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Abstract: In recent years, geographically weighted regression (GWR) models have been widely
used to address the spatial heterogeneity and spatial autocorrelation of PM2.5, but these studies
have not fully considered the effects of all potential variables on PM2.5 variation and have rarely
optimized the models for residuals. Therefore, we first propose a modified GWR model based on
principal component analysis (PCA-GWR), then introduce five different spatial interpolation methods
of radial basis functions to correct the residuals of the PCA-GWR model, and finally construct five
combinations of residual correction models to estimate regional PM2.5 concentrations. The results
show that (1) the PCA-GWR model can fully consider the contributions of all potential explanatory
variables to estimate PM2.5 concentrations and minimize the multicollinearity among explanatory
variables, and the PM2.5 estimation accuracy and the fitting effect of the PCA-GWR model are better
than the original GWR model. (2) All five residual correction combination models can better achieve
the residual correction optimization of the PCA-GWR model, among which the PCA-GWR model
corrected by Multiquadric Spline (MS) residual interpolation (PCA-GWRMS) has the most obvious
accuracy improvement and more stable generalizability at different time scales. Therefore, the
residual correction of PCA-GWR models using spatial interpolation methods is effective and feasible,
and the results can provide references for regional PM2.5 spatial estimation and spatiotemporal
mapping. (3) The PM2.5 concentrations in the study area are high in winter months (January, February,
December) and low in summer months (June, July, August), and spatially, PM2.5 concentrations show
a distribution of high north and low south.

Keywords: PM2.5; GWR; PCA; PCA-GWR; multicollinearity; radial basis function interpolation

1. Introduction

In recent years, with accelerated urbanization, industrialization, and modernization,
air pollution problems have become increasingly serious, and PM2.5, as one of the main
pollutants in air pollution in China, has garnered significant widespread concern in scien-
tific fields, including the atmospheric environmental protection field. Furthermore, concern
has grown among the general public [1–3]. PM2.5 is highly active, small in size but large
in surface area, suspended in the air for a long time, and easily adsorbs heavy metals,
microorganisms, and other toxic and harmful substances, which can not only directly
reduce atmospheric visibility by scattering and absorbing sunlight, causing disturbance
to people’s daily lives, but can also enter the end of the human respiratory tract through
airflow, directly endangering human health [4–7]. PM2.5 data are provided by precise
measurements of PM2.5 ground monitoring stations, but due to the limited number, limited
spatial coverage, and uneven distribution of PM2.5 ground monitoring stations in China,
data can only be obtained from observations in specific areas. Therefore, many experts
and scholars have conducted a series of studies on how to obtain high-precision PM2.5
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concentrations in areas without monitoring stations and explore the spatial and temporal
distribution of PM2.5.

Considering the existence of the spatial autocorrelation of PM2.5 [8–10], some scholars
have used kriging [11], inverse distance weighting (IDW) [12,13], orthogonal polynomial
fitting (OPF) [14], and other spatial interpolation methods to obtain the spatial distribution
of PM2.5 in regions without monitoring stations and have achieved a better interpolation
effect. However, the variation in PM2.5 concentrations is influenced not only by PM2.5 con-
centrations at neighboring monitoring stations in spatial locations but also to some extent
by many natural and human-related factors [15], such as atmospheric pollutants [16,17], me-
teorological factors [18,19], land-use types [20,21], tropospheric-related factors [22–25], etc.,
making the spatial distribution of PM2.5 concentrations spatially heterogeneous [26–28].

Therefore, some scholars have proposed the geographically weighted regression
(GWR) model [29], which can better explain the problem of spatial autocorrelation and
spatial heterogeneity in the existence of PM2.5 and has a high accuracy for PM2.5 estimation.
For example, Zou et al. compared the accuracy of land-use regression (LUR) and GWR
models for PM2.5 mapping in California, USA, and showed that the GWR model had higher
mapping accuracy than the LUR model [30]. Gu et al. estimated the spatial distribution of
urban PM2.5 in China in 2016 using the IDW method and the GWR model by combining
socioeconomic activity factors such as population density, industrial structure, and the level
of economic development and showed that the GWR model could better explain the spatial
heterogeneity of the effects of various factors linked to socioeconomic activities on PM2.5
among Chinese cities [31]. Zhang et al. introduced NO2 and the enhanced vegetation index
(EVI) into the GWR model and combined aerosol optical depth (AOD) and meteorological
parameters to estimate the spatial distribution of PM2.5 in the Chinese region. The results
show that the GWR model with the introduction of NO2 and EVI can explain about 87%
of the spatial variation of PM2.5, and its estimation accuracy is significantly higher than
that of the original GWR model [32]. Xiao et al. used satellite-derived AOD, topographic
data, meteorological data, and atmospheric pollutants to combine GWR analysis with
bayesian maximum entropy (BME) theory to assess the spatial and temporal characteristics
of PM2.5 exposure in most regions of China and achieve spatial and temporal distribution
mapping of PM2.5 in continuous regions [33]. Wei et al. used three interpolation methods,
tension spline functions (TSF), empirical bayesian kriging (EBK), and kriging, to correct the
residuals of the GWR model and construct three combined models to spatially interpolate
PM2.5 during the National Day and Chinese New Year in south-central China. The results
showed that meteorological factors and zenith tropospheric delay (ZTD) can better explain
the spatial heterogeneity of PM2.5, and the interpolation accuracy of the combined model of
GWR and TSF is significantly higher than that of other combined interpolation models [34].

The complex and diverse factors influencing PM2.5 and their correlation with each
other lead to multicollinearity among the independent variables of the model, which affects
the model’s accuracy and performance [35]. To address this problem, most existing studies
have used multicollinearity diagnosis to remove explanatory variables with multicollinear-
ity, thus reducing the multicollinearity among independent variables [36], but this approach
may lead to the omission of key influencing factors of PM2.5 and thus cannot fully consider
the influence of all potential explanatory variables on PM2.5 changes [37–39]; thus, some
scholars have introduced the principal component analysis (PCA) method to optimize the
GWR model and have achieved a better estimation accuracy.

For example, Guo et al. used the PCA method to extract eight environmental variables
(elevation, slope, normalized vegetation index, etc.) by dimensionality reduction and then
used the extracted principal component variables to construct a GWR model to spatially
simulate soil organic carbon storage in Forked River Town, China. The results showed that
the PCA method played an important role in reducing the redundancy and multicollinearity
of auxiliary variables, and the prediction accuracy of the GWR model constructed based on
principal components was higher than that of the ordinary least squares regression and
ordinary collaborative kriging models constructed based on principal components [40].
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Zhang et al. used PCA to extract five factors associated with COVID-19 mortality by
downscaling from 14 indicators of social, economic, and environmental impacts, which
were used to construct a GWR model that effectively analyzed the spatial and temporal
characteristics of the sources triggering COVID-19 mortality [41]. Zhai et al. estimated
the spatial distribution of PM2.5 in the Beijing-Tianjin-Hebei region using a geographically
weighted regression model based on principal component analysis (PCA-GWR), and the
results showed that the PCA method improved the estimation accuracy of the GWR model
by fully considering the contribution of all potential predictor variables to PM2.5 variation.
Additionally, the PCA-GWR model generated PM2.5 spatial distribution maps that clearly
portrayed more details of spatial variability than conventional GWR models [42].

In summary, all existing studies can achieve PM2.5 concentration estimation in areas
without monitoring stations, but in terms of solving the spatial autocorrelation and spatial
heterogeneity of PM2.5, GWR models can better explain these two characteristics and are
more effective in estimating PM2.5 concentrations in areas without monitoring stations.
In addition, there are still relatively few studies on the application of PCA methods to
GWR models for PM2.5 spatial distribution estimation and relatively few studies on the
quadratic correction of residuals for GWR models optimized based on principal component
analysis. Therefore, we consider these aspects together and use the atmospheric pollu-
tants, meteorological data, normalized vegetation index, elevation, population size, and
zenith wet delay (ZWD) data of the middle and lower reaches of the Yangtze River as the
database. We use the GWR model as the base model, combined with the PCA and the
radial basis function (RBF) interpolation method based on five different basis functions,
to construct six GWR improvement models (PCA-GWR, PCA-GWRCRS, PCA-GWRTS,
PCA-GWRMS, PCA-GWRTPS, PCA-GWRIMS) to estimate the spatial distribution of PM2.5
in the study area. We then compare their interpolation accuracy and model performance
and select the method with the best accuracy to generate the spatial distribution map of
PM2.5 concentration in the study area.

2. Materials and Methods
2.1. Study Area and Data Preprocessing

The middle and lower reaches of the Yangtze River Economic Belt (hereinafter collec-
tively referred to as the middle and lower reaches of the Yangtze River) span the central-
eastern region of China, located between 24◦29′–35◦08′N latitude and 108◦21′–123◦10′E
longitude, and comprise six major provinces and one municipality directly under the
Central Government (the lower reaches include Shanghai, Jiangsu, Zhejiang and Anhui,
and the middle reaches include Jiangxi, Hubei, and Hunan). This region is one of the most
developed economic regions in China. It accounts for more than a quarter of the Chinese
population and approximately one-third of the Chinese gross domestic product (GDP).
The Yangtze River Economic Zone has important ecological value, strong comprehensive
strength, and great development potential; promoting the development of the Yangtze
River Economic Zone is important for China’s economic development. However, with the
economic growth of the Yangtze River Economic Zone, increases in population and motor
vehicles, coupled with a regional consumption structure dominated by coal, cause severe
air pollution, especially in the middle and lower reaches of the Yangtze River. This pollution
has become the focus of air environment management and has received widespread public
attention.

PM2.5 is the main indicator of air pollutants. To support China’s pollution prevention
and control battle and ecological environmental protection strategy, we take the monthly
average PM2.5 concentration data collected from PM2.5 ground monitoring stations in the
middle and lower reaches of the Yangtze River economic belt for 2018–2020 as the research
object.

Atmospheric pollutant (PM2.5, O3, CO, NO2, SO2) data were obtained from PM2.5
ground monitoring station observations (data from http://envi.ckcest.cn/environment/,
accessed on 14 June 2022), meteorological data were obtained from meteorological monitor-
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ing station observations (data from http://data.cma.cn/, accessed on 14 June 2022), and ele-
vation (ELE) data were obtained from the SRTMDEMUTM 90 M resolution digital elevation
data product of the Geospatial Data Cloud (data from https://www.gscloud.cn/sources,
accessed on 3 July 2022). The elevation, air quality monitoring station, and meteorological
monitoring station distribution map is shown in Figure 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 26 
 

 

PM2.5 is the main indicator of air pollutants. To support China’s pollution prevention 
and control battle and ecological environmental protection strategy, we take the monthly 
average PM2.5 concentration data collected from PM2.5 ground monitoring stations in the 
middle and lower reaches of the Yangtze River economic belt for 2018–2020 as the research 
object. 

Atmospheric pollutant (PM2.5, O3, CO, NO2, SO2) data were obtained from PM2.5 
ground monitoring station observations (data from http://envi.ckcest.cn/environment/, 
accessed on 14 June 2022), meteorological data were obtained from meteorological moni-
toring station observations (data from http://data.cma.cn/, accessed on 14 June 2022), and 
elevation (ELE) data were obtained from the SRTMDEMUTM 90 M resolution digital ele-
vation data product of the Geospatial Data Cloud (data from 
https://www.gscloud.cn/sources, accessed on 3 July 2022). The elevation, air quality mon-
itoring station, and meteorological monitoring station distribution map is shown in Figure 
1. 

 
Figure 1. Distribution of meteorological and PM2.5 monitoring stations. 

ZWD is the wet component of the ZTD due to water vapor in the atmosphere [43,44]. 
ZTD is a signal propagation delay formed by the bending and delay of electromagnetic 
wave signals emitted by Global Navigation Satellite System (GNSS) [45] satellites as they 
traverse the troposphere due to the influence of atmospheric refraction [46,47]. The ZWD 
data used in the experiments were obtained from the VMF data server platform 
(https://vmf.geo.tuwien.ac.at/, accessed on 7 May 2022). 

The normalized difference vegetation index (NDVI) is one of the important parame-
ters to reflect crop growth and nutrient information, which can detect vegetation growth 
and vegetation cover and reflect the background influence of the plant canopy [48,49]. The 
NDVI data used in the experiment were obtained from the Data Center for Resource and 
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/, accessed 
on 10 December 2021); the population size (POP) data were obtained from the Worldpop 
website (https://hub.worldpop.org/, accessed on 3 July 2022). Table 1 indicates the time 
scale of each variable and access to information on the type and spatial resolution of these 
variables. 

  

Figure 1. Distribution of meteorological and PM2.5 monitoring stations.

ZWD is the wet component of the ZTD due to water vapor in the atmosphere [43,44].
ZTD is a signal propagation delay formed by the bending and delay of electromagnetic
wave signals emitted by Global Navigation Satellite System (GNSS) [45] satellites as they
traverse the troposphere due to the influence of atmospheric refraction [46,47]. The ZWD
data used in the experiments were obtained from the VMF data server platform (https:
//vmf.geo.tuwien.ac.at/, accessed on 7 May 2022).

The normalized difference vegetation index (NDVI) is one of the important parameters
to reflect crop growth and nutrient information, which can detect vegetation growth and
vegetation cover and reflect the background influence of the plant canopy [48,49]. The
NDVI data used in the experiment were obtained from the Data Center for Resource and
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/, accessed
on 10 December 2021); the population size (POP) data were obtained from the Worldpop
website (https://hub.worldpop.org/, accessed on 3 July 2022). Table 1 indicates the time
scale of each variable and access to information on the type and spatial resolution of these
variables.

Table 1. Research database information introduction. In the table, TEM indicates temperature,
PRS indicates barometric pressure, WS indicates wind speed, RH indicates relative humidity, POP
indicates population size, and ELE indicates elevation. The table shows the spatiotemporal resolution
and data types of different experimental data.

Data Time Scale Data Type Resolution

PM2.5, O3, CO, NO2, SO2 Jan 2018–Dec 2018
Jan 2019–Dec 2019
Jan 2020–Dec 2020

390 PM2.5 ground monitoring sites /
TEM, PRS, WS, RH 98 meteorological monitoring sites /

ZWD Grid 1◦ × 1◦

NDVI Grid 1 km
POP 2018–2020 Grid 1 km
ELE / Grid 90 m

From Figure 1, we can see that the number of meteorological monitoring stations is
smaller than the number of PM2.5 concentration monitoring stations, and ZWD is grid data.

http://data.cma.cn/
https://www.gscloud.cn/sources
https://vmf.geo.tuwien.ac.at/
https://vmf.geo.tuwien.ac.at/
http://www.resdc.cn/
https://hub.worldpop.org/
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To ensure the smooth implementation of the subsequent experiments, we use the IDW
method to spatially interpolate the meteorological data (TEM, PRS, WS, RH) and ZWD to
obtain the corresponding raster data [17,34]. Figure 2 shows the root-mean-square error of
the cross-validation results of the IDW interpolated meteorological and ZWD data.
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From Figure 2, we can see that the RMSEs of meteorological factors (TEM, PRS, WS,
RH) for 2018–2020 all remain within a range of intervals with small and relatively stable
values, indicating the good applicability and stability of the spatial interpolation effect of
IDW on meteorological factors. For the problem of large differences in the RMSE of ZWD
data in different months, we found that this situation was caused by large differences in
the values of ZWD in different months. The difference between the mean size of ZWD in
June–August and the mean size of ZWD in December, January, and February was nearly
4 times, while the differences between the mean values of meteorological factors in different
months were all less than 1 time. Therefore, the interpolation accuracy of the IDW method
for ZWD is high relative to the size of ZWD and can be used for subsequent studies.

After obtaining the meteorological factor raster and ZWD raster with higher accuracy
using the IDW method, we extracted the values of all raster data to the corresponding
PM2.5 ground monitoring points using the spatial analysis tool of ArcGIS 10.4 software to
obtain explanatory variables with a uniform spatial and temporal scale with PM2.5 data.

2.2. Methods
2.2.1. GWR Model

The geographically weighted regression (GWR) model is a spatial analysis technique
that embeds the spatial location of the data into the linear regression equation based on the
traditional linear regression model. Since it takes into account the local effects of spatial
objects, it can better explain the spatial heterogeneity and spatial autocorrelation problems
that exist in spatial data and has a high estimation accuracy. The principle of the GWR
model is as follows [29–34]:

Fi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi (1)
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where Fi is the observed value of the sample point and is used as the dependent variable
in the GWR model. (ui, vi) are the coordinates of the i-th sample point, βk(ui, vi) is the
i-th regression coefficient on each sample point, xik is the k-th explanatory variable of the
i-th observation point, p is the total number of explanatory variables, εi is the regression
residual, and β0(ui, vi) is the regression intercept term of the model at the i-th sample point.

The weighted least squares method was used to estimate the model regression coeffi-
cients; the coefficient matrix for each point is as follows:

β(ui, vi) =
[
XTW(ui, vi)X

]−1
XTW(ui, vi)Y (2)

where W(ui, vi) is the diagonal matrix of spatial weights, X is the design matrix of indepen-
dent variables, and Y is the matrix of dependent variables.

The spatial weight matrix W is calculated using the bi-square function:

wij =

{
(1− d2

ij/θ2)
2, dij < θ

0 , dij > θ
(3)

where wij is the weight between the spatially known points j and the points i to be estimated,
dij is the Euclidean distance between the points i to be estimated and the sample points j,
and θ is the bandwidth size, which is judged using corrected Akaike information criterion
(AICc); when AICc is smallest, the bandwidth of the chosen weight function is optimal.

2.2.2. PCA-GWR Model

PCA is a statistical method to effectively reduce the spatial dimensionality of data
that can explore the trend of multiple variables and convert multiple potential explanatory
variables into new, mutually independent linear combinations of variables to replace the
original variables, where the new combinations are also called principal components. The
number of extracted principal components needs to be determined by the contribution
of the principal components to the explanation of the variables to generally extract sev-
eral principal components with a cumulative contribution of 90% or more; otherwise,
the number of principal components should be adjusted [40–42]. PCA is primarily ac-
complished through the integration tools of the Scientific Platform Serving for Statistics
Professional 2021. SPSSPRO (Version 1.0.11) (Online Application Software). (Retrieved
from https://www.spsspro.com, accessed on 13 July 2022).

The PCA-GWR model is a combinatorial optimization model, which is based on the
principle of using the PCA method to extract the principal components as new independent
variables, instead of the original independent variables, to establish the modified GWR
model; it not only fully considers the contribution of all potential explanatory variables
to the changes in the dependent variable but also effectively addresses multicollinearity
among explanatory variables. The main processes are as follows:

• Step 1: The data of the independent variables of the GWR model were standard-
ized, then the Kaiser-Mayer-Olkin (KMO) test and Bartlett’s test of sphericity were
performed on the data. If the KMO value was greater than 0.5 and the p-value of
Bartlett’s test of sphericity was less than 0.05, there was a strong correlation between
the independent variables, and PCA can be performed; otherwise, the data are not
suitable for PCA [50].

• Step 2: The correlation between PM2.5 and the independent variable data was analyzed
using the gray relation analysis (GRA) [51] integrated tool in SPSSPRO to obtain the
gray correlation value, and the closer the gray relational grade was to 1, the higher the
correlation between the variable and PM2.5.

• Step 3: The variables with high correlation (gray relational grade >0.9) were selected
as input variables for PCA, and all principal components were calculated using the
PCA integration tool in SPSSPRO.

https://www.spsspro.com
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• Step 4: All the principal components were ranked and cumulatively summed accord-
ing to the percentage of variance, and those with a cumulative percentage of variance
greater than or close to 90% were selected as the final input variables of the GWR
model. The PCA-GWR model was then constructed to obtain the estimation results of
the target variables.

2.2.3. RBF Interpolation

Radial basis function interpolation (RBF) is an accurate deterministic spatial interpola-
tion method that makes no assumptions about the data and provides accurate prediction
surfaces, which is beneficial for dealing with scattered data and approximating surfaces. In
addition, it can interpolate predicted values larger than the maximum and smaller than
the minimum of the observed values when the maximum and minimum of the spatial
data are not clear, and it has the advantages of simple computational format, flexible node
configuration, small computational effort, and relatively high accuracy. The RBF interpola-
tion during this research was implemented using the RBF interpolation analysis tool in the
geostatistical analysis toolkit of ArcGIS 10.4 software [52]. The basic principle of the model
can be expressed as follows [53,54]:

Ẑ(x, y) =
n

∑
i

λi ϕ(ri) + T(x, y) (4)

where (x, y) are the coordinates of the points to be interpolated, n is the number of sample
points, λi is the weight coefficient obtained by solving the linear system of equations, ϕ(ri)
is the basis function, and T(x, y) = a + bx + cy is the trend function.

The coefficients of the trend function T(x, y) are solved using the least squares method,
and the following constraints must be satisfied when solving:

n
∑

i=1
λi = 0

n
∑

i=1
λiT(xi, yi) = 0

(5)

where (xi, yi) are the coordinates of the sample points i.
The basis functions of the RBF are chosen from the Completely Regular Spline (CRS)

function: φ CRS(ri); the Tension Sample (TS) function: φ TS(ri); the Multiquadric Spline
(MS) function: φ MS(ri); the Inverse Multiquadric Spline (IMS) function: φ IMS(ri); and the
Thin Plate Spline (TPS) function: φ TPS(ri). The five basis functions [55] are calculated as
follows:

φ CRS(ri) = 2 ln
ωri
2

+ E0(
ωri
2

)
2
+ c0 (6)

φ TS(ri) = ln
ωri
2

+ K0(ωri)
2 + c0 (7)

φ MS(ri) =
√

r2
i + ω2 (8)

φ IMS(ri) =
1√

r2
i + ω2

(9)

φ TPS(ri) = (ωri)
2 ln(ωri) (10)

where ri is the Euclidean distance between the point (x, y) to be interpolated and the i-th
sample point, E0 is the exponential integration function, K0 is the corrected Bessel function,
c0 is a constant (0.577215), ω is the smoothing factor, and the optimal smoothing factor for
each basis function is automatically calculated by the parameter optimization function in
the geostatistical analysis tool of ArcGIS 4.0.
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2.2.4. Combined Model with Residual Correction Based on the RBF Interpolation

The PCA-GWR model is an inaccurate spatial interpolation method, and its estimated
value at a known location is not equal to the known value; hence, the residual interpolation
correction of the estimated value of the PCA-GWR model can be used to further improve
the accuracy of PM2.5 estimation. In addition, due to the diverse and complex influencing
factors of PM2.5, the PCA-GWR model cannot fully explain the spatial variation of PM2.5,
which means the residuals of the model will have some spatial autocorrelation; hence, the
spatial interpolation method can be considered to correct the residuals of the PCA-GWR
model to further explain the spatial characteristics of PM2.5.

Therefore, based on these two considerations of the PCA-GWR model, five radial basis
function (RBF) interpolation methods based on different basis functions (CRS, TPS, IMS, IM,
TS) are selected to interpolate the residuals of the PCA-GWR model to further optimize the
interpolation accuracy of the model, and five residual correction models (PCA-GWRCRS,
PCA-GWRTS, PCA-GWRMS, PCA-GWRTPS, PCA-GWRIMS) are constructed. Their model
principles are described as follows:

FPCA−GWRRBF = F̂PCA−GWR + ZRES (RBF) (11)

where FPCA−GWRRBF denotes the value after residual RBF interpolation correction for the
estimated values of the PCA-GWR model, F̂PCA−GWR denotes the estimated value of the
PCA-GWR model, and ZRES (RBF) denotes the residual estimates obtained after the RBF
interpolation of the regression residuals of the PCA-GWR model. The subscript RBF
indicates five different RBF spatial interpolation methods (CRS, TS, MS, TPS, IMS).

2.2.5. Evaluation Indicators

To evaluate the model accuracy more intuitively, we use four metrics, the root mean
square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and the decidability Factor R2, to comprehensively evaluate the model’s accuracy and
performance.

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (12)

MAE =
1
n

n

∑
i=1
|xi − x̂i| (13)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (14)

R2 =

∑
i
(x̂i − xi)

2

∑
i
(x− xi)

2 (15)

where n is the total number of samples, xi is the observed value of the target variable at
the i-th position, x̂i is the estimated output of the model at the same position, and xi is the
average value of the total number of samples.

In general, RMSE and MAE are mainly used to evaluate the estimation accuracy of
the model, and the smaller the value is, the higher the estimation accuracy of the model
and vice versa. MAPE and R2 are mainly used to evaluate the performance of the model,
and the smaller the value of MAPE and the closer the value of R2 is to 1, the better the
performance and fitting effect of the model and vice versa.
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3. Results
3.1. Analysis of PM2.5 and Its Related Explanatory Variables
3.1.1. PM2.5 Descriptive Statistics

To further understand the change in PM2.5 concentration in January–December 2018–
2020, we conducted descriptive statistics on PM2.5 ground monitoring station data, and the
results are shown in Figure 3.
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concentrations from January to December 2018–2020.

From Figure 3, it can be seen that the maximum (Figure 3a), minimum (Figure 3b),
mean (Figure 3c), and standard deviation (Figure 3d) of PM2.5 concentrations in January–
December 2018–2020 show a ‘U’-shaped distribution; therefore, it can be concluded that
PM2.5 concentrations are high in December, January, and February, low in June–August, and
moderate in March–May and September–November each year. In addition, the standard
deviation of PM2.5 concentrations in December, January, and February of 2018–2020 is
greater than that of the remaining months, indicating that the PM2.5 data for December,
January, and February are more discrete and less stable, while the data for the remaining
months are more stable.

3.1.2. GRA

To ensure that both PCA and GWR models have good modeling effects and that
subsequent tests were carried out smoothly, we used the GRA method to analyze the
correlation between PM2.5 and 12 explanatory variables and measured the correlation
between the two variables by the closeness of the gray relational grade to 1 [56]. The GRA
results are shown in Figure 4.
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explanatory variables.

From Figure 4, it can be concluded that the gray relational grade between PM2.5 and
the 12 explanatory variables (CO, NDVI, NO2, O3, PRS, RH, SO2, TEM, WS, ZWD, ELE,
and POP) are all greater than 0.9, whereas the gray relational grade with ELE and POP
is lower than other variables, and the highest gray relational grade is with PRS; the gray
relational grade in 2018–2019 showed a slow trend of increasing and then decreasing on the
monthly scale. In summary, PM2.5 has a high correlation with all 12 explanatory variables,
which can be used as input variables for the construction of GWR and PCA models.

3.1.3. Multicollinearity Diagnosis

Multicollinearity refers to the distortion of model estimates due to the correlation
between explanatory variables in a linear regression model; it is necessary to test for
multicollinearity among explanatory variables before constructing a GWR model. Selecting
a combination of variables suitable for modeling based on the diagnostic results can
ensure the accuracy of model estimation. Therefore, the exploratory regression method
in the spatial statistics tool of ArcGIS 4.0 is used to test the multicollinearity among the
12 explanatory variables and judge the severity of multicollinearity by the magnitude of
the output variance inflation factor (VIF) value. The closer the VIF value is to 1, the lighter
the multicollinearity among the variables, and the greater the VIF value is than 1, the more
severe the multicollinearity between variables. If the VIF value is between 1 and 5, then the
multicollinearity among the explanatory variables is mild and the impact on the estimation
accuracy of the regression model is negligible. If the VIF value is greater than 5, then
the multicollinearity among the explanatory variables is more serious, the impact on the
estimation accuracy of the model is not negligible, and a reasonable method must be used
to address it [57,58]. The results of the diagnosis of multicollinearity among the explanatory
variables are shown in Figure 5.
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with points of different shapes and colors indicating the VIF values between the corresponding
explanatory variables and the remaining explanatory variables.

From Figure 5, it can be seen that there are varying degrees of multicollinearity
(VIF > 5) between the explanatory variables for PM2.5 in most months of 2018–2020, with
TEM (February, May, and August 2018 (Figure 5a); February, July, August, and November
2020 (Figure 5c)), ZWD (February and December 2018 (Figure 5a); February–June 2019
(Figure 5b); February, March, April, November, and December 2020 (Figure 5c)), and RH
(May and September 2019 (Figure 5b); July 2020 (Figure 5c)) causing the highest likelihood
of multicollinearity (VIF > 10). However, the VIF between the explanatory variables for
PM2.5 in June 2020 and November 2019 is less than 5, indicating that the multicollinearity
between the explanatory variables for PM2.5 in these two months is small.

Therefore, to minimize the multicollinearity among the explanatory variables of PM2.5
and obtain the best combination of explanatory variables suitable for PM2.5 estimation
in all months, we screened and excluded the explanatory variables with large VIFs and
performed stepwise multicollinearity diagnosis. The results show that in months with more
severe multicollinearity (VIF > 5), the VIFs of the remaining explanatory variables after
excluding TEM and ZWD all decrease to varying degrees and are all less than 5. Moreover,
there is a corresponding decrease in the VIF of the remaining explanatory variables in
November 2019 and June 2020 after the exclusion of these two variables. In summary,
we considered the use of the remaining 10 explanatory variables of PM2.5 (CO, NO2, O3,
SO2, PRS, WS, RH, NDVI, ELE, and POP) to construct a GWR model for the interpolation
estimation of PM2.5 spatial distribution.
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3.1.4. PCA

Although the 10 explanatory variables selected by stepwise exploratory regression
effectively reduced the multicollinearity among the explanatory variables, two explana-
tory variables (ZWD and TEM) with a high correlation with PM2.5 were excluded, and
the contribution of all potential explanatory variables to the change in PM2.5 was not
fully considered; hence, we chose the PCA method to reduce the dimensionality of the
12 explanatory variables to further minimize the influence of multicollinearity among the
explanatory variables while maximizing the contribution of the explanatory variables to
the variation in PM2.5 spatial distribution.

Before conducting principal component analysis, we conducted the KMO test and
Bartlett’s test of sphericity on the explanatory variables for each month of 2018–2020. The
experimental results yielded KMO values greater than 0.5 among the explanatory variables
for each month of 2018–2020, and Bartlett’s test of sphericity of p-values was 0.000 *** (Note:
*** represents a 1% significance level), which basically meets the requirements of principal
component analysis and allows for the PCA of explanatory variables; the results of the
percentage of variance of the PCA are shown in Figure 6.
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Figure 6. Results of PCA for each month of (a) 2018, (b) 2019, and (c) 2020. The short bars of
different colors inside each long bar in the figure indicate the % of variance of different principal
components; the number inside each short bar indicates the % of variance of the corresponding
principal component (when the percentage of variance is less than 2%, the annotation will be ignored);
the long bar formed by superimposing each short bar indicates the cumulative % of variance of the
principal component in the corresponding month.

As shown in Figure 6, the percentage of variance of the first principal component
(PC1) for January–December 2018–2020 is between 20 and 35%, the percentage of variance
of the second principal component (PC2) is between 14 and 20%, and the percentage of
variance of the third principal component (PC3) and fourth principal component (PC4) is
approximately 10%; the rest of the percentage of variance is below 10% and decreases with
the increase in the principal component number. The cumulative percentage of variance of
PC1–PC8 is approximately 90%, indicating that PC1–PC8 contributed 90% and above to the
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12 explanatory variables, so we selected PC1–PC8 as the independent variables of the GWR
model and constructed the PCA-GWR model for PM2.5 spatial distribution estimation.

3.2. Model Regression
3.2.1. Comparison of Model Accuracy

Through a series of exploratory analyses, we finally selected 10 variables (CO, NO2,
O3, SO2, PRS, WS, RH, NDVI, ELE, and POP) to construct the GWR model and selected
principal component analysis to extract the eight principal components, whose cumulative
contribution to the 12 explanatory variables was nearly 90%, to construct the PCA-GWR
model and compared the accuracy and model performance of the two models, the results
of which are shown in Figure 7.
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Figure 7. PCA-GWR and GWR model accuracy evaluation results, including RMSE for different
months in (a1) 2018, (a2) 2019, (a3) 2020; MAE for different months in (b1) 2018, (b2) 2019, (b3) 2020;
MAPE for different months in (c1) 2018, (c2) 2019, (c3) 2020; R2 for different months in (d1) 2018, (d2)
2019, (d3) 2020.

Comparing Figure 7a1–a3,b1–b3, it can be seen that the RMSE of both the GWR and
PCA-GWR models is less than 8 µg/m3 and the MAE values are less than 6 µg/m3 for the
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monthly average PM2.5 estimation from 2018 to 2020, which indicates that both models
have higher accuracy in estimating PM2.5 concentrations. In addition, the RMSE and
MAE of the PCA-GWR model generally improved to different degrees compared with
the GWR model, with the RMSE of November 2018, June 2019, September 2020, and
December 2020 improving significantly compared with the GWR model by 9.89%, 17.94%,
11.59%, and 12.98%, respectively. The MAEs in November 2018, June 2019, September
2020, and December 2020 were more significantly optimized relative to the GWR model,
with improvements of 12.20%, 16.86%, 12.20%, and 9.51%, respectively; therefore, it can be
concluded that the spatial estimation accuracy of the PCA-GWR model for PM2.5 is better
than that of the GWR model.

From Figure 7c1–c3,d1–d3, it can be seen that the MAPE of the PCA-GWR model
is smaller than that of the GWR model in 2018–2020, where the improvement of MAPE
relative to the GWR model is more obvious in November 2018, June 2019, September 2020,
and December 2020, with 11.39%, 19%, 11.63%, and 10.11%, respectively, in that order. The
MAPE of the PCA-GWR model remains between 10 and 13 in June–August and is less than
10 in the rest of the months, with the smallest MAPEs in February 2018, December 2019,
and January 2020. Meanwhile, the R2 of the PCA-GWR model is larger than that of the
GWR model, among which the R2 values in July 2018, June 2019, and September 2020 are
more significantly improved relative to the GWR model by 15.79%, 23.53%, and 12.86%,
respectively, in that order. The R2 of the PCA-GWR model is larger in January–March
and October–December than in April–September, among which the PCA-GWR model had
R2 values greater than 0.9 in January, November, December 2018–2019, and January and
December 2020.

In summary, compared with the GWR model, the PCA-GWR model can not only fully
consider the contribution of all potential explanatory variables to the PM2.5 changes and
minimize the multicollinearity among explanatory variables, but also effectively improve
the precision and fitting effect of the spatial estimation of PM2.5; hence, it is feasible to opti-
mize the GWR model using principal component analysis. However, the fitting effect and
estimation accuracy for some months are still relatively poor, so we subsequently consid-
ered the residual correction process of the PCA-GWR model using the spatial interpolation
method to further improve the estimation accuracy and fitting effect of PM2.5.

3.2.2. Regional Distribution of Model Residuals

From Figure 7, we know that the model performance and estimation accuracy of PCA-
GWR are better than those of the GWR model, but the estimation accuracy and fitting effect
of the PCA-GWR model still have room for improvement, so the spatial distribution of the
residuals of the PCA-GWR model is visualized to further analyze the spatial distribution
pattern of the residuals of the PCA-GWR model.

Since the strengths and weaknesses of the model interpolation effects for 2018–2020
are basically the same, we use the spatial distribution of residuals of the PCA-GWR
model for January–December 2018 in the middle and lower reaches of the Yangtze River
(Figure 8a1–a12) as an example to save space and use these plots as the basis for our analysis.

From Figure 8, it can be seen that the residual distribution of the PCA-GWR model
shows a spatial trend of high in the north and low in the south, and the absolute values
of residuals greater than 20 µg/m3 are mainly concentrated in January, February, and
December. When we combine these data with Figure 7, we can see that although the
residuals in January, February, and December 2018 are larger, their MAPEs are less than 10
and their R2 values are greater than 0.8, indicating that the PCA-GWR model has a better
fit for PM2.5, but there is still room for optimizing the estimation accuracy of the model.
When we combine PM2.5 values with Figure 3, it can be seen that the PM2.5 concentrations
in June–August 2018 are lower than those in other months, but the absolute value of the
residuals from June to August is large in relation to the ratio of PM2.5 concentration, thus
making the MAPE of the PCA-GWR model in June, July, and August large and the R2 small
(Figure 7).



Remote Sens. 2022, 14, 5626 15 of 26Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 8. Merged plot of the spatial distribution of residuals of the PCA-GWR model for January–
December 2018 (a1–a12). 

From Figure 8, it can be seen that the residual distribution of the PCA-GWR model 
shows a spatial trend of high in the north and low in the south, and the absolute values of 
residuals greater than 20 μg/m³ are mainly concentrated in January, February, and De-
cember. When we combine these data with Figure 7, we can see that although the residu-
als in January, February, and December 2018 are larger, their MAPEs are less than 10 and 

Figure 8. Merged plot of the spatial distribution of residuals of the PCA-GWR model for January–
December 2018 (a1–a12).

In summary, although the accuracy and fitting effect of the PCA-GWR model are
better than those of the conventional GWR model, there is still room for optimizing the
residuals of the PCA-GWR model for estimating PM2.5 concentrations in months with high
and low PM2.5 concentrations; therefore, residual correction for the PCA-GWR model can
be considered.
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3.2.3. Residual Correction of PCA-GWR Model

To ensure the smooth process of introducing spatial interpolation methods for the
residual correction of PCA-GWR models in subsequent experiments, we performed a
spatial autocorrelation analysis on the regression residuals of the PCA-GWR model. The
experiments were performed by calculating the global Moran’s I spatial autocorrelation of
the residuals of the PCA-GWR model with the spatial analysis tool of GeoDa version 1.18.0
software; the results are shown in Table 2.

Table 2. The results of the spatial autocorrelation analysis of the residuals from the PCA-GWR model
for PM2.5 concentration estimation, including the corresponding date, Moran’s I, Z value, and p-value.

Date Moran’s I Z-Value p-Value Date Moran’s I Z-Value p-Value Date Moran’s I Z-Value p-Value

Jan, 2018 0.091 2.859 0.004 Jan, 2019 0.177 5.365 0.001 Jan, 2020 0.148 4.420 0.001
Feb, 2018 0.142 4.915 0.001 Feb, 2019 0.114 3.537 0.001 Feb, 2020 0.201 6.071 0.001
Mar, 2018 0.059 1.858 0.044 Mar, 2019 0.141 4.458 0.001 Mar, 2020 0.021 0.704 0.235
Apr, 2018 0.114 3.381 0.002 Apr, 2019 0.107 3.145 0.002 Apr, 2020 0.041 1.297 0.114
May, 2018 0.014 0.446 0.316 May, 2019 0.066 1.972 0.049 May, 2020 0.120 3.730 0.001
Jun, 2018 0.125 3.645 0.001 Jun, 2019 0.077 2.502 0.009 Jun, 2020 0.066 2.015 0.027
Jul, 2018 0.135 4.638 0.001 Jul, 2019 0.088 2.720 0.007 Jul, 2020 0.036 1.304 0.098

Aug, 2018 0.087 3.096 0.003 Aug, 2019 0.022 0.846 0.200 Aug, 2020 0.186 5.414 0.001
Sept, 2018 0.037 1.165 0.125 Sept, 2019 0.044 1.418 0.079 Sept, 2020 0.162 4.976 0.001
Oct, 2018 0.083 2.449 0.014 Oct, 2019 0.099 3.032 0.003 Oct, 2020 0.148 4.327 0.002
Nov, 2018 0.062 1.840 0.066 Nov, 2019 0.155 4.644 0.001 Nov, 2020 0.184 6.079 0.001
Dec, 2018 0.185 6.442 0.001 Dec, 2019 0.107 3.222 0.002 Dec, 2020 0.147 4.285 0.001

As seen from Table 2, the residuals of the PCA-GWR model for most months of
2018–2020 are spatially autocorrelated, their p-values are almost all less than 0.1, and the
absolute values of the Z values are almost all greater than 1.65, indicating that the spatial
autocorrelation of the residuals of the PCA-GWR model is significant at the 0.1 level with a
confidence level greater than 90%, and the spatial autocorrelation of the residual results are
generated by random processes with less than 10% chance.

Therefore, we introduce five different radial basis function (CRS, TS, MS, IMS, TPS)
interpolation methods to correct the residuals of PCA-GWR models and construct five
improved models (PCA-GWRCRS, PCA-GWRTS, PCA-GWRMS, PCA-GWRIMS, PCA-
GWRTPS). The evaluation of the interpolation accuracy of the leave-one-out cross-validation
method for the five improved models is shown in Figures 9 and 10.

As seen from Figures 9 and 10, the estimation accuracy and fitting effect of the five
models for PM2.5 after residual correction have all improved and enhanced to different
degrees relative to the PCA-GWR model, among which the RMSE and MAPE of the PCA-
GWRMS model have improved most significantly compared to the PCA-GWR model. For
the PCA-GWRMS model, RMSE improved by 59.40% on average and MAPE improved
by 69.37% on average in January–December 2018; RMSE improved by 62.89% and MAPE
improved by 70.37% on average in January–December 2019; and RMSE improved by 61.95%
and MAPE improved by 70.32% on average in January–December 2020. In addition, from
the changes in RMSE and MAPE in the different months of each year, it can be concluded
that the overall correction effects of the five radial basis interpolation methods on the
residuals are in the order of MS > TPS > CRS > TS > IMS, where the MS interpolation
algorithm effectively improves the estimation accuracy and model performance of the PCA-
GWR model and creates relatively more stable interpolation effects for different months
compared with other interpolation methods.
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Comparing Figure 9a–c, we can see that the RMSE of all five models is less than
5 µg/m3 for each month in 2018 (Figure 9a), the RMSE value is less than 3.5 µg/m3 for each
month in 2019 (Figure 9b), and the RMSE value is less than 3 µg/m3 for each month in 2020
(Figure 9c). This indicates that the interpolation accuracy of all five interpolation models for
PM2.5 is high, among which the interpolation effect is the best for 2020 PM2.5 and the worst
for 2018 PM2.5. Comparing Figure 10a–c, we can see that the MAPE of all five models is
less than 10, among which the MAPE of both the PCA-GWRMS and PCA-GWRTPS models
is less than 5, indicating that the two models have a better fitting effect and better model
performance for PM2.5, while the PCA-GWRMS model is better than the PCA-GWRTPS
model among the two models.

In summary, all five interpolation models (PCA-GWRCRS, PCA-GWRTS, PCA-GWRMS,
PCA-GWRIMS, and PCA-GWRTPS) can better achieve the interpolation estimation of the
spatial distribution of monthly PM2.5 in the middle and lower reaches of the Yangtze River
for 2018–2020 with better interpolation accuracy and fitting effect, among which the PCA-
GWRMS model outperformed the other four residual correction models and the PCA-GWR
model in all aspects.

3.3. Generation of the Spatial Distribution Map of the PM2.5 Concentration

Through the analysis, we concluded that the accuracy and performance of the PCA-
GWRMS model are better than those of the other models, and this model takes into account
more comprehensive PM2.5 influencing factors and less data loss; hence, we chose to use
the PCA-GWRMS model to generate the spatial distribution map of PM2.5 concentrations
in the middle and lower reaches of the Yangtze River from 2018 to 2020. Its mapping steps
are as follows:

• Step 1: Based on the PM2.5 concentration of 390 ground monitoring stations, we use
ArcGIS 4.0 to encrypt the PM2.5 monitoring stations and obtain 0.5◦ × 0.5◦ grid points.

• Step 2: The inverse distance weighting (IDW) method is used to interpolate the
atmospheric pollutants (CO, NO2, O3, SO2), meteorological data (TEM, PRS, WS, RH),
and ZWD data to obtain the raster of the corresponding data, and then ArcGIS 4.0
is used to extract the values of the NDVI raster, ELE raster, and POP raster to the
0.5◦ × 0.5◦ grid points and 390 PM2.5 ground monitoring stations.

• Step 3: We construct the PCA-GWRMS model using data from 390 monitoring stations
to obtain PM2.5 estimates for 0.5◦ × 0.5◦ grid points, then visualize the predicted values
for 0.5◦ × 0.5◦ grid points and the actual PM2.5 values from 390 ground monitoring
stations using the inverse distance weighting (IDW) [31] interpolation method to
generate a PM2.5 concentration spatial distribution map from January to December
2018–2020 (Figures 11–13).

From the PM2.5 spatial distribution in Figures 11–13, it can be seen that the PM2.5
concentration distribution in the middle and lower reaches of the Yangtze River in 2018–
2020 has a ‘U’-shaped distribution on a monthly scale, which is consistent with the results
described in Figure 3, where the PM2.5 concentrations in January, February, and December
are high, and those in June, July, and August are low, especially in the northern part
of the study area in January each year, which is generally higher than 75 µg/m3. From
the overall PM2.5 spatial distribution, PM2.5 concentrations show a spatial trend of high
in the north and low in the south, and this variation is obvious in January–March and
November–December each year, indicating that the use of the PCA-GWRMS model can
better estimate regional PM2.5 concentrations and generate a spatial distribution map of
PM2.5 concentrations with a high degree of refinement.
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4. Discussion

In this paper, we found that the distribution of PM2.5 in six provinces and one city in the
middle and lower reaches of the Yangtze River in China shows a ‘U’-shaped distribution on
different monthly scales, with high PM2.5 concentrations mainly occurring in winter months
(January, February, and December), where PM2.5 concentrations are higher in January than
in other months, and low concentrations are mainly distributed in the summer months
(June, July, and August) (Figure 3). This phenomenon is the same as the regional PM2.5
concentration distribution in some existing studies [59,60], and the main reason for its
formation is that the atmospheric temperature near the ground in winter in China is lower
than that of the upper atmosphere, forming an inverse temperature phenomenon, resulting
in a relatively stable atmospheric structure and no air convection in the vertical direction,
which makes it difficult for PM2.5 and other atmospheric pollutants near the ground to
diffuse and accumulate to form haze [61]. At the same time, due to the lower temperatures
near the ground in winter, the water vapor content in the air is lower, causing the air
near the ground to be drier and facilitating haze formation. In the summer, near-surface
atmospheric temperature is high, the water vapor content in the air is high, and the vertical
movement of the atmosphere is active; therefore, the inverse temperature phenomenon
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does not easily occur [62]. Moreover, more rainfall in summer is not conducive to the
formation and diffusion of haze [63].

Considering the complex and diverse influencing factors of PM2.5 [20,21,48], we
demonstrated the high correlation between PM2.5 and 12 explanatory variables such as
meteorological factors, ZWD, and NDVI using the GRA method (Figure 4), and interestingly,
we found a sudden increase in the gray relational grade of PM2.5 with POP and ELE in
June 2020, while the gray relational grade of these two variables remained around 0.92 and
lower than other explanatory variables in the same month for the rest of 2018–2020. We
consider that this phenomenon may first be due to the fact that ELE involves long-term
data (Table 1), which do not change in a short time range, and POP involves annual-scale
data (Table 1), which do not change with the month. However, the PM2.5 concentrations
and the remaining explanatory variables are monthly data and change with the month and
season (Table 1, Figures 3 and 11–13), making the gray relational grade of PM2.5 with ELE
and POP in different months less variable and lower than the other explanatory variables
of PM2.5 in the same month.

Secondly, because of the COVID-19 outbreak in early 2020 [64], China has promoted
travel reduction and imposed closure on areas with severe COVID-19 outbreaks [65],
making the mean PM2.5 concentration in June 2020 slightly lower than that in July, but
much lower than that in May (Figure 3c), which is different from the changing patterns of
the mean PM2.5 in May–July 2018 and 2019. Meanwhile, June is in the transition period of
spring and summer, with low PM2.5 concentrations, making PM2.5 concentration changes
vulnerable to various factors such as meteorological factors, POP, and ELE. Finally, we
conclude that the higher gray correlation between PM2.5 and POP and ELE in June 2020
may be influenced by our COVID-19 prevention and control and the alternation of spring
and summer seasons.

Multicollinearity is an issue that must be considered in linear regression models [40,66],
and through our study, we found that the PCA-GWR model was able to minimize the
loss of data, and the spatial estimation accuracy and fitting effect of the PCA-GWR model
were better than those of the traditional GWR model (Figure 7). The analysis of this phe-
nomenon may be because the traditional stepwise exploratory regression extraction method
eliminates explanatory variables with multicollinearity while also eliminating explanatory
variables with PM2.5 correlations (Figures 4 and 5). Despite the multicollinearity among
explanatory variables, each explanatory variable has a unique influence on the formation
and distribution of PM2.5 and cannot be completely replaced, while the principal compo-
nent analysis extracts principal components that can fully consider the contribution of all
potential explanatory variables to PM2.5 variation [48,67,68]. Therefore, we suggest that
the PCA method can be considered to improve the efficiency and accuracy of the linear
model when the linear model under consideration has more explanatory variables or the
multicollinearity among the explanatory variables is more serious.

Our spatial autocorrelation analysis and the spatial visualization analysis of the PCA-
GWR model residuals showed that the residuals of the PCA-GWR model have some
positive spatial correlation (Table 2) and a clustering effect occurs spatially, with high
values clustering around other high values (Figure 8), meaning the model’s station residual
values are affected by the surrounding stations. Therefore, we used five different radial
basis function interpolation methods (CRS, TS, MS, IMS, TPS) for the residual correction
of the PCA-GWR model and demonstrated that the five improved combined models
(PCA-GWRCRS, PCA-GWRTS, PCA-GWRMS, PCA-GWRIMS, and PCA-GWRTPS) were
the best in PM2.5 concentration spatial estimation and are all better than the PCA-GWR
model (Figures 7, 9 and 10). This improvement and optimization are due to the fact
that the PCA-GWR model cannot fully explain the spatial characteristics of PM2.5 and its
remaining spatial characteristics are expressed in the form of residuals, such as positive
spatial correlation (Table 2), thus the residual correction of the model using the spatial
interpolation method can better explain such characteristics.
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The PCA-GWRMS model has the best applicability among all the combined models, with
more than 60% improvement and optimization in both MAPE and RMSE (Figures 7, 9 and 10).
The advantage of this model is its smoother and less fluctuating trend of RMSE and MAPE in
different months (Figures 9 and 10), which can better deal with the different PM2.5 concen-
trations due to the high and low PM2.5 concentrations caused by differences in estimation
accuracy and fitting effects and combines the advantages of the PCA and RBF interpolation
and the GWR model to achieve effective spatial estimation and mapping of PM2.5 concentra-
tions.

5. Conclusions

In summary, the work’s accomplishments can be summarized as follows.

1. PM2.5 concentrations show a ‘U’-shaped distribution and seasonal distribution on the
monthly scale, mainly reflecting higher PM2.5 concentrations in January, February,
and December (winter) and lower PM2.5 concentrations in June, July, and August
(summer). On the spatial scale, PM2.5 concentrations are mainly high in the north and
low in the south, and the high concentration areas are mainly located in the northern
part of western Jiangsu Province, northern Anhui Province, central Hubei Province,
and northeastern Hunan Province, while the PM2.5 concentrations in Jiangxi Province
and southern Zhejiang Province are relatively low for the whole study area.

2. To extract the best independent variables of the GWR model, the principal component
analysis method has advantages over the traditional exploratory regression rejection
method, and the PCA method can better balance the problems of multicollinearity
among the explanatory variables of PM2.5 and the adequacy of the contribution of
potential explanatory variables to the distribution of PM2.5 as well as the problem
of data loss. The RMSE, MAE, MAPE, and R2 of the PCA-GWR model are all im-
proved compared with those of the GWR model, which can better achieve the spatial
estimation of PM2.5.

3. All five residual correction combination models (PCA-GWRMS, PCA-GWRTPS, PCA-
GWRCRS, PCA-GWRTS, and PCA-GWRIMS) outperform the PCA-GWR model in
the spatial estimation of PM2.5 concentrations in the middle and lower reaches of the
Yangtze River region of China for 2018–2020, indicating that the residual correction of
the PCA-GWR model using radial basis function interpolation can effectively improve
the model performance and better achieve the spatial estimation and mapping of
PM2.5 concentrations in the study area. In addition, the PCA-GWRMS model shows
stronger advantages than other combined models in terms of applicability and model
performance for the spatial estimation of PM2.5 in the study area.
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