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Abstract: Robust and efficient detection of small infrared target is a critical and challenging task in
infrared search and tracking applications. The size of the small infrared targets is relatively tiny
compared to the ordinary targets, and the sizes and appearances of the these targets in different
scenarios are quite different. Besides, these targets are easily submerged in various background noise.
To tackle the aforementioned challenges, a novel asymmetric pyramid aggregation network (APANet)
is proposed. Specifically, a pyramid structure integrating dual attention and dense connection is
firstly constructed, which can not only generate attention-refined multi-scale features in different
layers, but also preserve the primitive features of infrared small targets among multi-scale features.
Then, the adjacent cross-scale features in these multi-scale information are sequentially modulated
through pair-wise asymmetric combination. This mutual dynamic modulation can continuously
exchange heterogeneous cross-scale information along the layer-wise aggregation path until an
inverted pyramid is generated. In this way, the semantic features of lower-level network are enriched
by incorporating local focus from higher-level network while the detail features of high-level network
are refined by embedding point-wise focus from lower-level network, which can highlight small
target features and suppress background interference. Subsequently, recursive asymmetric fusion is
designed to further dynamically modulate and aggregate high resolution features of different layers in
the inverted pyramid, which can also enhance the local high response of small target. Finally, a series
of comparative experiments are conducted on two public datasets, and the experimental results show
that the APANet can more accurately detect small targets compared to some state-of-the-art methods.

Keywords: infrared small target; dual attention; dense connection; pair-wise asymmetric combination;
inverted pyramid; recursive asymmetric fusion

1. Introduction

In the past few years, infrared small target detection has been widely applied in various
fields such as remote sensing, medical imaging, early warning systems, and maritime
surveillance [1,2]. However, infrared small objects often lack sufficient texture and shape
information due to the long imaging distance. It is difficult to extract the small infrared
target features effectively because there are fewer available target pixels and the background
occupies most of the pixels. In addition, small objects usually have weak contrast compared
to the background in complex imaging environmental conditions. In these situations, small
objects are easily swamped by heavy noise and clutter background (as shown in Figure 1a).
Moreover, different radiation, inherent sensor noise and natural factors can also affect the
infrared imaging quality. More seriously, the appearance shape and size of small infrared
targets in diverse scenarios are quite different, which will further reduce the stability of
small target detection (as shown in Figure 1b). All in all, the aforementioned characteristics
make the robust and precise small infrared target detection a complex and compelling task.

Traditional methods rely on different assumptions to design some handcrafted features.
Specially, some methods based on background estimation [3,4], local contrast metrics [5–8],
and non-local auto-correlation properties [9–11] were proposed to detect the small infrared
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targets. However, these conventional methods are constrained by various assumptions
and empirical knowledge, and cannot achieve good generalization, especially for those
situations with complex and diverse backgrounds.

Figure 1. Examples of small infrared targets. (a) Small targets submerged in complex environments,
as indicated by the red arrows. (b) Small targets of different scales, as indicated by the red boxes.

At present, convolutional neural networks (CNN) have well overcome the limitations
of traditional handcrafted feature extraction. In particular, the widespread application of
fully convolutional network (FCN) [12] has significantly promoted the development of
target segmentation and detection tasks. The FCN can increase the receptive field and
capture discriminative features through continuous down-sampling operations, but it
results in a significant reduction in spatial resolution and thus losing fine image detail
features. Several studies are working to address the above issues. E.g., refs. [13,14] adopt
the “Unet” of encoder-decoder architecture to capture and preserve more information
from low-level spatial features. Some strong pyramid feature architectures (e.g., pyramid
pooling module (PPM) [15] and atrous spatial pyramid pooling (ASPP) [16–18]) are built
to enlarge the receptive field of high-level network features and thus enrich the feature
representation of different objects. These existing networks can express features well, but it
is infeasible to directly utilize these deep CNN-based methods to detect and segment small
infrared targets! Usually, small infrared targets vary widely in size, ranging from point
targets covering only one pixel to extended targets containing tens of pixels, that is, their
sizes are small, but they still have different sizes and shapes. Furthermore, the small targets
occupies only a tiny component of the overall infrared image, and these targets are often
easily confused in the messy and various background.

To address the problem of small targets with different scales and their appearances
similar to the background noise, the local detail features and the multi-scale difference
features need to be mined. For example, pyramid contextual attention [19], multiple
contextual attention [20] and local similarity pyramid [21] have been designed to highlight
the local features. However, these designed modules are only applied to the feature maps
of the top-level network, ignoring the effectiveness of multi-level features. In order to fully
mine multi-level features, most methods only use simple merging operation [21,22]. But,
these merging operations cannot explore the relationship of multi-layer and cross-scale
features to achieve true complementary connections among these features [23]. In general,
the coarse information (e.g., lines, edges, corners, etc.) in the low-level network features
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is more diverse, while the abstract information about the target in the high-level network
features is richer. And the difference between network characteristics of different levels
is usually considered as a semantic gap [23]. Therefore, merging feature simply will
result in the newly generated multi-scale fusion features to still retain rough background
information, which affects the accuracy of small infrared object detection. Recently, some
methods of asymmetric features modulation [24,25] can incorporate cross-layer features in
a gated manner to detect small infrared target, however, their methods ignore the dynamic
modulation between local semantics and local details.

Based on the above discussions and the aforementioned limitations, a novel asymmet-
ric pyramid aggregation network (APANet) is proposed. Specifically, inspired by some
multi-scale feature learning methods [13,15,19,21], we integrate dual attention into different
stages of the network to enhance spatial features on different scales, and then build dense
connections to continuously preserved the enhanced detail information of small infrared
targets in the multi-scale features, especially in deep-level features. Moreover, different
from existing single-level asymmetric features modulation methods [24,25], we construct
the multi-level and multi-path asymmetric local modulation to interact with higher-level
local semantic and lower-level fine details dynamically and sequentially. In detail, the adja-
cent information in multi-scale enhancement features are first aggregated through pair-wise
asymmetric modulation to generate the multi-level inverted pyramid. Among them, the ag-
gregated features in the inverted pyramid can contain heterogeneous information of small
targets from two and more adjacent scales gradually. Then, the recursive asymmetric
modulation is designed to highlight and preserve high-response detail cues of small targets
at different levels of the inverted pyramid. Overall, the consistency of details and semantics
of small targets can be enhanced adaptively under these different gating aggregation paths.

The main contributions of our work are as follows:

1. An end-to-end gated multiple pyramid structure is proposed for detecting small
infrared targets. Specially, the pyramid structure is first built to encode multi-scale
enhanced features of small infrared targets. And then the inverted pyramid structure
is built to decode asymmetric local information of small infrared targets in multi-scale
and multi-level features.

2. A densely connected feature pyramid extraction module is proposed to continuously
enhance and retain the details of small infrared target in different scale features. Spe-
cially, based on the different forms of information flow transmission on the backbone
network, two different variants of feature pyramid extraction are designed, which can
transfer detailed features enhanced by dual attention of small target from lower-level
large-scale space to higher-level small-scale space.

3. An enhanced asymmetric feature pyramid aggregation module is proposed to dynam-
ically highlight the fine details of small targets and suppress complex backgrounds.
The module can modulate and aggregate cross-layer local information in pairwise
asymmetric manner and recursive asymmetric manner, respectively. In particular, two
different aggregation paths, each with two different interaction strategies: parallel
gated fusion and hierarchical gated fusion.

2. Related Work

Our proposed small infrared target detection network mainly involves the following
several aspects.

2.1. Small Infrared Target Detection

Conventional methods design filters or modules based on a priori knowledge. Some
earlier methods based on background estimation (e.g., top-hat morphological filter [3]
and max-mean/max-median filter [26]) were proposed to detect targets by subtracting the
calculated background from the infrared image. Li et al. [27] constructed a combination of
directional morphological filter, multi-directional improved top-hat filter, and histogram
of oriented morphological filter to detect real small objects and eliminate false alarms.
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Obviously, these methods cannot stably adapt to those scenarios where the target size
varies greatly, because different parameters based on morphological structure need to be
specially designed and continuously adjusted for different scenarios.

Some other methods based on local contrastive saliency usually take the difference
between the central pixel and surrounding pixels in the fixed-size local patch as the ratio
of local contrast, and traverse the entire image to measure the local contrast of the image.
For example, both local contrast metric (LCM) [5] and improved local contrast measure
(ILCM) [6] can capture the pixel-contrast of local patches by designing special local filters.
Furthermore, multiscale patch-based contrast measure (MPCM) [28] and relative local
contrast measure (RLCM) [29] are successively proposed. Both MPCM and RLCM can
calculate the local dissimilarity of multi-scale image patches. Compared to MPCM, RLCM
adds the feature representation of the internal intensity about the object. Zhang et al. [7] also
explored the local intensity and gradient of small targets to suppress clutter and enhance
target features. Li et al. [8] first extracted some candidate targets, and then constructed
the local contour contrast descriptor to identify true infrared target. In general, small
objects tend to be those pixels with significant local contrast. However, these methods are
obviously not suitable for the situation where the target is close to the background.

Some methods based on non-local auto-correlation properties assume that the object
and background have a low-rank and sparse relationship, so the task of small object
detection is approximately transformed into the operation of low-rank sparse matrix
factorization. For example, these methods of low-rank based infrared patch-image (IPI)
model [9], patch image model with local and global analysis (PILGA) [10], and partial
sum of tensor nuclear norm (PSTNN) [11] joint weighted l1 norm utilize the non-local self-
correlation property to suppresses background and preserves target. Whereas, the detection
methods that combine the background and target characteristics require large amount
of computation.

In summary, traditional methods rely heavily on certain assumption and prior knowl-
edge, which makes them lack generalization ability beyond prior knowledge when detect-
ing infrared small targets. That is, traditional methods are suitable for specific application
fields, and are limited to other complex application backgrounds.

In recent years, CNN-based methods have been applied to small infrared target detec-
tion. Earlier, Liu et al. [30] designed a 5-layer multi-layer perceptron (MLP) network for
extracting infrared targets. Subsequently, Shi et al. [31] converted the small target detection
task into a noise removal problem, and then combined CNN and denoising autoencoder
for detecting small infrared target. Zhao et al. [32] designed a U-Net structure combined a
semantic constraint mechanism for small infrared target detection. Dai et al. [24] utilized a
bidirectional path with global attention modulation and point-wise attention modulation
to retain more feature information for small infrared target detection. Huang et al. [21]
progressively aggregate local similar pyramid features on the top layer network into low-
level features at different scales sequentially to improve the performance of small infrared
target detection.

Compared to traditional methods, CNN-based methods can automatically learn the
features of small targets adaptively, and can obtain better detection effect significantly.
However, the effect of these methods is still limited because these approaches are less
robust against scenarios such as changeable small targets, dim small targets, and com-
plex backgrounds.

2.2. Pyramid Structure

Some methods have utilized multi-scale pyramid structures to obtain dense receptive
fields. For example, feature pyramid network (FPN) [33] builds a multi-scale pyramid
hierarchical structure based on deep CNN, which upsamples high-level features and
performs cross-level connections with lower-level features from top to down. In order to
simultaneously utilize the the discriminative semantics of high-level network and high-
resolution features of low-level network, it predicts each layer of features to improve



Remote Sens. 2022, 14, 5643 5 of 25

the object detection. In addition, PSPNet [15] performs a spatial PPM on the multi-layer
down-sampled feature maps to capture multi-scale local and global information, and these
local and global cues are combined to make the final prediction more reliable. Unlike
PSPNet [15], adaptive pyramidal context network (APCNet) [19] first learns multi-scale
contextual representations adaptively and then stacks these different scales of contextual
information in parallel like the operation of PPM. DeeplabV2 [16] constructs an ASPP
module, which adopts parallel atrous convolutional layers with different ratios to captures
multi-scale information based on multiple parallel convolutional layers with different
atrous ratios, and then fuse the local and global information by concatenating the different
scales features to fuse the local and global context. Subsequently, DeepLabV3 [17] adds
a global pooling branch to improve the ASPP module based on the parallel structure in
DeepLabv2. Compared with DeepLabv3 [17], DeepLabv3+ [18] uses the entire network of
DeepLabV3 as an encoder to extract features at different scales, and introduces a decoder
module, which fuses features of different layers to improve the detection of object boundary.
DenseASPP [34] constructs several paths to connect a series of atrous convolutions in a
dense manner, which can efficiently generate spatial features covers a larger scale range.

2.3. Attention Mechanism

The attention mechanism can discover important content and give it more focus. As a
way of adaptive learning, attention mechanism has been widely designed and applied
in the related research of deep network. For example, squeeze-and-excitation network
(SENet) [35] capture the global correlation among channels to enhances informative feature
maps. Different from SENet, convolutional block attention module (CBAM) [36] computes
and infers different attention maps along channel and spatial dimensions sequentially
for refining features of different dimensions. While selective kernel network (SKNet) [37]
selects the size of the receptive field dynamically based on different convolution kernel
weights. And spatial gated attention (SGA) [38] structure generates a gated attention mask
to suppress background clutter while focus on regions of interest. In addition, there has
been some research on attention mechanisms to explore the spatial dependencies of pixels.
For example, non-local module (NLM) [39] constructs self-attention mechanism to captures
the contextual dependencies among different pixels in a single spatial map. And dual
attention network (DANet) [20] learns long-range semantic dependencies of both spatial
and channel dimensions by designing spatial and channel attention, respectively.

2.4. Cross-Layer Feature Aggregation

How to better aggregate cross-layer features of deep network has always been a
task worthy of research. So far, some research on multi-layer feature fusion has been
achieved. For example, Both U-Net [13] and SegNet [14] combine coarse features from
lower network layers and rich semantic features from higher network layers hierarchi-
cally. Li et al. [40] concatenated features from different layers directly to enrich feature
representation. Zhang et al. [41] transformed different layers of features into several dif-
ferent resolutions, and these features were then used to output the final prediction result
at a specific resolution. Recently, Li et al. [42] designed the feature pyramid attention
model, which can capture high-level modulation information based on global channel
attention [35] to guide lower-level features in skip connections. Dai et al. [24] proposed
asymmetric contextual modulation (ACM) network based on global attention and point-
wise attention to exchange shallow subtle details and deep rich semantics to detect small
infrared targets. Huang et al. [21] constructed multi-scale feature fusion to aggregate local
similar pyramid fusion features at the top-level network into low-level features at different
scales progressively to improve infrared small target detection. Zhang et al. [25] proposed
attention guided pyramidal contextual structure, which focuses on exploring the contextual
relationships of top-level features and cross-layer asymmetric feature modulation(AFM) to
improve the small infrared target detection.
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3. Method

The APANet method comprises of two principal parts: a densely connected feature
pyramid extraction module (as shown in Figure 2a) and an enhanced asymmetric feature
pyramid aggregation module (as shown in Figure 2b). Specially, multi-scale pyramid
feature extractor based on channel-spatial dual attention (CSDA) modulation is constructed,
and the detailed features in the shallow network are densely transferred to the deep
network to maintain the detailed features of small infrared objects in the multi-scale space.
Moreover, adjacent cross-scale features from the pyramid extraction module are first mined
by pair-wise asymmetric combination (PWAC) to obtain consistency between spatially finer
shallow features and semantically richer deep features of small infrared objects. The PWAC
is performed layer-wise to generate multi-scale aggregated contextual information until
an inverted pyramid is built. Then, a recursive asymmetric fusion (RAF) mechanism is
constructed to further learn the highly responsive target features among cross-level local
contextual interaction of the same scale in the inverted pyramid for the detection of small
infrared objects. In the following, the specific details of the different components in our
proposed APANet will be introduced.

Figure 2. An illustration of the proposed novel asymmetric pyramid aggregation network (APANet).
(a) Densely connected feature pyramid extraction module. Input images are first fed into the feature
pyramid extraction module to extract multi-scale features. Note that, features from different scales
are adaptively enhanced by a channel-spatial dual attention (CSDA), and enhanced features from
the shallow large-scale space are intensively transferred to the deep small-scale space. (b) Enhanced
asymmetric feature pyramid aggregation module. The features of adjacent scales are interacted
bidirectionally through pair-wise asymmetric combination (PWAC), and these features are aggregated
layer-wise in the way of an inverted pyramid. Then, recurrent asymmetric fusion (RAF) is exploited
to successively integrate the leftmost multi-level features in the inverted pyramid.
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3.1. Densely Connected Feature Pyramid Extraction Module

With the increase of spatial pooling operations in the network layer, these dim and
small targets are easily lost in deep-level networks. Therefore, we should construct a densely
connected feature pyramid extraction module to extract multi-level features of infrared
dim and small targets and maintain the features of these targets in deeper network layers.

In general, the resolution of the feature map is high and the detail features are clearer
in the shallow network, while the resolution of the feature map is low and the semantic
information is richer in deeper network. Inspired by the DenseNet [43], we try to transfer
the information of shallow features in the network to the deep features of different scales
one by one. However, unlike DenseNet which uses dense skip connections to bridge
features, we design CSDA to adaptively enhance features at different scales when bridging
features, as shown in Figure 2a.

Specifically, the CSDA(·) comprises of two attention units connected in series. Assum-
ing the spatial feature map in the feature pyramid is si ∈ RC×H×W , where C represents the
channel of si, H represents the height of si, and W represents the width of si, respectively.
Then, si is sequentially processed by the 1D attention map Zc(si) ∈ RC×1×1 in channel
dimension and the 2D attention map Zs(si) ∈ R1×H×W in spatial dimension, as shown in
Figure 3. The channel attention interaction can be communicated as follows:

Zc(si) = σ
[
C2D1(Pmax(si)) + C2D1(Pavg(si))

]
(1)

sc
i = Zc(si)⊗ si (2)

where σ represents the sigmoid function, C2D1(·) represents the shared convolution opera-
tion of the convolution kernel 1× 1, Pavg(·) and Pmax(·) denote the global average pooling
and global maximum pooling, respectively. The Zc(si) is multiplied element-wise with si
to generate the channel attention-enhanced features sc

i .

Figure 3. The illustration of the channel and spatial dual attention module.

Like the channel attention calculation process, the spatial attention calculation can be
summed up as:

Zs(si) = σ
[
C2D7( f c

max(s
c
i ), f c

avg(s
c
i ))
]

(3)

sp
i = Zs(si)⊗ sc

i (4)

where C2D7(·) rerepresents the convolution operation of the convolution kernel 7× 7,
f c
max(·) denotes the maximum pooling, f c

avg(·) denotes average pooling. The Zs(si) is
multiplied element-wise with sc

i to generate the dual attention-enhanced features sp
i .

Then, a skip connection is introduced to add si to sp
i , which can preserve the infor-

mation of the original input features. So far, the multi-dimensional refinement features
enhanced by CSDA(·) are obained.

As shown in Figure 2a, the CSDA is embed into different stages of the backbone
network to enhance multi-scale features. Then, to enhance deep propagation ability of
spatial fine details of small infrared targets, two different densely connected mechanisms
(as shown in Figure 4), densely connected multi-scale feature (DCMSF) and residual-
based densely connected multi-scale feature (rb-DCMSF), are designed according to the
transmission mode of information flow on the backbone network. Obviously, these two
variants can fully retain the spatial details generated by shallow level network in the deep
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level semantic features of the network. However, their difference lies in the spread of
information flow on the backbone network.

Figure 4. Densely connected feature pyramid extraction module. (a) Densely connected multi-scale
features. (b) Resisual-based densely connected multi-scale features.

(1) DCMSF
As shown in Figure 4a, the feature pyramid extraction process of DCMSF is as follows:

si =

{
f 3
c3
(x0), if i = 1

f 3
c3
(CSDA(si−1)), 2 ≤ i ≤ 5

(5)

where x0 denotes the input image, f 3
c3
(·) represents the 3× 3 convolution block of different

stage, and si denote the multi-scale feature generated from different stage.
(2) rb-DCMSF
As shown in Figure 4b, the feature pyramid extraction process of rb-DCMSF is

as follows:

si =


f 3
c3
(x0), if i = 1

f 3
c3
(CSDA(si−1) +

i−1
∑

j=1
Fd(Fc1(sj))), 2 ≤ i ≤ 5

(6)

where Fc1(·) represents the 1× 1 convolution operation, and Fd(·) represents the down-
sampling operation.

Then, based on DCMSF or rb-DCMSF, the densely connected multi-scale feature can
be generated as follows:

xi =


CSDA(si), if i = 1

CSDA(si) +
i−1
∑

j=1
Fd(Fc1(xj)), 2 ≤ i ≤ 5

(7)

Based on the operations of Equation (7), spatial features {xi}i=1,...,5 of five different
scales in the densely connected feature pyramid extraction module can be obtained.

3.2. Enhanced Asymmetric Feature Pyramid Aggregation Module

The existing asymmetric feature fusion [24,25] methods can modulate higher-level
global semantics and lower-level details for small infrared target detection, but they do not
pay attention to the importance of high-level local semantics, nor to the role of intensive
cross-layer modulation in feature fusion. Inspired by multi-scale pyramid feature extrac-
tion [21], an enhanced asymmetric feature pyramid aggregation module is proposed to
intensively modulate cross-layer local information to highlight the characteristics of small
infrared targets, as shown in Figure 2b. It mainly includes two different asymmetric modu-
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lation mechanisms, namely PWAC and RAF. In the following, the enhanced asymmetric
feature pyramid aggregation module will be elaborated.

3.2.1. Pair-Wise Asymmetric Combination

Generally, both semantic features from higher-layer networks and detail features from
lower-layer networks are very important for small infrared target detection. Therefore,
it is worth studying how to better preserve the inherent characteristics of the original
spatial features and better match different spatial features in cross-layer feature fusion.
In particular, we design two variants of PWAC from different perspectives, namely parallel
asymmetric combination (PAC) and hierarchical asymmetric combination (HAC), as shown
in Figure 5. Among them, PAC can more retain the inherent characteristics of the original
features in cross-layer fusion, while HAC can more emphasize the importance of feature
matching in cross-layer fusion.

Figure 5. The illustration of the pair-wise asymmetric combination. (a) Parallel asymmetric combina-
tion. (b) Hierarchical asymmetric combination.

(1) Parallel asymmetric combination
The ACM [24] designs top-down attentional modulation with global average pooling

(GAP) and bottom-up attentional modulation with point-wise convolution (PWConv)
to exchange semantic information and spatial details in a parallel asymmetric manner.
However, this top-down global channel context signal is not necessarily suitable for small
infrared targets. With the increasing number of network layers, dim and small targets
are easily overwhelmed by the background on the high-level features and their features
are greatly weakened in the GAP. Therefore, in our work, local region context should be
exploited to highlight the semantic information of small target in the high-level features.
Specially, top-down region-wise attention is designed to enrich the local semantics of lower-
level features. Along these lines, lower-level features are incorporated with higher-level
local information beyond the limitations of their receptive fields, but their spatial subtleties
are preserved.

Suppose that lower-level features xl contains C channels, and the size of feature map
of each channel is H×W. To decode the details of spatial features, the higher-level features
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xh is up-sampled to the same spatial resolution as xl , and 1× 1 convolution is further used
to adjust the number of channels of xh to C. The conversion process is as follows:

x
′
h = Fc1(FU(xh)) (8)

where FU(·) is the up-sampling operation, Fc1(·) is the 1× 1 convolution.
Then, we sequentially generate fixed-size local regions centered on the pixels of

x
′
h ∈ RC×H×W , and calculate the respective average values of the different local regions, so

that each descriptor can contain information of multiple dense local contexts. Specifically,
the local patch feature Zc

r of the c-th channel is calculated as follows:

Zc
r =

1
s× s

s×s

∑
is ,js=1

Patchi,j(x
′
h), (1 ≤ i ≤W; 1 ≤ j ≤ H) (9)

where the local semantic of each position (i, j) is derived from the average aggregation of
the local patch generated by each position (i, j) in xh

′, and s× s represents the size of the
local patch. In this way, a vector Zr with C channels can be generated.

Inspired by SENet [35], the bottleneck gating is designed to learn the the attention
vector H(x) ∈ RC×H×W of Zr. Specially, it consists of two different convolution layers with
different functions, and the gating mechanism for generating attention map is symbolized
as follows:

H(x) = σ[BN(Wiδ(BN(WrZr)))] (10)

where σ and δ denote sigmoid and ReLU functions, respectively. Wr and Wi represent the
1× 1 convolution, Wr is used to reduce the feature dimension with the ratio r, and Wi is used
to restore the feature dimension back to C. And BN is the batch normalization operation.

Then, the lower-level features xh→l ∈ RC×H×W of the local semantic modulation can
be obtained via

xh→l = H(x)⊗ xl (11)

where ⊗ represents element-wise multiplication.
Meanwhile, the bottom-up point-wise attention is designed to enrich the semantic

information of higher-level features with fine subtleties of lower-level features. In contrast
to the top-down region-wise attention, this modulation pathway utilizes the point-wise
channel interactions at each spatial location and propagates the local detail information
in a bottom-up way. Specially, the modulation mechanism consists of two different PW-
Conv [24] to aggregate channel feature context, and the attention vector L(x) ∈ RC×H×W

of bottom-up modulation is calculated via a bottleneck gating as follows:

L(x)=σ(BN(PWConv2(δ(BN(PWConv1(xl)))))) (12)

where σ means sigmoid function, δ means ReLU function. PWConv1 and PWConv2 have
kernel sizes of C/r × C × 1× 1 and C × C/r × 1× 1, respectively. And BN is the batch
normalization operation.

Then the higher-level features xl→h ∈ RC×H×W of local detail modulation can be
obtained via

xl→h = L(x)⊗ x
′
h (13)

where ⊗ represents element-wise multiplication.
In general, obtaining dense multi-scale information can enrich the feature represen-

tation of small targets. Therefore, it is necessary to explore different details and semantic
information in different scale spaces. Different from the common multi-scale feature ag-
gregation method [13–18] and the single-level asymmetric cross-layer feature aggregation
method [24,25], we design a gated inverted pyramid to utilize multi-scale information
in this work. Specially, as shown in Figure 5a, the top-down region-wise attention and
bottom-up point-wise attention are applied to adjacent xh and xl to make the xl enriched in
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semantics and xh is enriched in details, that is, semantic-guided detail features and detail-
guided semantic features are generated simultaneously. Then both of them are combined
to enhance the consistency between point-wise fine details and point-wise local semantics
between adjacent scale features. Next, as shown in Figure 2b, {xs}s=1,...,5 form the output
of densely connected feature pyramid extraction module is taken as the first layer of the
inverted pyramid, the adjacent feature maps of these five nodes are aggregated based on
PAC in a pair-wise manner. Then, pair-wise modulated local context aggregation features
of the first-level are generated. The calculation process is as following:

x45 = Fc3((H(ρ(x
′
5))⊗ x4)⊕ (L(x4)⊗ x

′
5)) (14)

x34 = Fc3((H(ρ(x
′
4))⊗ x3)⊕ (L(x3)⊗ x

′
4)) (15)

x23 = Fc3((H(ρ(x
′
3))⊗ x2)⊕ (L(x2)⊗ x

′
3)) (16)

x12 = Fc3((H(ρ(x
′
2))⊗ x1)⊕ (L(x1)⊗ x

′
2)) (17)

where Fc3(·) is the 3× 3 convolution, ρ(·) is the region-wise aggregation in Equation (9), ⊗
is element-wise multiplication, and ⊕ is element-wise summation.

We can regard x45, x34, x23 and x12 as each node in the second layer of the inverted
pyramid generated by PAC, each of them includes two adjacent scales of information (i.e.,
one from the lower level features and the other from the higher level features). Subsequently,
the x45, x34, x23 and x12 are further aggregated based on PAC, and pair-wise modulated
local context aggregation features of the second-level are as follows:

x345 = Fc3((H(ρ(x
′
45))⊗ x34)⊕ (L(x34)⊗ x

′
45)) (18)

x234 = Fc3((H(ρ(x
′
34))⊗ x23)⊕ (L(x23)⊗ x

′
34)) (19)

x123 = Fc3((H(ρ(x
′
23))⊗ x12)⊕ (L(x12)⊗ x

′
23)) (20)

where x345, x234, and x123 are regarded as three nodes in the third layer of the inverted
pyramid, and each node contains three adjacent scales information.

Likewise, pair-wise modulated local context aggregation features of the third-level are
generated, as follows:

x2345 = Fc3((H(ρ(x
′
345))⊗ x234)⊕ (L(x234)⊗ x

′
345)) (21)

x1234 = Fc3((H(ρ(x
′
234))⊗ x123)⊕ (L(x123)⊗ x

′
234)) (22)

where x2345 and x1234 are regarded as two nodes in the fourth layer of the inverted pyramid,
and each node contains four adjacent scales information.

Then, pair-wise modulated local context aggregation features of the fourth-level is
generated, as follows:

x12345 = Fc3((H(ρ(x
′
2345))⊗ x1234)⊕ (L(x1234)⊗ x

′
2345)). (23)

Similarly, x12345 is regarded as one nodes in the fifth layer of the inverted pyramid,
and each node contains five adjacent scales information.

(2) Hierarchical asymmetric combination
Similar to ACM [24], AFM [25] also modulates global semantics of high-level features

and point-wise details of low-level features asymmetrically. The AFM merges cross-layer
features in a hierarchical manner, but it neither fully explores feature matching in different
spatial information fusion, nor designs local semantic signals of high-level features to
modulate local details of cross-layer fusion features. In our work, to highlight the local
presentation of small targets in cross-layer feature fusion, the convolution operation is first
used to better match the compatibility of different spatial features, and then the local context
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information of higher-level features and the point-wise details of lower-level features are
designed to progressively modulate the fused features. As shown in Figure 5b, xh is first
transformed into x

′
h through formula (8). Subsequently, x

′
h and xl are fused by element-wise

addition and 3× 3 convolution learning, and then x
′
h is used to generate region-aware

attention map to modulate cross-level fusion features. Next, xl is applied to generate
point-aware attention map to further modulate the cross-level fusion features embedded
in the high-level regions, and finally the hierarchical asymmetric fusion features xh↔l is
obtained. The conversion process of HAC is as follows:

xh↔l = Fc3((xl ⊕ x
′
h))⊗ H(x

′
h)⊗ L(xl). (24)

Subsequently, multi-scale features {xs}s=1,...,5 are aggregated based on HAC in an
inverted pyramid manner, as shown in Figure 2b. The inverted pyramid aggregation
process based on HAC is similar to Equations (14)–(23) , and we will not describe it in
detail here.

3.2.2. Recurrent Asymmetric Fusion

In PWAC, we have combined {xs}s=1,...,5 to generate node features x45, x34, x23, x12,
x345, x234, x123, x2345, x1234 and x12345 of different layers in the inverted pyramid. More
importantly, x1, x12, x123, x1234 and x12345 have the same size, and these features are
located in different layers of the inverted pyramid, that is, they can be represented as
x12345 → x1234 → x123 → x12 → x1 from deep-level network to shallow-level network. Sim-
ilarly, since different layer features have different subtle detail and semantic information,
the feature associations among them are mined to better highlight the features of small
infrared targets.

Inspired by the recurrent neural network [44], the RAF mechanism is designed, which
recursively fuses multi-level feature in the inverted pyramid starts from x12345 to x1,
as shown in Figure 6. Obviously, the process of RAF is obviously different from the
process of PWAC. Like the structure of PWAC, we also design two variants of recursive
units in the RAF from different perspectives, namely RAF based on parallel gating and
RAF based on hierarchical gating.

Figure 6. The illustration of the recurrent asymmetric fusion. (a) Recurrent asymmetric fusion based
on parallel gating. (b) Recurrent asymmetric fusion based on hierarchical gating.
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(1) RAF based on parallel gating
As shown in Figure 6a, the conversion process of RAF based on parallel gating is

as follows:
xa = Fc3((H(ρ(x12345))⊗ x1234)⊕ (L(x1234)⊗ x12345)) (25)

xb = Fc3((H(ρ(xa))⊗ x123)⊕ (L(x123)⊗ xa)) (26)

xc = Fc3((H(ρ(xb))⊗ x12)⊕ (L(x12)⊗ xb)) (27)

xd = Fc3((H(ρ(xc))⊗ x1)⊕ (L(x1)⊗ xc)) (28)

where Fc3( · ) is the 3× 3 convolution, ρ(·) is the region-wise aggregation in Equation (9),
⊗ is element-wise multiplication, and ⊕ is element-wise summation.

(2) RAF based on hierarchical gating
As shown in Figure 6b, the conversion process of RAF based on hierarchical gating is

as follows:
xa = Fc3((x12345 ⊕ x1234))⊗ H(ρ(x12345))⊗ L(x1234) (29)

xb = Fc3((xa ⊕ x123))⊗ H(ρ(xa))⊗ L(x123) (30)

xc = Fc3((xb ⊕ x12))⊗ H(ρ(xb))⊗ L(x12) (31)

xd = Fc3((xc ⊕ x1))⊗ H(ρ(xc))⊗ L(x1) (32)

Subsequently, the convolution operation is employed to reduce the amount of channels
to generate final spatial map xd for the detection of dim and small infrared targets.

3.3. End-to-End Learning

In summary, an end-to-end APANet is proposed to explore the task of infrared dim
and small target detection. Aiming at the serious category imbalance problem between
background and small objects in infrared images, a Soft-IoU loss function [45] is adopted
for this highly imbalanced object detection task. Given a sample image x, Θ represents the
network parameters of the proposed APANet, which is defined as follows:

lso f t-Iou(x, s) =
∑
i,j

pi,j · si,j

∑
i,j

pi,j + xi,j − pi,j · si,j
(33)

where p = σ(APANet(x, Θ)) ∈ RH×W denotes the final prediction map and s ∈ RH×W

denotes the labeled mask.
During network training, the parameter Θ is learned by minimizing the following

total loss function over a given N training samples:

Θ = arg min
Θ

N

∑
n=1

lso f t-Iou(σ(APANet(x, Θ)), s) (34)

Obviously, APANet is an end-to-end optimized model with the aim of minimizing
Equation (34).

4. Result

In this part, we first describe the benchmark dataset and evaluation strategy. Next, we
describe the specific implementation details of the proposed method. Then, the proposed
method is evaluated for quantitative and qualitative comparison with the currently most
advanced infrared small target detection methods.

4.1. Dataset Description

The public SIRST dataset [24] is exploited to systematically evaluate the validity and
robustness of the proposed APANet. This dataset consists of 427 images, all of which are
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typical infrared small target detection images. Among them, the target occupies a small
area of the entire image, and many targets are quite blurred and swamped in the complicate
and messy background. More significantly, since the dataset does not contain images of
successive frames, this makes it more difficult to improve the robustness of the model.
For the SIRST dataset, we have randomly selected 341 images for model training and the
remaining 86 images for model testing. In addition, the MDFA dataset [46] containing
10,000 training samples and 100 test samples is also used to evaluate the performance of
the proposed APANet. All image samples in MDFA dataset are generated by the random
combination of the real diversified background image and real small target or simulated
them that obey Gaussian distribution. And the test samples do not contain any images in
the training samples.

4.2. Evaluation Metrics

To more objectively and carefully evaluate the performance of the proposed APANet
on two different datasets, the classic semantic segmentation evaluation metrics such as
Precision, Recall, F-measure, and mean intersection over union (mIoU) are used [25].
F-measure can consider the Recall and Precision simultaneously, and it can be used as a
reliable indicator to measure overall quality of segmentation. The F-measure is defined as:

F-measure =
2× Precision× Recall

Precision + Recall
(35)

As a pixel-level evaluation metric, mIoU can contour description capability of the
model. The mIoU is defined as:

mIoU =
At ∩ Ad
At ∪ Ad

(36)

where At and Ad represent the real target region and detected region, respectively.
In addition, the receiver operating characteristic (ROC) curve is exploited to express

the dynamic relationship between true positive rate (TPR) and false positive rate (FPR).
Meanwhile, the area under the curve (AUC) is also used as a key indicator to quantitatively
evaluate ROC.

4.3. Implementation Details

In the proposed APANet, a backbone of pyramid feature extraction is constructed,
which consists of 5 stages. Each stage consists of 3 convolutional layers, and all but the first
stage are followed by a 2D average pooling layer to reduce the spatial resolution of features.
The design details of different stages of backbone network in APANet are shown in Table 1.

Table 1. The design details of different stages of backbone in APANet.

Stage Output Backbone

Stage1 256× 256 [3× 3conv, 16]× 3
Stage2 128× 128 AvgPool2d; [3× 3conv, 32]× 3
Stage3 64× 64 AvgPool2d; [3× 3conv, 64]× 3
Stage4 32× 32 AvgPool2d; [3× 3conv, 128]× 3
Stage5 16× 16 AvgPool2d; [3× 3conv, 256]× 3

Our proposed APANet is evaluated on two public infrared small target detection
datasets. In addition, the parameter of region size in top-down modulation of APANet is
set to 8. In particular, the AdaGrad [47] optimizer is used to train the proposed APANet,
and we set the initial learning rate to 0.05, the weight decay of 1× 10−5, and the batch
size to 5. The size of the infrared image is resized to 256 × 256 pixels, and then they
are input into the network. Moreover, the densely connected feature pyramid extraction
module in our approach has two variants of DCMSF and rb-DCMSF, while the enhanced
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asymmetric feature pyramid aggregation module including PWAC (i.e., PAC and HAC)
and RAF (i.e., RAF based on parallel gating and RAF based on hierarchical gating) both
contain two variants of parallel fusion and hierarchical fusion. In our method, PWAC
and RAF simultaneously choose parallel gated fusion or hierarchical gated fusion, so our
method has four variants, namely APANet-P (i.e., it consists of DCMSF, PAC, and RAF
based on parallel gating), APANet-H (i.e., it consists of DCMSF, HAC, and RAF based
on hierarchical gating), APANet-rb-P (i.e., it consists of rb-DCMSF, PAC, and RAF based
on parallel gating), and APANet-rb-H (i.e., it consists of rb-DCMSF, HAC, RAF based on
hierarchical gating), respectively.

4.4. Comparison to State-of-the-Art Methods

To comprehensively verify the detection performance of APANet, quantitative evalua-
tions and qualitative visualizations are performed on the benchmark dataset. Several main-
stream methods in recent years are selected for comparison with APANet. First, we compare
it with commonly used small infrared target detection methods based on model-driven
design (i.e., IPI [9], MPCM [28], RLCM [29], FKRW [48], PSTNN [11], NRAM [49]). Table 2
presents the detailed hyperparameter settings for these model-driven methods. Moreover,
we also compare it with recently proposed small infrared target detection methods based
on data-driven CNN (i.e., ACM_FPN [24], ACM_U-Net [24], VGG16-FAMCA-LSPM [21],
AGPCNet [25]).

Table 2. Hyper-parameters settings of the model-driven methods..

Methods Hyper-parameter Settings

IPI [9] Patch size: 50× 50, sliding step: 10, ε = 10−7, λ = 1/
√

max(M, N)

MPCM [28] Window size: 3× 3, 5× 5, 7× 7, K = 5
RLCM [29] Kth = 5, K1 = [2, 5, 9], K2 = [4, 9, 16]
FKRW [48] Window size: 11× 11, K = 4, p = 6, β = 200,
PSTNN [11] Patch size: 40× 40, sliding step: 40, ε = 10−7, λ = 0.6/

√
max(n1, n2) ∗ n3

NRAM [49] Patch size: 30× 30, sliding step: 10, γ = 0.002, ε = 10−7, λ = 1/
√

min(M, N)

4.4.1. Quantitative Evaluation

Table 3 presents the experimental results for quantitative evaluation on SIRST dataset.
As shown in Table 3, IPI outperforms our APANet-P on Recall and AUC metrics, but IPI is
significantly inferior to our APANet-P on other evaluation metrics. Our APANet-P achieves
the best effect on all other metrics except AUC and Recall. And on more representative
mIoU and F-measure metrics, our APANet-P maintains the highest mIoU (0.7060) while
achieving the highest F-measure (0.8277). The significant increase in these values indicates
that our proposed APANet can mine discriminative features that are robust to diverse
scenarios and can improve the accuracy of shape matching for detection of infrared small
target. Moreover, the F-measure can evaluate the effect of the method more objectively
because it comprehensively considers Precision and Recall. A single high precision or recall
indicator cannot really achieve the desired results. For example, MPCM, RLCM, and IPI
achieve the higher Recall, but these methods seriously sacrifice Precision. However, our
proposed APANet can achieve a better balance between recall and precision. Overall, data-
driven CNN methods achieve significant improvements over model-driven traditional
methods. It is due to the fact that empirical setting of hyperparameters in traditional
methods limits the generalization performance of these methods. While compared to data-
driven CNN methods (i.e., ACM_FPN, ACM_U-Net, VGG16-FAMCA-LSPM, AGPCNet),
APANet achieves significant improvements. This is attributed to our local-enhanced
asymmetric pyramid aggregation module tailored for the detection of infrared small target.
Among them, the detection effect of VGG16-FAMCA-LSPM is very poor, because the
network parameters of this method are large, and more data is needed to train the network
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better, which is obviously not suitable for training and evaluating the effect of small data
sets. Of course, it also shows the importance of designing a reasonable network structure.

Table 3. Comparison with different detection methods on SIRST dataset.

Methods Precision Recall mIoU F-measure AUC

MPCM [28] 0.1313 0.7181 0.1249 0.2220 0.8580
RLCM [29] 0.0406 0.7975 0.0402 0.0773 0.8933
FKRW [48] 0.0017 0.4688 0.0017 0.0034 0.6525

IPI [9] 0.2221 0.8959 0.2165 0.3560 0.9472
NRAM [49] 0.6452 0.5258 0.4079 0.5794 0.7628
PSTNN [11] 0.7431 0.6348 0.5205 0.6847 0.8173

ACM_FPN [24] 0.7098 0.6948 0.5411 0.7023 0.8761
ACM_UNet [24] 0.7359 0.7410 0.5854 0.7385 0.8880

VGG16-FAMCA-LSPM [21] 0.3392 0.4347 0.2354 0.3811 0.7171
AGPCNet [25] 0.8186 0.7546 0.6465 0.7853 0.8868

Ours

APANet-P 0.8364 0.8192 0.7060 0.8277 0.9147
APANet-H 0.8089 0.8192 0.6864 0.8140 0.9133

APANet-rb-P 0.8143 0.8231 0.6930 0.8187 0.9185
APANet-rb-H 0.8141 0.7863 0.6666 0.7999 0.9071

In addition, we further evaluate the performance of APANet on the MDFA dataset,
as shown in Table 4. As can be seen in Table 4, the data-driven CNN approach is also
significantly better than the model-driven traditional approach. In addition, all four
variants of our proposed APANet outperform the parallel asymmetric cross-layer fusion
methods ACM_FPN and ACM_U-Net, and the multi-scale feature fusion method VGG16-
FAMCA-LSPM. Compared with the hierarchical asymmetric cross-layer fusion method
AGPCNet, the effect of APANet-P and APANet-H is inferior to that of AGPCNet on
two more representative indicators, mIoU and F-measure. This is because the backbone
network of AGPCNet adopts ResNet [50] architecture to extract features, while APANet-P
and APANet-H only fuse features of different scales. Our APANet-rb-P and APANet-
rb-H methods exploit the idea of residual design, and their performance is significantly
better than that of AGPCNet on mIoU and F-measure. On the whole, our asymmetric
local attention modulation method combining point-wise information and region-wise
information is superior to the asymmetric attention modulation method based on global
information and point-wise information.

From Tables 3 and 4, it can be seen that the APANet-P and APANet-rb-P based on
cross-layer parallel fusion perform better than the corresponding APANet-H and APANet-
rb-H based on cross-layer hierarchical fusion. This suggests that in cross-layer feature
fusion, parallel local asymmetric modulation can retain more intrinsic characteristics of
the original features, and thus can better show the discriminant details of small infrared
targets. On the SIRST dataset, the effects of APANet-P and APANet-H based on multi-scale
feature fusion are better than those of the corresponding APANet-rb-P and APANet-rb-H
based on multi-scale feature residual fusion. Nevertheless, on MDFA dataset, the results of
APANet-rb-P and APANet-rb-H methods are better than those of APANet-P and APANet-
H. Obviously, our densely connected multi-scale feature extraction method is more suitable
for feature learning of small sample data. While our residual-based densely connected
multi-scale feature extraction method is more suitable for feature learning of large-scale
data with multiple kinds of backgrounds.

To further describe the effectiveness of our APANet, we also provide ROC curves
obtained by different detection methods to visualize the comparison of AUC, as shown
in Figure 7. Among them, we choose the best APANet method on the two indicators of
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mIoU and F-measure as the benchmark for two different data sets. Obviously, on the SIRST
dataset, APANet outperforms all comparative data-driven and model-driven infrared small
target detection methods. On the MDFA dataset, the data-driven method is better than the
model-driven method. However, the effect of APANet is roughly the same as that of two
other data-driven methods, ACM_FPN and AGPCNet. This is because the MDFA dataset
is a large-scale synthetic data with high noise, which seriously affects the discriminative
feature learning of these data-driven deep networks. In addition, although the effect of
APANet on AUC evaluation index is not obvious compared with ACM_FPN and AGPCNet,
it still has more advantages in the evaluation of the two key indicators, mIoU and F-
mesure. By comparing (a) and (b) in Figure 7, it can be seen that more real data sets and
more accurate data annotation are more conducive to the network to learn discriminative
features. In a word, a series of experimental results show that the proposed APANet has
more advantages in background suppression, target detection and segmentation.

Table 4. Comparison with different detection methods on MDFA dataset.

Methods Precision Recall mIoU F-measure AUC

MPCM [28] 0.0392 0.6439 0.0383 0.0738 0.8168
RLCM [29] 0.0318 0.6970 0.0313 0.0608 0.8403
FKRW [48] 0.0135 0.3851 0.0132 0.0260 0.6815

IPI [9] 0.2880 0.6290 0.2462 0.3951 0.8139
NRAM [49] 0.4669 0.4082 0.2784 0.4356 0.7039
PSTNN [11] 0.4520 0.4719 0.3002 0.4617 0.7358

ACM_FPN [24] 0.5247 0.7092 0.4318 0.6032 0.8748
ACM_UNet [24] 0.5780 0.6551 0.4431 0.6141 0.8440

VGG16-FAMCA-LSPM [21] 0.5673 0.6281 0.4246 0.5961 0.7757
AGPCNet [25] 0.5820 0.7098 0.4701 0.6396 0.8554

Ours

APANet-P 0.5771 0.6800 0.4538 0.6243 0.8221
APANet-H 0.5507 0.7104 0.4498 0.6205 0.8579

APANet-rb-P 0.6162 0.6772 0.4763 0.6453 0.8469
APANet-rb-H 0.5862 0.7088 0.4724 0.6417 0.8589

Figure 7. Illustration of ROC curve compared with other methods. (a) Comparison of different
methods on SIRST dataset. (b) Comparison of different methods on MDFA dataset.
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4.4.2. Qualitative Evaluation

The qualitative results obtained by different small target detection methods on some
infrared example images are shown in Figure 8. Among them, green circles represent
detection targets, while red circles represent false alarms. Meanwhile, Figure 9 shows
the 3D visualization qualitative results of example images, ground truth, and different
detection methods to facilitate the observation of target and clutter in the images. As shown
in Figures 8 and 9, the model-driven traditional methods are prone to generate multiple false
alarms and missing areas in complex scenes, because the traditional detection methods
relies largely on the hand-crafted features extracted by artificial empirical design and
cannot adapt the changes of the target size and scene categories. Compared with the
traditional detection method, the CNN-based detection methods (i.e., ACM_FPN and
AGPCNet) obtain better visualization results. However, ACM_FPN and AGPCNet also
seem to generate some false alarms. Obviously, APANet-P is more robust for detecting
small infrared targets in more scenarios, because it can locate more precise target position
and segment more accurate target appearance. This is due to some different modules
we designed can promote the APANet-P better to adapt the various changes of clutter
background, target shape and target size, so that better detection and segmentation results
can be obtained.

Figure 8. Qualitative outputs of different small infrared target detection methods.
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Figure 9. 3D visualization results of different small infrared target detection methods.

Furthermore, Figure 10 shows the visualization results obtained by four different vari-
ants of our APANet on some infrared example images. In order to present the segmentation
outputs more intuitively and finely, we enlarge the target area to the lower right corner of
the image. As shown in Tables 3 and 4, the overall effect of APANet-P is better than that
of APANet-H. However, as shown in Figure 10, the design of APANet-H can detect dense
multi-targets in more complex scenes, while the design of APANet-P will have some missed
detections for dense multi-target scenes, which indicates that the design of hierarchical
fusion is more suitable for dense multi-object scenes. In addition, our proposed APANet-P,
APANet-H, APANet-rb-P and APANet-rb-H have different detection effects on different
amounts of small infrared target datasets. As shown in Figure 10, the residual-based
densely connected multi-scale feature extraction methods have more advantages than the
densely connected multi-scale feature extraction methods in the accurate detection of the
edge of the extended target with tens of pixels, while in the scene of multiple small target
detection where the target is close to the surrounding background, it may bring some false
alarms, or even split the whole target. Overall, although our proposed APANet can achieve
good performance, it also has some limitations in some scene images that cannot segment
the appearance contours of small infrared targets accurately.
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Figure 10. Segmentation results of proposed APANet on some infrared images. (a) The original
image. (b) The ground truth. (c–f) The segmentation result of proposed APANet-P, APANet-H,
APANet-rb-P, and APANet-rb-H, respectively.

5. Discussion

As mentioned earlier, our proposed APANet consists of some different components.
In this section, we discuss our method in detail, and conduct ablation studies to demon-
strate the effectiveness and contribution of each component to overall network model.
Especially, using APANet-P as the baseline, and ablation analysis is conducted on the SIRST
dataset. Firstly, the rationality of the densely connected CSDA design is verified, and then
the effectiveness of different asymmetric feature learning is also verified. Furthermore,
to conduct ablation experiments more fairly, we ensure that all parameter settings (e.g.,
image size, batch size, learning rate, optimizer, etc.) in ablation experiments are exactly
the same.

All comparison methods of ablation analysis are as follows:
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• APANet-P_without_DCCS: Remove the setting of dense connection based on CSDA
of pyramid extraction module in APANet-P, that is, only the multi-scale features gen-
erated by the 5-stage convolutional layers are used for feature pyramid aggregation.

• APANet-P_without_RAF: Remove the setting of RAF of the asymmetric pyramid
aggregation module in APANet-P, that is, only using the feature x12345 generated in
the PWAC for small target detection.

• APANet-P_sum: Replace the setting of RAF of asymmetric pyramid aggregation
module in APANet-P with the direct feature fusion, that is, the features summed by
x1, x12, x123, x1234 and x12345 are used for small target detection.

• APP-Net: Replace the settings of top-down region-wise attention and bottom-up
point-wise attention of the asymmetric pyramid aggregation module in APANet-P
with top-bottom point-wise attention and bottom-up point-wise attention.

• ALP-Net: Replace the settings of top-down region-wise attention and bottom-up
point-wise attention of the asymmetric pyramid aggregation module in APANet-P
with top-down region-wise attention and bottom-up region-wise attention.

• APANet-P-6: Modify the parameter size of the local region in the top-down region-
wise attention of the asymmetric pyramid aggregation module in APANet-P to 6.

• APANet-P-10: Modify the parameter size of the local region in the top-down region-
wise attention of the asymmetric pyramid aggregation module in APANet-P to 10.

• APANet-P-12: Modify the parameter size of the local region in the top-down region-
wise attention of the asymmetric pyramid aggregation module in APANet-P to 12.

• APANet-P: Our proposed novel asymmetric pyramid aggregation network, which
consists of DCMSF, PAC, and RAF based on parallel gating.

5.1. Effectiveness of Densely Connected Feature Extraction

In order to keep the spatial details of small targets in the features of the high-level
network, a densely connected pyramid feature extraction mechanism combined with
dual attention is designed in our APANet to transfer the attention-modulated shallow
features to the attention-modulated deep features. Here, the design of dense cross-layer
connections incorporating dual attention is removed to demonstrate that the design is
useful for enriching feature representations of small targets. Compared with the APANet-P
method, the APANet-P_without_DCCS method has a large performance degradation in the
two indicators of mIoU and F-measure, as shown in Table 5. This shows that designing a
densely connected dual attention mechanism in pyramid extraction module can effectively
transfer the low-level large-scale spatial features in the network to the deep small-scale
spatial features, so that the feature detail of dim and small targets can be better preserved
in the multi-scale spaces at different layers.

5.2. Effectiveness of Pair-Wise Asymmetric Combination

In particular, pair-wise and asymmetric multi-layer feature combination based on
top-down region-wise attention and bottom-up point-wise attention is also a key part of
pyramid aggregation module in APANet. To demonstrate the effectiveness of asymmet-
ric contextual modulation, two symmetric multi-layer feature fusion configurations are
designed, namely APP-Net and ALP-Net. As shown in Table 5, the performance of APP-
Net based on pixel-wise symmetric fusion and ALP-Net based on region-wise symmetric
fusion shows performance degradation in the two indicators of mIoU and F-measure,
while ALP-Net performs significantly better than APP-Net. These fully demonstrate that
our designed pair-wise asymmetric multi-layer feature fusion is reasonable and effective.
Our method is designed based on the interpretability research of deep networks, that is,
low-level networks focus on the detail features, and high-level networks focus on the se-
mantic features. Meanwhile, it also takes into account the particularity of infrared dim and
small targets. Therefore, the feature modulation from higher-level network to lower-level
network designs the region-wise perception mechanism, because local regions can contain
more semantics than a single pixel, and region-wise perception is also applicable to the
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local characteristics of infrared dim and small targets. However, low-level features adopt
pixel-wise perception to focus on the detail information of target to modulate the high-level
semantic features.

Table 5. Model ablation analysis on SIRST dataset.

Methods mIoU F-measure

Effectiveness of densely connected feature extraction

APANet-P_without_DCCS 0.6444 0.7837

Effectiveness of pair-wise asymmetric combination

APP-Net 0.6464 0.7852
ALP-Net 0.6829 0.8116

Effectiveness of recurrent asymmetric fusion

APANet-P_without_RAF 0.6959 0.8207
APANet-P_sum 0.6865 0.8141

Influence of the size of the local region in region-wise attention

APANet-P-6 0.6790 0.8088
APANet-P-10 0.6749 0.8059
APANet-P-12 0.6799 0.8095

Ours

APANet-P 0.7060 0.8277

5.3. Effectiveness of Recurrent Asymmetric Fusion

The RAF mechanism is designed to fuse the multi-level spatial features of the same
scale in the inverted pyramid generated by the PWAC mechanism to enrich the feature rep-
resentation of small targets. Likewise, to demonstrate the effectiveness of RAF mechanism,
two variants are designed, APANet-P_without_RAF and APANet-P_sum, respectively.
APANet-P_without_RAF only utilizes the top-level feature generated by PWAC for small
target detection, while APANet-P_sum simply fuses features from different layers gener-
ated by PWAC mechanism for detection of small target. As shown in Table 5, the methods
of APANet-P_without_RAF and APANet-P_sum also show different degrees of perfor-
mance degradation in mIoU and F-measure compared to the APANet-P method. This
shows that recursively fusing the features generated by PWAC in the inverted pyramid
can more obviously exploit the advantages of feature fusion at different layers. In addition,
the APANet-P_sum method is even worse than the APANet-P_without_RAF method on
the two indicators of mIoU and F-measure, which show that a reasonable feature fusion
strategy can take advantage of multi-layer feature fusion. However, simple multi-layer fea-
ture fusion does not necessarily promote performance improvement, and even introduces
noise to degrade performance.

5.4. Influence of the Size of the Local Region in Region-Wise Attention

The semantic features of high-level networks are richer and more discriminative.
Given the unique characteristics of small objects, we try to embed the local semantics of
higher-level features into lower-level features to enrich the semantics of low-level features.
In order to evaluate the influence of the size setting of local regions in high-level features on
small object detection, we conduct ablation experiments on the parameter of region size in
top-down region-wise attention. The value of the region size in APANet-P is set to 8, and we
separately change the value of the region size to 6, 10, and 12, which are called APANet-P-6,
APANet-P-10, and APANet-P-12, respectively. Specially, it can be seen from Table 5 that
the methods of APANet-P-6, APANet-P-10 and APANet-P-12 have different degrees of
performance degradation in the two indicators of mIoU and F-measure compared to the
APANet-P method. This shows that a reasonable setting of the parameter value of the
region size in top-down region-wise attention can better detect the small infrared targets.
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6. Conclusions

In this paper, different gated attention mechanisms are designed in our APANet
framework to adaptively capture multi-scale information of target and effectively enhance
local target features for small infrared target detection. Especially, APANet mainly contains
two feature pyramid sub-modules with different roles. In the feature pyramid extraction
module, multi-scale spatial features extractor containing densely connected dual attention
mechanisms is designed to learn multi-scale detailed features of different layers of infrared
targets, which can alleviate dim and small targets being lost in deeper networks. In the
feature pyramid aggregation module, pair-wise asymmetric modulation with region-wise
attention and point-wise attention is first constructed to merge cross-layer features of
adjacent scales layer-wise until an inverted pyramid is generated. Moreover, the gated
aggregation path of inverted pyramid can continuously emphasize the consistency between
details and semantics of small target in multi-scale features, thus enhancing local response
of small target and suppress complex background interference. Next, recursive asymmetric
modulation is introduced to further improve the discrimination of small target along multi-
level high-resolution features for final small infrared target detection. In addition, we have
designed different variants for different components of APANet from different perspectives
to better demonstrate the scalability of our methods.

Extensive experiments are conducted on two public datasets to illustrate that our
APANet has the capacity to cope with small object detection tasks of complex scenes,
and ablation studies also reveal the effectiveness of each module in our APANet. Therefore,
the experimental results of our APANet can demonstrate the effectiveness of diverse cross-
level local contextual modulation.
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