
Citation: Hu, J.; Ye, B.; Bai, Z.; Feng,

Y. Remote Sensing Monitoring of

Vegetation Reclamation in the

Antaibao Open-Pit Mine. Remote Sens.

2022, 14, 5634. https://doi.org/

10.3390/rs14225634

Academic Editors: Olena Dubovyk

and Tobias Landmann

Received: 2 October 2022

Accepted: 3 November 2022

Published: 8 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Remote Sensing Monitoring of Vegetation Reclamation in the
Antaibao Open-Pit Mine
Jiameng Hu 1, Baoying Ye 1,2 , Zhongke Bai 1,2,3,* and Yu Feng 1

1 School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
2 Key Lab of Land Consolidation and Rehabilitation, The Ministry of Natural Resources, Beijing 100035, China
3 Technology Innovation Center of Ecological Restoration Engineering in Mining Area, The Ministry of Natural

Resources, Beijing 100083, China
* Correspondence: baizk@cugb.edu.cn

Abstract: After the regreening of the open-pit mine dump, vegetation usually needs to be managed
and protected manually for several years before it reaches stability. Due to the spontaneous combus-
tion of coal gangue, surface collapse, and other reasons, secondary damage may occur at any time.
Regreening monitoring plays a vital role in the restoration and reconstruction of the mining ecosystem
and can provide support for the timely replenishment of seedlings in the damaged area. In this study,
remote sensing images were collected from 1986 to 2020 to obtain the NDVI distribution of dumps in
the Antaibao open-pit coal mine. In order to obtain the overall growth law of regreening vegetation
over time, the study adopted the unary regression analysis method and tested the correlation between
NDVI and time by the Pearson correlation coefficient. However, through the Sen+Mann–Kendall
trend analysis, it was found that there were differences in the trends of NDVI within the same dump.
Next, by means of the Mann–Kendall mutation test and interactive interpretation, information, such
as stable nodes of different regreening vegetation and vegetation growth patterns in degraded areas,
were obtained. Through the above methods, the following conclusions were drawn: (1) The earlier the
dumps were regreened, the more the areas were covered by significantly improved vegetation. In this
study: 97.31% (the proportion of significantly improved vegetation in the south dump) >95.58% (the
proportion in the west dump) >86.56% (the proportion in the inner dump) >79.89% (the proportion
in the west expansion dump). (2) Different vegetation types have different time nodes for reaching
stability. It takes about three years for wood, shrub, and a mix of grass, shrub, and wood to reach
stability, but only one year for grass. (3) The destruction in mining areas is expansive and repeatable.
Monitoring the growth patterns of regreening vegetation is conducive to understanding the recla-
mation effect, and provides a scientific basis for land reclamation planning and land management
policies in the mining area. At the same time, the trend analysis method in this study can quickly
extract problem areas after dump regreening and is applicable in most dumps.

Keywords: regreening monitoring; NDVI; unary regression analysis; Sen+Mann–Kendall trend
analysis; Mann–Kendall mutation test; interactive interpretation

1. Introduction

According to the Coal Industry Development Annual Report in 2021 issued by the China
National Coal Association, China’s raw coal output reached 41.3 billion tons in 2021, an
increase of 5.7% over the previous year. Moreover, coal will remain an important energy
supply in the future [1]. However, while coal brings huge social resources, it also causes
serious eco-environmental issues [2–4]. In particular, in the long-term coal mining process,
the rock formation and soil above the coal seam are continuously peeled off, and the
exfoliated materials accumulate to form massive dumps. According to statistics, the area
generated by compaction is about 1.5–2.5 times the area damaged by excavation [5]. Large-
scale land occupation destroys the original soil structure and requires soil reconstruction.
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Soil reconstruction is not only a prerequisite for vegetation reclamation but also a key link
in ecosystem restoration [6]. Relevant studies have pointed out that there is an interaction
between vegetation and soil. On the one hand, regreening vegetation can reduce soil loss
and improve soil functions, such as water holding capacity and infiltration capacity. On
the other hand, these soil functions can enhance ecosystem services [7,8]. In the process of
ecological restoration in mining areas, it is usually necessary to monitor the conditions of
vegetation, soil, and other elements simultaneously to reflect the restoration effect.

Remote sensing technology has the advantages of providing large-scale, multi-temporal,
and multi-angle feature information [9], and can provide technical support for comprehen-
sive and rapid monitoring of the mining environment. With the progress of mining, the
environment in the mining area will undergo complex changes. Due to the vulnerability of
such environments, it is imperative to monitor the regreening trend during and after the
restoration process. In recent years, remote sensing technology has been used more widely
in the monitoring and evaluation of the mining ecosystem [10,11]. Some scholars monitored
ecological changes in mining areas through remote sensing data, including surface collapse,
climate difference, and topographic changes caused by mining [12]. Moreover, some surface
information is obtained through the index method, such as normalized difference built-up
index (NDBI), bare soil index (BSI), normalized burn ratio (NBR), etc. [13]. In addition,
some serious pollution problems caused by mining activities are also monitored and quan-
tified by means of remote sensing. The monitoring of soil pollution includes monitoring
of soil heavy metal content, organic matter content, pH, and other indicators [14–16]. The
pollution of water and air is mainly inverted by the combination of band information to
quickly extract the pollution changes [17]. Moreover, some scholars used the index method
and biomass method to extract the vegetation information and quantify the vegetation
coverage, chlorophyll content, nitrogen content, etc., to characterize the changes in the
ecological environment [18,19].

Judging from the existing research results, the application of remote sensing tech-
nology in mining areas is mostly concentrated in land cover change monitoring and
environmental monitoring. However, long-term follow-up monitoring for reclamation
vegetation is deficient. After the regreening project of the open-pit mine dump, vegetation
may degrade again at any time due to the unsuitable climate, spontaneous combustion of
coal gangue, or other reasons. Therefore, it is necessary to monitor the vegetation growth
status during recovery for evaluating the reclamation effect [20]. In order to reveal the
process characteristics of vegetation restoration in the mining area, this study took the
Antaibao open-pit coal mine as an example, used the Landsat and HJ series remote sensing
images from 1986 to 2020, and applied the unary regression analysis method to summarize
the overall trend of regreen vegetation. Then the spatial heterogeneity was analyzed by the
Sen+Mann–Kendall trend analysis.

The main objectives are as follows: (1) Based on the unary regression analysis, un-
derstanding the growth trends of different regreening vegetation overall, and comparing
the differences in the restoration process will help to select suitable regreening vegetation
species according to the reclamation plan. (2) By extracting areas whose trend is signifi-
cantly worse than the surrounding area, the “problem areas” can be accurately extracted.
Moreover, the problems that may occur in the restoration process can be found. By an-
alyzing the change law of regreening vegetation, we can clearly know the reclamation
effect of the Antaibao open-pit coal mine and will provide a theoretical basis for improving
ecological monitoring and evaluation of land management in the mining area.
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With the enhancement of the greenhouse effect, CO2 emission reduction has become key
research content for relevant scholars. Due to the strong interference of human activities in
mining areas, the entire process from coal mining to post-mining reclamation is closely related
to the carbon cycle. The reclaimed vegetation, as the main surface carbon sink element in
the mining area, plays an important role in the carbon cycle process after mining restoration.
This study is of great significance for understanding the carbon cycle process in the mining
area by monitoring the long-term change trend of the regreening vegetation and tracking the
vegetation restoration after the mining area reclamation. Furthermore, the results will provide
a scientific basis for the formulation of land reclamation planning and policies.

2. Materials and Methods
2.1. Study Area

Antaibao open-pit coal mine is located in Shanxi Province, China, 112◦10′–112◦30′E
and 39◦23′–39◦37′N, which belongs to the ecologically fragile area in the eastern of the
Loess Plateau [21]. The climate here is typical temperate arid to a semi-arid continental
monsoon climate. Moreover, the seasons are distinct, and are characterized by less rain
and snow in spring, concentrated rainfall in summer, less rain in autumn, and more wind
and less snow in winter. The average annual temperature ranges from 5.4 ◦C to 13.8 ◦C,
and the total annual precipitation averages 426.7 mm, of which, 75–90% occurs in the rainy
season [22].

Since the start of mining in 1985, the Antaibao open-pit mine has adopted integrated
engineering technology and reclamation while mining [23]. According to the engineer-
ing sequence of “stripping-mining-reclamation”, the circulation mode of “Excavation-
Transportation-Dumping-Reshaping-Reclamation” has formed [24]. The production scale
of the Antaibao open-pit coal mine is relatively large, and the mining time is relatively
long. With the continuous development of mining, various land use types, such as mining
pits, stripping areas, industrial sites, and dumps are formed in turn. According to Figure 1,
the Antaibao coal mine, together with the adjacent Nansigou and Anjialing mines, formed
the most modernized Pingshuo coal base in China, covering an area of about 380 km2.
To date, the four dumps in the Antaibao mining area have been fully regreened. Firstly,
the south dump began to be reclaimed around 1987, and the regreening vegetation cover
type is mainly wood, including black locust (Robinia pseudoacacia Linn.), sea buckthorn
(Hippophae rhamnoides Linn.), caragana (Caragana korshinskii Kom), and poplar (Populus L.).
However, due to the spontaneous combustion of coal gangue, the surface temperature
rose, and vegetation in some areas was repeatedly destroyed, which severely slowed down
the recovery of the ecosystem. Then the west dump was reclaimed in 1989, with the
goal of increasing vegetation coverage density, and currently, it is mainly covered by sea
buckthorn shrubs. Moreover, the reclamation of the west expansion dump started in 2008,
and is currently mainly covered by grasses, including alfalfa (Medicago sativa L.) and erect
milkvetch (Astragalus adsurgens pall.). Finally, the inner dump began to be reclaimed in
1998, and the reclamation work is expected to continue until 2059, and vegetation type is
mainly combined grass, shrub, and wood [25,26], covered by sea buckthorn, narrow-leaved
oleaster (Elaeagnus angustifolia Linn.), elm (Ulmus pumila L.), and caragana. The location of
the study area and each dump site is shown in Figure 1.
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Figure 1. Location of the study area. SD, WD, WDE, and ID are, respectively, the abbreviations for
the south dump, the west dump, the west expansion dump, and the inner dump of the Antaibao
mine. IRA, NSG, AJL, and IS are abbreviations for the initial reclamation area of the inner dump,
Nansigou, Anjialing mine, and industrial sites, respectively. The remote sensing image was from
Sentinel-2 remote sensing data, 17 September 2020.

2.2. Data Collection

Landsat remote sensing images were all Landsat Collection 1 data, obtained from
the National Aeronautics and Space Administration (NASA) and downloaded from the
USGS website (http://earthexplorer.usgs.gov/, accessed on 14 July 2021). Moreover, the
processing levels of the data mainly involve terrain precision correction (L1TP). However,
due to missing data in parts, the data for 1995 and 1998 was supplemented with the
Geometric Systematic Correction (L1GS) data. The Landsat satellites are launched for
the purpose of detecting earth resources. From the launch of the first satellite in 1972 to
the launch of the Landsat 9 satellite in September 2021, nine Landsat satellites have been
launched. Therefore, Landsat satellites have significant time scale advantages and are
widely used in disaster monitoring, resource census, crop assessment, and climate change
research, etc. [27–30]. However, due to the fault of the Landsat 7 ETM+ airborne Scan Line
Corrector (SLC), the images acquired after 2003 lost band information, which seriously
affected the quality of the Landsat 7 ETM+ images. The Landsat series data used in this
study included Landsat 4/5 TM images from 1986–2011 and Landsat 8 OLI images from
2013–2020. Landsat 4 and Landsat 5 were, respectively, launched in 1982 and 1984, and
both carried TM sensors. The sensor TM includes information for 7 bands, with a spatial
resolution of 30 m and 120 m, and a scanning period of 16 days. Moreover, the TM sensor
is in good working condition and has acquired earth images for many years. Its band
information is used to distinguish vegetation, identify rock minerals, and sense thermal
radiation. Landsat 8 carries an operational land imager (OLI) and thermal infrared sensor
(TIRS), covering a total of 11 wavebands from thermal infrared to visible light. Among
them, OLI can passively sense the solar radiation reflected by the surface, covering a total
of 9 bands from infrared to visible light, and is mainly used for coastal observation, soil and
vegetation discrimination, etc. TIRS includes two separate thermal infrared wavebands,
mainly used to induce thermal radiation.

In order to ensure the continuity of sequence data, the data in 2012 is supplemented
by environmental satellite (referred to as HJ) data with the same spatial resolution [25]. The
HJ satellite is a China earth observation satellite for environmental and disaster monitoring,
consisting of two optical satellites and one radar satellite. It is mainly used for large-scale
dynamic monitoring of the ecological environment and disasters, timely reflecting the
occurrence of a disaster, predicting the development and change trends of the ecological

http://earthexplorer.usgs.gov/
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environment, and quickly assessing the disaster situation. The HJ image was downloaded
from the China Resources Satellite Application Center website (http://www.cresda.com/
CN/, accessed on 22 July 2021). In addition, the images used in this study were all selected
from June to September, which can effectively reflect the growth state of vegetation. The
data information is as follows (Table 1).

Table 1. Data list includes information on remote sensing images applied in this study.

Sensor Type Spatial Resolution (m) Year

Landsat 4/5 TM 30 × 30 1986–2011
HJ1B CCD2 30 × 30 2012

Landsat 8 OLI 30 × 30 2013–2020

2.3. Methods

In this study, the long-term regreening monitoring is mainly based on NDVI, using
Landsat and HJ remote sensing images as the basic data sources, and obtaining the NDVI
distribution from 1986 to 2020 through band calculation. Then, with the initial regreening
time as the starting point, time series analysis was carried out on the four dumps respec-
tively, including the unary regression analysis overall and the Sen+Mann–Kendall trend
analysis on the spatial scale, to obtain the overall trends and differences in the spatial
distribution of different regreening vegetation. Next, based on the results of the Sen+Mann–
Kendall trend analysis, we extracted the “problem area” (the area where vegetation growth
is significantly worse than the surroundings) and the “typical area” (area located in the
middle of dump and reclaimed for more than 8 years, extracted for mutation test), and ver-
ified by interactive interpretation. Finally, the Mann–Kendall mutation test was performed
on the “typical area” to obtain the time nodes when different vegetation types reached
stability. The technical workflow for this study is shown below in Figure 2:

Figure 2. Overview of the technical workflow for this study.

http://www.cresda.com/CN/
http://www.cresda.com/CN/
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2.3.1. Preprocessing and Calculation of NDVI

In the process of satellite sensor imaging, it will inevitably be affected by solar radia-
tion, atmospheric scattering, etc., as well as by the structure and optical characteristics of
the satellite sensor. In order to eliminate the internal error caused by sensor sensitivity and
the external error caused by atmospheric scattering, the original image data needs to be
preprocessed: radiometric calibration and atmospheric correction. In this study, the prepro-
cessing of original image data is mainly completed by ENVI5.3 software. By radiometric
calibration, the original DN value was converted into the radiance value of the pixel, which
is convenient for further conversion in the later band calculation. Then, the atmospheric
correction is realized through the FLAASH Atmospheric Correction function, to obtain the
real surface reflectivity of the ground objects. The preprocessed images eliminated errors in
the shooting process and would be used for the later vegetation characterization through
the vegetation index method.

Among the existing research results, there are more than 100 kinds of vegetation
indices [31–33], and the normalized difference vegetation index (NDVI) is the most widely
used one, proposed by Rouse et al. in 1974 [34]. Compared with other vegetation indices,
NDVI has the following advantages: (1) After the ratio processing of NDVI, the errors
caused by the sun elevation angle, terrain slope, and satellite observation angle can be
eliminated to a certain extent [35]; (2) it can eliminate the influence of earth atmosphere,
such as the influence of ozone on the reflection of the red light band and the near-infrared
band; (3) it can eliminate the influence of water and bare soil, and enhance the ability to
characterize the growth state of vegetation. In conclusion, NDVI can reflect the growth state
and distribution of vegetation macroscopically and is suitable for research on vegetation
classification and monitoring, climate change monitoring, and ecological environment
change monitoring [36–38].

2.3.2. Remote Sensing Interactive Interpretation

Interactive interpretation refers to the process in which the interpreter obtains infor-
mation about the objects by directly observing images [39]. In this study, after selecting
the “problem area”, the visual interpretation method is used to verify the accuracy of
the Sen+Mann–Kendall trend analysis results. Moreover, the methodology is based on
the premise that mining and reclamation will cause abrupt changes to vegetation, which
can be shown by vegetation indices. This study mainly used NDVI values as a datum
reference to characterize the growth state of regreening vegetation. When the NDVI values
were tracked, the spatial distribution differences in adjacent years were compared, and
the areas with significant changes within two years were extracted. The main steps for
extracting dynamic change information are as follows: First, arrange the NDVI sequence
sets year by year, and compare the vegetation changes in adjacent years with the help of
the mapping and display functions of ArcGIS 10.3. Then, based on the comparison results,
the areas with abrupt changes were marked. This is because, under natural conditions, the
vegetation growth will not change too drastically within two years. If the NDVI increases
significantly in a short period of time, it means that human intervention has occurred
during this period, thus confirming that there are land reclamation activities in this area.
Finally, combined with the actual situation and the marking records, the reclamation area
is determined for the plots where the vegetation trend has improved significantly, and the
plots with significantly decreased NDVI are determined as the damaged area or the area
where disturbance occurs.

2.3.3. Unary Regression Analysis

Unary regression analysis is a traditional statistical analysis method, widely used in
data analysis and data prediction, including the reasonable interpretation of the prediction
process and prediction results [40]. In order to obtain the change law of regreening veg-
etation over time, NDVI and regreening year were used as regression analysis variables
to evaluate the linear relationship between the two. Moreover, in order to measure the
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correlation between the regreening year and the vegetation index, the Pearson correlation
coefficient is also used in Equation (4). In this study, it is assumed that the independent
variable is x, which represents the order of the years, and the dependent variable is y, which
represents the annual average of NDVI. Then the univariate linear regression model is
shown as in Equation (1).

ŷ= â + b̂x (1)

where the equation represents the fitted equation between the variables; ŷ is the estimated
value of y, also known as the regression value. According to the least square method,
parameter â and b̂ are shown in Equations (2) and (3).

â = y− b̂x (2)

b̂ =
n ∗∑n

i=1 xiyi − (∑n
i=1 xi)(∑n

i=1 yi)

n ∗∑n
i=1 x2

i − (∑n
i=1 xi)

2 (3)

r = ∑n
1 (xi − x)(yi − y)√

∑n
1 (xi − x)2 ∑n

1 (yi − y)2
(4)

where xi, yi are the actual values, x, y are separately mean values of xi and yi (i = 1, 2, 3,
. . . n), and r is between −1 and 1.

The Pearson correlation coefficient (r) is close to 1, the positive correlation between
the two, the closer to −1, the negative correlation between the two, and the closer to 0, the
less correlation between the two. The overall trends of NDVI changing with time after
regreening were obtained through the unary regression analysis.

2.3.4. Sen+Mann–Kendall Trend Analysis

The Sen+Mann–Kendall (Sen+MK) trend analysis method combines the Theil–Sen
estimator and the Mann–Kendall test. Theil–Sen estimator is often used to calculate trend
values, and can reduce the interference of outliers by calculating the median value of the
sequence dataset. However, it cannot realize the judgment of the significance of the trend
itself [41,42]. Therefore, it is necessary to combine the MK test, which can complete the
test of the significance of the trend. The Mann–Kendall trend analysis is a nonparametric
statistical method [43], also used for trend detection of precipitation and drought frequency
under the influence of climate change, which can be used to classify data trends into
insignificant and significant trends [44–46]. In this study, this method was used to test the
significance of change trends for the regreening vegetation. First, the Sen trend value is
calculated as in Equation (5).

The Sen trend value estimation:

beta = median
( xj − xi

j− i

)
, j > i (5)

where the Sen trend value (beta) represents the changing trend of NDVI during the mon-
itoring time, i and j represent the order of the years, xi and xj are the NDVI values of
corresponding years. It should be noted that the calculation process in this study is carried
out in units of pixels, and the results obtained are presented in the form of grids.

Then the MK test is used to judge the significance of the trend. The calculation
process is divided into two parts: MK parameter calculation and bilateral test [47,48]. The
calculations of related statistical values are shown in Equations (6)–(8).

Statistics S:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(

xj − xi
)
, and sgn

(
xj − xi

)
=


+1, xj > xi
0, xj = xi
−1, xj < xi

(6)
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Variance VAR(S):

VAR(S) =
1

18
× n(n− 1)(2n + 5) (7)

Statistics Z:

Z =


S−1√
VAR(S)

, S > 0

0 , S = 0
S+1√
VAR(S)

, S < 0
(8)

where n is the number of time series, S represents the change trend statistic. Moreover,
VAR(S) is the variance of the statistic S, and Z represents significance.

The bilateral test of time series data requires that the time series meet certain conditions,
the number of samples n ≥ 8, to ensure that the statistic S obeys the standard normal
distribution. In order to ensure the validity of the time series analysis results, the sample
size for time series analysis in this study is greater than 8. At a given significance level, the
critical value found in the normal distribution table is Z1−α/2, and 1− α/2 is the confidence
interval. When |Z| ≤ Z1−α/2, the null hypothesis is accepted, i.e., the trend is not significant;
if |Z| > Z1−α/2, the null hypothesis is rejected, i.e., the trend is considered significant. In
this study, the confidence level α = 0.05, and Z1−α/2 = 1.96. Based on this, the beta and Z
are reclassified as Table 2.

Table 2. Sen+MK trend analysis categories.

beta Z Trend Features

beta > 0
|Z| > 1.96 Significant Increase
|Z| < 1.96 Not Significant Increase

beta = 0 Any value No Change

beta < 0
|Z| < 1.96 Not Significant Decrease
|Z| > 1.96 Significant Decrease

2.3.5. Mann–Kendall Mutation Test

The Mann–Kendall mutation test is one of the most effective methods for testing time
series mutations, which can identify the moment when the mutation begins and indicate the
time period of the mutation [49,50]. In Equation (9), for a time series with n-year samples,
the order sequence is first constructed sk.

sk = ∑k
i=1 ri(k = 1, 2, . . . , n), and ri =

{
+1, i f xi > xj

0, else
(j = 1, 2, . . . , i) (9)

where ri represents the annual average of NDVI, and i, j represent the order of the years.
Next, we calculate the statistics E(sk), Var(sk) as in Equations (10) and (11).

E(sk) =
n(n− 1)

4
(10)

Var(sk) =
n(n− 1)(2n + 5)

72
(11)

where E(sk), Var(sk) are the mean and variance of sk, respectively. Next, under the assump-
tion that the time series is random and independent, define the statistics UFk:

UFk =
sk − E(sk)√

Var(sk)
(12)

After calculating UFk according to the above Equation (12), we repeat the above
calculation process according to the reverse time sequence, and then take the inverse of
the calculated value to obtain UBk. We plot the curves of UFk and UBk. If the intersection
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of the two lines is within the confidence interval (−1.96, 1.96), the intersection is the
mutation point.

3. Results
3.1. Monitoring Results in the South Dump

According to the images and historical records, it can be determined that the south
dump began to be regreened in 1987, and it is the first dump in the Antaibao open-pit
mine to be regreened. Taking the first regreening time as starting time, unary regression
analysis overall and Sen+MK trend analysis on the spatial scale were carried out on the
NDVI dataset. From the unary regression analysis results (Figure 3a), NDVI dataset has a
positive correlation with time, i.e., with the increase of time, NDVI shows an increasing
trend after regreening. Moreover, the Pearson correlation coefficient between NDVI and
time reaches about 0.88, indicating that NDVI has a strong correlation with time. In
addition, the annual average of NDVI showed a trend of rising and remained above
0.5 after 2002. From the perspective of trend analysis (Figure 3b), the NDVI sequence
dataset shows an increasing trend overall, indicating that the improvement of vegetation is
very significant after regreening. According to statistics, the area covered by significantly
improved vegetation is 178.81 ha, accounting for about 97.31% of the south dump. In
addition, there are two areas in the northwest and northeast where NDVI does not increase
significantly, totally accounting for 1.86%. Moreover, at the southern edge, the local area
shows a trend of a significant reduction in NDVI, which is confirmed to be caused by
artificial illegal mining.

Figure 3. The time series analysis for NDVI on time and spatial scales in the south dump. (a) shows
the results of the unary regression analysis. And (b) shows the results of the Sen+MK trend analysis.
SI, NSI, NSD, and SD are, respectively, the abbreviations for significantly increase, not significantly
increase, not significantly decrease, and significantly decrease.

The area with a notably different trend from the surroundings is defined as the
“problem area”. In addition, in order to obtain the time node for regreening vegetation
reaching stability, the area with a significant increase in NDVI is defined as the “typical
area”. According to the Sen+MK trend analysis results, the “typical area” (area I) and the
“problem areas” (areas II and III) were extracted, as shown in Figure 3b. Combined with
interactive interpretation, it was found that all three areas began to regreen in 1994. In area
I, NDVI showed a significant increasing trend, indicating that the regreening vegetation
recovered steadily after regreening, and there was no excessive disturbance for area I. The
regression analysis for area I can help to obtain the time node for regreening vegetation
reaching stability under normal conditions. Area II and area III are located inside the
dump, but the trends in these two areas are not obvious, indicating that the restoration
of regreening vegetation is not significant. Moreover, in area III, the surroundings of
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degraded vegetation showed a trend of insignificant increase, indicating that degradation
is expansive.

After extracting the area range based on the Sen+MK trend analysis results, the year-
by-year NDVI of each area was obtained by statistical methods and drawn into a line
graph. According to Figure 4, NDVI in area I changed relatively large within 3 years after
regreening, showing a trend of increasing firstly and then decreasing. Moreover, based
on the Mann–Kendall mutation test method, the stable node of area I is three years. After
more than 3 years, NDVI in area I still showed a continuous fluctuating trend, but the
band amplitude was always relatively small. Moreover, after 2003, NDVI values remained
above 0.6, indicating that regreening wood reached high vegetation coverage density after
9 years of regreening. Secondly, in area II, the magnitude of NDVI changes sharply. Within
3 years after regreening, area II showed a trend of first increasing and then decreasing
in NDVI values, similar to area I. However, after 3 years, NDVI showed a continuous
downward trend, and the overall level remained below 0.5, and only briefly increased
during reclamation. Combined with the verification results of interactive interpretation, it
was found that area II degenerated three times in 2001, 2010, and 2013, respectively. When
regreening was carried out, vegetation improvement was remarkable in a short period
of time, but it was difficult to maintain long-term stable conditions for vegetation, and
the problem of repeated damage continued to occur. Different from area II, the overall
trend of vegetation in area III was better before 2009, and NDVI values remained above
0.5. However, after the damage occurred in 2009, it decreased to the level of 0.4–0.5 and
fluctuated continuously, which indicated that the spontaneous combustion of the coal
gangue occurred in area III after many years of regreening.

Figure 4. Annual average of NDVI in the “typical area” (area I) and the “problem areas” (areas II and III).

In conclusion, under normal recovery conditions, the regreening vegetation with wood as
the main cover type took about three years to reach stability. Therefore, when the regreening
vegetation type is wood, it is recommended to focus on monitoring after three years of
regreening. The time of re-damage is difficult to predict, and may occur 3–4 years after
regreening, or even several years after regreening, similar to area II and area III. Due to the
spontaneous combustion of coal gangue, it is difficult to restore completely in some mining
areas. Timely monitoring for vegetation is helpful for predicting the occurrence of damage.
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3.2. Monitoring Results in the West Dump

According to the images and historical records, it can be determined that the west
dump began to be regreened in 1989. Taking the first regreening time as starting time,
unary regression analysis overall and Sen+MK trend analysis on the spatial scale were
carried out on the NDVI dataset. From the unary regression analysis results (Figure 5a),
NDVI dataset has a significant positive correlation with time, and the correlation coefficient
reaches up to 0.95, indicating that NDVI values increased steadily with time. From the
Sen+MK trend analysis results (Figure 5b), about 95.58% area of the west dump showed
a significant increasing trend from 1989 to 2020, and the area is about 261.98 ha. The
remaining areas showed insignificant increasing trends for NDVI, mainly located at the
western and southern edges of the dump.

Figure 5. The time series analysis for NDVI on time and spatial scales in the west dump. (a) shows
the results of the unary regression analysis. And (b) shows the results of the Sen+MK trend analysis.
SI, NSI, NSD, and SD are, respectively, the abbreviations for significantly increase, not significantly
increase, not significantly decrease, and significantly decrease.

According to the Sen+MK trend analysis results, the “typical area” (area I) and the
“problem areas” (areas II, III, and IV) were extracted, as shown in Figure 5b. Combined
with interactive interpretation, it is found that area I, which began to be regreened in 1994,
showed a significant increasing trend for NDVI; area II, area III, and area IV were regreened
in 1989, 1994, and 1995, respectively. Although area II was the first place to be regreened in
the west dump, from the Sen+MK trend analysis results, NDVI showed an insignificant
increasing trend for NDVI after long-term restoration, which showed that this area has
been greatly disturbed after regreening. Moreover, area III also showed an insignificant
trend in vegetation. Moreover, area II and area III are similar in some respects, i.e., they are
both located at the edge of the dump, and the regreening time is earlier than in the other
areas. The following two reasons will be considered: (1) The area located at the edge of
the dump may be affected by road expansion; (2) the early regreening technology is not
mature enough, which may affect the later vegetation restoration. In addition, area IV is
located inside the dump and is only 1.50 ha, so a focus on examining whether spontaneous
combustion of the coal gangue has occurred is necessary.
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After extracting the area range based on the Sen+MK trend analysis results, the year-
by-year NDVI of each area was obtained by statistical methods and drawn into a line graph,
as shown in Figure 6. Firstly, NDVI values in area I increased first and then decreased
within 3 years after regreening, and basically reached stability after 3 years. Moreover,
based on the Mann–Kendall mutation test, the stable node of area I is about three years.
From 1997 to 2012, NDVI values fluctuated from 0.4 to 0.5. After 2012, the values increased
significantly and remained at around 0.6, indicating that although regreening species shrub
basically reaches a stable state in 3 years, higher vegetation coverage requires more time.
Then in area II, the NDVI values were lower than 0.5 before 2002, and there was a cliff-like
decline in 1993. After 2002, NDVI values fluctuated in the range of 0.4 to 0.6, but the
fluctuation range was large. Similarly, NDVI values of the area located at the western edge
also showed continuous fluctuations. Moreover, area III degraded several times in 2001,
2005, and 2013, respectively. Verified by interactive interpretation, degradation did occur in
the corresponding years. Last, in area IV, NDVI values experienced a massive decline in
2007 and then recovered again in 2009. Judging from the trend of NDVI after regreening,
the effect of the second regreening was relatively good, and the vegetation growth state did
not fluctuate violently and remained relatively stable.

Figure 6. Annual average of NDVI in the “typical area” (area I) and the “problem areas” (areas II, III,
and IV).

In conclusion, under normal recovery conditions, the regreening vegetation with
shrubs as the main cover type took about three years to reach stability. Moreover, in the
west dump, the regreening vegetation at the dump edge is easily disturbed by other factors,
resulting in drastic changes.

3.3. Monitoring Results in the West Expansion Dump

According to the image information and historical data, the regreening project in the
west expansion dump started in 2003. The total area of the west expansion dump is about
351.9589 ha, and the regreening time is longer. Taking the first regreening time as starting
time, unary regression analysis overall and Sen+MK trend analysis on the spatial scale
were carried out on the NDVI dataset. From the regression analysis results (Figure 7a),
NDVI values showed an overall increasing trend from 2003. In addition, NDVI has a strong
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correlation with time, and the Pearson correlation coefficient reaches about 0.92. From the
perspective of trend analysis (Figure 7b), the results showed that the area with a significant
increasing trend in NDVI accounted for 79.89% of the total dump, and the area with an
insignificant increasing trend accounted for 18.19%. In addition, the areas where the trend
was not significant were concentrated and contiguous in the interior of the dump and
scattered at the edge of the dump.

Figure 7. The time series analysis for NDVI on time and spatial scales in the west expansion dump.
(a) shows the results of the unary regression analysis. And (b) shows the results of the Sen+MK
trend analysis. SI, NSI, NSD, and SD are, respectively, the abbreviations for significantly increase, not
significantly increase, not significantly decrease, and significantly decrease.

According to the Sen+MK trend analysis results, the following “typical area” (area
I) and the “problem areas” (areas II and III) were extracted. According to Figure 7b, area
I is in the middle of the dump and started to be regreened in 2010. After regreening, the
improvement effect of vegetation is remarkable, indicating that there was less disturbance
during restoration. Moreover, area II and area III have insignificant increasing trends for
NDVI values. Moreover, the reason why other areas with insignificant trends were not
extracted was that the regreening time was less than 8 years, which has little significance
for research reference.

After extracting the area range based on the Sen+MK trend analysis results, the year-
by-year NDVI of each area was obtained by statistical methods and drawn into a line
graph, as shown in Figure 8. NDVI values in the three areas all showed an upward
trend, but the improvement effect in area I is more prominent than in the other two areas.
According to the results of the Mann-Kendall mutation test, the mutation node was one
year, indicating that the grass reached stability in one year. It shows that it takes less
time for grass to stabilize compared to other vegetation types. Moreover, according to the
field investigation, the main vegetation coverage type is pasture in area II. Therefore, it
is speculated that low NDVI values are caused by the harvest of forage from August to
October. Moreover, through on-site investigation, we found that area III collapsed after
many years of regreening, and a land leveling project was carried out.

In conclusion, under normal recovery conditions, the vegetation with grass as the main
cover type reaches a stable time node of about one year. Moreover, after regreening of the
dump, vegetation may improve significantly in a short period of time, but low vegetation
coverage may occur due to unsuitable regreening seedlings or later surface subsidence.
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Figure 8. Annual average of NDVI in the “typical area” (area I) and the “problem areas” (areas II and III).

3.4. Monitoring Results in the Inner Dump

According to the image information and historical data, the disposal of the inner dump
began in 1987, and the reclamation began in 1998. To date, the inner dump has completed
all disposal work, but the reclamation is still going on. Taking the first regreening time as
starting time, unary regression analysis overall and Sen+MK trend analysis on the spatial
scale were carried out on the NDVI dataset. From the perspective of regression analysis
(Figure 9a), the positive correlation between NDVI and time was low from 1998 to 2020, and
the Pearson correlation coefficient was only 0.50. Moreover, in the ten years from 2002 to 2012,
the variation range of NDVI values was small, and remained around 0.2. From Sen+MK trend
analysis results (Figure 9b), the areas with significantly improved vegetation accounted for
the largest proportion in the inner dump, about 86.56%. According to the actual situation, the
type of land use was changed later, including the construction of artificial lakes and buildings,
which affected the vegetation growth trend in the central area.

According to the Sen+MK trend analysis results, the “typical area” (area I) and the
“problem areas” (areas II and III) were extracted, as shown in Figure 9b. Combined with
the results of interactive interpretation, area I, area II and area III were regreened in 2003,
1998 and 2004 respectively. Through field investigation, it is found that area II is close to
industrial sites and is greatly affected by human activities.

After extracting the area range based on the Sen+MK trend analysis results, the year-
by-year NDVI of each area was obtained by statistical methods and drawn into a line graph.
According to Figure 10, the trends of the three areas are quite different. Firstly, area I showed
a significant increasing trend in NDVI values overall. According to the Mann–Kendall
mutation test results, the time for area I reaching stability was three years. Within three
years after regreening, NDVI values changed greatly, showing a trend of first increasing
and then decreasing. After that, although NDVI still showed a phenomenon of continuous
fluctuation, the band amplitude was always relatively small and basically reached a stable
state. Secondly, the fluctuation of NDVI in area II was small after regreening, but the
improvement effect of vegetation was not obvious after a long period of time. This is due
to the human activities in the southern industrial site, which have caused great disturbance
to the ecology of area II. Moreover, area III also showed a steady increasing trend after
regreening, but after the cliff-like decline in 2010, the NDVI was always less than 0.1,
maintaining a low level. Combined with interactive interpretation, it is found that in 2010,
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the land use type of area III was changed, and locals built new farms to increase social
benefits. So, the vegetation coverage was very low later.

Figure 9. The time series analysis for NDVI on time and spatial scales in the inner dump. (a) shows
the results of the unary regression analysis. And (b) shows the results of the Sen+MK trend analysis.
SI, NSI, NSD, and SD are, respectively, the abbreviations for significantly increased, not significantly
increased, not significantly decreased, and significantly decreased.

Figure 10. Annual average of NDVI in the “typical area” (area I) and the “problem areas” (areas II
and III).

In conclusion, the inner dump reached a stable time node of about three years under
normal recovery. Regreening vegetation is susceptible to human disturbance, resulting in
low vegetation density.
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4. Discussion
4.1. The Influence of Spontaneous Combustion of Coal Cangue on Vegetation

The degenerate expansion is most likely caused by the spontaneous combustion
of the gangue at the bottom. This is because the spontaneous combustion of the coal
gangue will not only directly affect the growth of the upper surface plants but also cause
the surrounding soil temperature to rise, thereby affecting the growth of surrounding
vegetation. Through the Sen+MK trend analysis in this study, it was detected that there
was an area where coal gangue spontaneously combusted in the east of the south dump.
Moreover, through the annual average curve of NDVI, it is found that the spontaneous
combustion of the coal gangue is repeatable.

In the early stage of mining restoration, due to the immature technology and purpose
of saving engineering volume, the topsoil is often directly overlaid on top of the coal
gangue, then the regreening project was carried out on the topsoil. However, after years
of monitoring, it has been found that the pyrite, residual coal, and other combustibles
attached to the bottom coal gangue will undergo a slow oxidation reaction. When meeting
suitable heat storage conditions, adsorption heat and the heat released by oxidation will
make the temperature of the coal gangue raise slowly. When the temperature reaches the
ignition point, the coal gangue would burn, and the porous nature of the coal gangue and
the diffusion of gas molecules ensure that there is a sufficient oxygen supply. In the process
of spontaneous combustion of coal gangue, not only will the upper vegetation be directly
burned, but also a huge number of harmful gases and soot will be emitted, which will
cause serious pollution to the surrounding environment [51–54]. More seriously, if rainfall
is heavy, a relatively strong leaching effect will occur, and water vapor may explode under
heating conditions.

The problem of spontaneous combustion of the coal gangue has always been a major
problem in mine restoration [55]. In recent years, relevant scholars have been commit-
ted to exploring the monitoring and repair of the coal gangue spontaneous combustion.
Ruan, M et al. used drones, field surveys, and indoor analysis to analyze the surface
temperature, vegetation coverage, and soil nutrients of gangue piles with different de-
grees of spontaneous combustion, and found that high-temperature stress affected plant
survival [56].

4.2. The Influence of Terrain on Vegetation

Open-pit coal mining will destroy the original landform and landscape, the stacking
of stripped materials completely changed the original landform with vertical and horizon-
tal ravines, forming a stepped landform with slopes and large platforms. Topographic
design and silviculture technology were both needed before revegetation [57]. Landform
remodeling is the basis for future land use in mining areas, and it is also a key research
issue for land reclamation and ecological reconstruction. Some scholars indicated that there
is interaction and feedback between terrain and vegetation dynamics [58,59]. Vegetation
dynamics are largely affected by terrain factors such as elevation, slope, and slope aspect.
At the same time, dense vegetation coverage will greatly reduce the risk of soil erosion.

However, due to the influence of precipitation and other factors, accidents such
as landslides and subsidence often occur on the slopes, resulting in the decrease in the
thickness of the effective soil layer. Relevant studies have shown that the regreening
vegetation on the slopes is more susceptible to the impact of high precipitation than that
on the platforms. On the slopes, reclamation projects lack the soil and water environment
required for plant growth and the conditions for plants to firmly climb, so it has always been
a difficult technical problem in the construction of mine ecological restoration [60–62].In
recent years, some scholars have comprehensively used hydrology and geomorphology
in land reclamation and ecological reconstruction in mining areas, and have continuously
advanced the theoretical system of topographic remodeling to maturity [63–65]. With the
continuous improvement of geological disaster management technology, terrain remodeling
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will become an indispensable and most important basic part of the ecological reconstruction
of abandoned mining areas.

4.3. The Role of Vegetation in Soil Erosion

The relationship between vegetation and soil erosion has been an important part
of eco-environmental research [66,67]. As an important factor affecting soil erosion, the
control function of vegetation on soil erosion is mainly embodied in the loss of dynamic
energy of rainfall [68,69]. Most research has concluded that improving vegetation cover
is an effective method for controlling soil erosion and that the effectiveness of erosion
control varies by vegetation type. Juanzhu Liang pointed out that there was a significant
correlation between rainfall and soil erosion. The amount of erosion increased with the
increase in rainfall. In addition, differences in the response of different vegetation covers to
rainfall were evident, with bare soil and tree areas showing a high response to changes in
soil erosion to rainfall, while herbaceous areas with high cover showed a less pronounced
response to rainfall [70]. Therefore, effective erosion control requires first a reasonable
choice of plant species and then a reasonable spatial layout of the vegetation. This step is
the key to linking soil reconstruction and biodiversity reorganization in mining reclamation.
Taking the reclamation of the dumps in the Antaibao mine as an example, the combination
of grass and irrigation is adopted in the reclamation of the slopes [71,72]. While increasing
the vegetation cover by planting grass, the soil structure is stabilized by the plant roots
of shrubs, such as sea buckthorn (Hippophae rhamnoides Linn.) and Caragana (Caragana
korshinskii Kom). Moreover, in this study, the results showed that both the shrubs in the
west dump and the grasses in the west expansion dump steadily improved over time, with
a strong positive correlation with time. Therefore, it is recommended that in the early
stages of vegetation restoration for mining areas, the combination of “grass and shrub” is
used to regreen. This pattern of revegetation ensures an increase in vegetation cover while
stabilizing the soil structure.

However, previous studies have mainly concentrated on the control function of vege-
tation on soil erosion, while there are fewer studies on how erosion affects vegetation, and
more research is needed. Understanding the feedback mechanisms of both can contribute to
vegetation restoration and erosion control. In addition, the interactive processes of vegeta-
tion and soil erosion modify the microtopography. In turn, the changes in microtopography
further influence vegetation and erosion patterns. The mechanism of this process should
also be intensively researched and explored.

4.4. Limitations of Interactive Interpretation

When interactive interpretation was performed in this study, NDVI values of the
previous year were used as the benchmark, and the time point and scope of the degraded
area were determined by comparing them with the NDVI values of the study year. How-
ever, this process was inevitably affected by the subjective judgment of readers, which
affects the interpretation results. When different readers interpret the images, there are
certain differences in results [73]. Although interactive interpretation is widely used in
the processing of remote sensing images, there are many factors that affect interactive
interpretation, which leads to some errors [74,75]. Related studies have proposed some
methods to reduce the error of interactive interpretation, for example, when detecting
certain types of land changes, the consistent date of image collection is important, and
images in the same season can upgrade the accuracy of interpretation [76].



Remote Sens. 2022, 14, 5634 18 of 21

5. Conclusions

In this study, the NDVI time series dataset from 1986 to 2020 was obtained by Landsat
images and the HJ image. Moreover, through the unary regression analysis overall and
Sen+MK trend analysis on the spatial scale, the growth trends of regreening vegetation
in each dump were obtained. Combined with interactive interpretation and the Mann–
Kendall mutation test, information such as stable nodes of different regreening vegetation and
vegetation growth patterns in degraded areas were obtained. The conclusions are as follows:

(1) After regreening, NDVI values all showed increasing trends within a short period.
Moreover, due to the distinction in the reclamation mode, the growth trends of regreen-
ing vegetation in each dump showed certain regularity. The main performance is: the
earlier the regreening time, the more areas that are covered by significantly improved
vegetation. In this study: 97.31% (the proportion of significantly improved vegeta-
tion in the south dump) > 95.58% (the proportion in the west dump) > 86.56% (the
proportion in the inner dump) > 79.89% (the proportion in the west expansion dump).

(2) Different types of regreening vegetation have different time points for reaching stabil-
ity. In this study, by extracting the “typical area” with significantly increasing trends
in NDVI values for the Mann–Kendall mutation test, it takes about three years for
wood, shrub, and a mix of grass, and shrub and wood to reach stability, but only one
year for grass.

(3) The degraded areas in the mining area were expansive and repetitive. Repeatability
means that the degraded area was very likely to degrade once more after the second
revival. For example, area III in the west dump was damaged in 2000 and 2013,
respectively. Expansion means that the degraded area may extend to the surroundings
in the next degradation, similar to area III in the south dump.
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