejected on the right.

As for the gravity gradient residuals, the estimated models lead to fit the signal with a
standard deviation of about 3 mE, which is comparable with the standard deviation of the
observation noise, showing the capability of the presented algorithm of correctly explaining
the data.

10. Conclusions

In this work we revised the gravity inversion algorithm used to compute the GEMMA
Moho model in 2015 [18]. The aim was to improve this algorithm from the formalization
and numerical points of view. The former allows an easier way to introduce the algorithm
parameters (e.g., the observation noise covariance into the Wiener filter) and a more formal
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management of the approximation related to the linearization of the forward operator. The
latter turns into a reduction of the computational time, giving the possibility of performing
extensive tests by means of closed-loop scenarios.

By exploiting these closed-loop tests, it become possible to analyse the algorithm
convergence, to verify the algorithm capability of retrieving a known Moho depth, and
to study the the impact of using a linearized relation in the inversion procedure (see
Equation (5)). The results show that:

• the iterative inversion algorithm converges to a unique solution (disregarding dif-
ferences smaller than the iteration stop criterion) when changing the starting point,
e.g., choosing an a priori Moho undulation ranging from zero to the “true” value;

• the Moho depth is retrieved with an accuracy of the order of 1 km (in terms of standard
deviation), consistently with the solution coming from the original GEMMA algorithm;

• the effect of the linearization is analytically controlled through a suitable data reduc-
tion, without the need of a further step in the inversion procedure for the reference
Moho refinement, as it happened in the original GEMMA algorithm.

This work will make possible to improve the GEMMA model in the future, by inte-
grating newly available datasets, from both the gravity and geophysical sides. As for the
former, improved GOCE global gravity models were released in the meanwhile, arriving at
the sixth release, while only the second release was used in the GEMMA solution of 2015.
As for the latter, also new geophysical models were released in the meanwhile, e.g., high
resolution maps of sediments, the CRUST1.0 model, etc. Therefore, the target is to ingest
this enhanced knowledge to release a new gravity-based crustal model, and this work lays
the foundations for it from the algorithmic point of view.
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