
Citation: Chen, S.; Meng, Y.; Lin, S.;

Xi, J. Remote Sensing of the Seasonal

and Interannual Variability of Surface

Chlorophyll-a Concentration in the

Northwest Pacific over the Past 23

Years (1997–2020). Remote Sens. 2022,

14, 5611. https://doi.org/10.3390/

rs14215611

Academic Editors: José C.B. da Silva,

Caixia Wang and Jorge M. Magalhaes

Received: 20 September 2022

Accepted: 3 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Remote Sensing of the Seasonal and Interannual Variability of
Surface Chlorophyll-a Concentration in the Northwest Pacific
over the Past 23 Years (1997–2020)
Shuangling Chen *, Yu Meng, Sheng Lin and Jingyuan Xi

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography,
Ministry of Natural Resources, Hangzhou 310012, China
* Correspondence: slchen@sio.org.cn

Abstract: Phytoplankton in the northwest Pacific plays an important role in absorbing atmospheric
CO2 and promoting the ocean carbon cycle. However, our knowledge on the long-term interannual
variabilities of the phytoplankton biomass in this region is quite limited. In this study, based on the
Chlorophyll-a concentration (Chl-a) time series observed from ocean color satellites of Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS)
in the period of 1997–2020, we investigated the variabilities of Chl-a on both seasonal and interannual
scales, as well as the long-term trends. The phytoplankton Chl-a showed large spatial dynamics
with a general decreasing pattern poleward. The seasonal phytoplankton blooms dominated the
seasonal characteristics of Chl-a, with spring and fall blooms identified in subpolar waters and single
spring blooms in subtropical seas. On interannual scales, we found a Chl-a increasing belt in the
subpolar oceans from the marginal sea toward the northeast open ocean waters, with positive trends
(~0.02 mg m−3 yr−1, on average) in Chl-a at significant levels (p < 0.05). In the subtropical gyre, Chl-a
showed slight but significant negative trends (i.e., <−0.0006 mg m−3 yr−1, at p < 0.05). The negative
Chl-a trends in the subtropical waters tended to be driven by the surface warming, which could
inhibit nutrient supplies from the subsurface and thus limit phytoplankton growth. For the subpolar
waters, although the surface warming also prevailed over the study period, the in situ surface nitrate
reservoir somehow showed significant increases in the targeted spots, indicating potential external
nitrate supplies into the surface layer. We did not find significant connections between the Chl-a
interannual variabilities and the climate indices in the study area. Environmental data with finer
spatial and temporal resolutions will further constrain the findings.
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1. Introduction

The relationship between ocean ecosystems and global climate change is currently
attracting much attention [1,2]. As the base of the marine food web, phytoplankton plays
a fundamental role in the biogeochemical cycling of elements by converting inorganic
elements into organic components. On one hand, the primary production of phytoplankton
communities supports organisms at higher trophic levels and is essential to promoting
fishery productions [3,4]. On the other hand, phytoplankton in the ocean contributes to
roughly half of the fixed carbon on the planet by absorbing atmospheric CO2, significantly
alleviating global warming [5,6]. However, future projections show that the phytoplank-
ton community structure is getting increasingly unstable, and the primary production is
decreasing in response to climate change [7,8].

The quantity and quality of phytoplankton are affected by various environmental
forcings, such as light conditions, seawater temperature, marine heatwaves, nutrients,
zooplankton grazing pressure, and phytoplankton species composition [9–14]. Phyto-
plankton blooms occur when the phytoplankton biomass shows a sharp increase within
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a short period. A typical example is the dual seasonal blooms in spring and autumn in
mid-latitude seas [15,16]. Different from harmful algal blooms such as red tides, seasonal
phytoplankton blooms are driven by the adapted biological phenology, in response to
the seasonal changes of the ocean environment [17]. Chlorophyll-a concentration (Chl-a,
mg m−3) is an important parameter indicating the phytoplankton biomass and abundance
in the ocean ecosystem [18,19]. The total phytoplankton biomass within the euphotic layer
is highly correlated with surface Chl-a in a nonlinear fashion [20,21]. The accumulation of
the ocean color satellite remote sensing of sea surface Chl-a in the past decades provides a
reliable data source for studying the phytoplankton dynamics on long time scales [22–25].
Ocean color remote sensing is characterized by synoptic observations in the ocean surface
layer. Phenomena such as deep Chl-a maxima cannot be detected from space in most cases,
except in the presence of, e.g., internal tides [26]. The satellite retrievals of Chl-a are subject
to multiple error sources (e.g., clouds, sun glint, large solar angles, stray light), with a
general uncertainty of 5–35% [27,28], serving as a reliable data reservoir for studies on large
spatial and long time scales.

The northwest Pacific supports a strong carbon sink and high primary production
and plays an important role in global carbon cycling [29–31]. The warm Kuroshio current
and cold Oyashio current are the two largest ocean currents dominating the ocean circula-
tion in this region (Figure 1). The warm currents are characterized by low nutrients (i.e.,
oligotrophic waters), and the cold currents are nutrient-enriched, together modulating the
spatial distributions of nutrients and the physical-biogeochemical dynamics in the north-
west Pacific [32]. A few studies attempted to investigate the dynamics of phytoplankton
biomass and primary production in the East/Japan Sea of the northwest Pacific. Based on
satellite observations of sea surface Chl-a from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) from 1998 to 2002, Yamada et al. [22] characterized the timing of spring and fall
blooms in the East Sea and found that the start of the spring bloom was correlated with
surface wind speed, but this was not the case for the fall bloom. Using a Gaussian fitting
curve of the SeaWiFS Chl-a dynamics between 1998 and 2003, Yamada & Ishizaka [33] esti-
mated that the spring bloom started and peaked relatively earlier in March, with a shorter
duration in the mid-1980s. Lee et al. [34] reviewed the past progress on the spatial and
temporal variability of the pelagic ecosystem in the East Sea and found that the long-term
changes of phytoplankton biomass and the physical-biological environments were associ-
ated with climate variability in this region. Similarly, Joo et al. [35] reported a decreasing
trend (13% per decade) of the annual primary production from the Moderate Resolution
Imaging Spectroradiometer (MODIS) in the East Sea between 2003 and 2012, which was
attributed to the shallower mixed layers caused by the increased seawater temperature
and the Pacific Decadal Oscillation (PDO) [36]. In contrast, using a MODIS satellite data
record of Chl-a between 2003 and 2020, Park et al. [37,38] recently found that the Chl-a in
the East Sea tended to increase over the years, with some spatial divergence. Overall, in
addition to these controversial findings in the East Sea, a big knowledge gap exists in the
broad northwest Pacific about the phytoplankton Chl-a dynamics in recent decades, for
which the satellite views of the seasonal and interannual variability of the phytoplankton
Chl-a in this region from SeaWiFS and MODIS over the past 23 years (1997–2020) neatly fit
in the scope.

Under global warming and climate change, studies show that the global ocean has
been more stratified over the last half century, inhibiting the transport of heat, carbon,
and other constituents from the surface into the ocean interior [39–42]. In turn, ocean
stratification also leads to a decrease in ocean mixing, which could amplify warming in the
upper ocean layer and inhibit vertical nutrient supply from the deep waters to the upper
waters as well [42]. Investigations of different environmental factors that modulated the
seasonal and interannual dynamics of Chl-a were attempted in some regional seas. For
example, Kilpatrick et al. [43] found that the Chl-a dynamics in the Southern California
Bight were mainly driven by the local upwelling effect, with a strong negative correlation
with sea surface temperature (SST, ◦C). Similarly, Yu et al. [44] found that the monsoon
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winds and SST most determined the spatial and temporal variability of Chl-a in the South
China Sea. Siswanto et al. [45] found strong correlations between Chl-a and climate
indices in the Indonesian maritime continent. However, little was known about the driving
factors of the Chl-a dynamics in the northwest Pacific. With global warming, the decrease
in nutrients in the upper ocean layer has resulted in a global decline in phytoplankton
primary production and biodiversity [32,40,46]. Recently, anthropogenic emissions of
nitrate by fossil fuel combustion and modern agriculture have drawn public attention.
Kim et al. [47,48] investigated the nitrate dynamics in the Northwest Pacific in recent
decades and found that, despite the weakened vertical mixing under global warming, the
abundance of nitrogen relative to phosphorus has increased significantly since 1980 due
to the air deposition of anthropogenic nitrogen. The additional nitrogen input should
alleviate nitrate limitation and promote phytoplankton growth in the northwest Pacific.
However, our current understanding on the phytoplankton dynamics in this region is
quite limited. To promote our knowledge on the dynamics of phytoplankton biomass
and its driving factors in the northwest Pacific, therefore, the objectives of this study
include: (1) investigate the seasonal and interannual variabilities of Chl-a from SeaWiFS
and MODIS in the past 23 years (1997–2020); (2) characterize the dominant driving factors
of the identified interannual changing patterns in Chl-a; and (3) understand the driving
mechanisms of different environmental and climate forcing effects on the dynamics of
phytoplankton biomass in the northwest Pacific.
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2. Data and Methods
2.1. Satellite Data

Standard daily Level-3 Chl-a data products (version R2018.0) in the period of 1997–2020
were downloaded from the NASA Goddard Space Flight Center (GSFC) (http://oceancolor.
gsfc.nasa.gov/, accessed on 21 March 2021). Specifically, Chl-a data collected between
September 1997 and December 2002 were obtained from SeaWiFS, and Chl-a data collected
between January 2003 and December 2020 were obtained from MODIS on the Aqua satel-
lite. The spatial resolutions of the SeaWiFS and MODIS Chl-a were 9 km and 4 km. The
comparison of the Chl-a data time series between SeaWiFS and MODIS in their overlapped
orbiting period (2002–2010) showed good agreement with each other (Figure 2), with a
mean difference of 0.0077 mg m−3, possibly introduced by their differences in spectral

http://oceancolor.gsfc.nasa.gov/
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designs, observing geometries, and local overpass times. Correspondingly, the data records
of Photosynthetically Available Radiation (PAR, Einstein m−2 d−1) from SeaWiFS and
MODIS and those of SST from MODIS, at the same spatial and temporal resolution as that
of Chl-a, were also accessed from the NASA GSFC. In addition, Level-3 sea surface wind
vectors in the U (west-east) and V (south-north) directions were downloaded from the
Remote Sensing Systems (https://www.remss.com/measurements/ccmp/, accessed on
4 July 2021), and these wind data were obtained from the Cross-Calibrated Multi-Platform
(CCMP, V2.0) at a spatial resolution of 0.25 degrees. The scalar dataset of the sea surface
wind speed (SSW, m s−1) was derived from these U and V wind vectors.
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Figure 2. Time series of the monthly Chl-a in the northwest Pacific, derived from both MODIS and
SeaWiFS in their overlapped observation period between July 2002 and November 2010.

2.2. Other Ancillary Data

Due to the lack of sea surface nitrate (SSN, µmol/kg) data products from satellite
remote sensing, we used the field nitrate observations as an ancillary dataset in our data
analyses. In the northwest Pacific, the World Ocean Database (WOD, version 2018) has
accumulated extensive field nitrate observations from various observing platforms (e.g.,
cruise vessels, buoys, Biogeochemical-Argo floats) in recent decades (i.e., since 1980s).
These nitrate data were collected by many different research groups around the world.
Tremendous coordinating efforts were made to incorporate data from institutions, agencies,
individual researchers, and data initiatives into a single database following a standard data
quality control and formatting procedure [49], which provides a precious data reservoir
for oceanographic, climatic, and environmental research. We downloaded the WOD
nitrate dataset from the NOAA National Centers for Environmental Information (NCEI,
https://www.ncei.noaa.gov/products/world-ocean-database, accessed on 23 May 2020).
Additionally, the Japan Meteorological Agency (JMA) also maintained the amounts of
nitrate data collected from research vessels around the Japan Island in the East Sea or
the adjacent open ocean waters of the northwest Pacific. We obtained the JMA nitrate
dataset from https://www.jma.go.jp/jma/indexe.html (accessed on 23 July 2020). It should
be noted that all these nitrate observations—either from WOD or JMA—are profiling
data collected at different water depths. We calculated the SSN within the mixed layer
depth using a density threshold of 0.03 kg/m3 [50,51]. In addition, the World Ocean
Atlas (WOA) SSN monthly climatologies were downloaded from the NOAA NCEI (https:
//www.ncei.noaa.gov/products/world-ocean-atlas, accessed on 12 November 2019).

Climate indices data series in the period of 1997–2020 were also selected as ancillary
data to help interpret the interannual Chl-a dynamics observed from ocean color. The
climate indices used in this study included the multivariate ENSO index (MEI, v2) from
the NOAA Physical Sciences Laboratory (PSL, https://psl.noaa.gov/enso/mei/, accessed
on 19 September 2022), the Arctic Ocean oscillation index (AOI) from the NOAA Climate
Prediction Center (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_
index/ao_index.html, accessed on 19 September 2022), and the Pacific Decadal Oscilla-
tion (PDO) from NOAA NCEI (https://www.ncei.noaa.gov/access/monitoring/pdo/,
accessed on 19 September 2022).
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2.3. Methods

Due to cloud, straylight, and sun glint contaminations, large sun zenith angles, etc.,
daily Chl-a images from ocean color typically have lots of data gaps [52,53]. To increase the
spatial coverage of valid Chl-a, we generated the weekly and monthly Chl-a composite
images from the daily products of Chl-a for SeaWiFS (1997–2002) and MODIS (2003–2020).
The monthly Chl-a images on climatological scales were derived by averaging the monthly
Chl-a composites from each year in the period of 1997–2020. For the inconsistency of
the spatial resolution between SeaWiFS and MODIS, we linearly interpolated each of the
SeaWiFS daily images to a spatial resolution of 4 km, and we declare that this processing
had little effect on the data quality of the Chl-a images (e.g., spatial coverage, data ranges
which could be slightly reduced) and the results presented in this study. Spatially, the
northwest Pacific was divided into two sections along the eastward extension of the
Kuroshio around the latitude of 36◦N. On seasonal scales, we averaged the monthly Chl-a
images for these two sections (i.e., poleward and equatorward of the 36◦N) to examine the
seasonal differences of Chl-a in the subpolar and subtropical waters. On interannual scales,
the anomalies of the monthly Chl-a in 1997–2020 were derived by subtracting the monthly
Chl-a climatology from the monthly Chl-a images. As such, we derived the data series of
the Chl-a monthly anomaly images in the northwest Pacific between 1997 and 2020. Based
on the data series of Chl-a anomalies at each pixel, we conducted a regression analysis to
detect the trend in Chl-a in the study period. A t-test was involved in each of the regression
analyses, and only trends that passed the confidence tests (at a confidence level of p < 0.05)
were shown. Following this processing procedure, we calculated the Chl-a trends on pixel
levels (4 km × 4 km) for the broad northwest Pacific.

Phytoplankton growth is mostly influenced by water temperature, solar light condi-
tions, nutrients, and the physical ocean environment. To investigate the potential driving
factors and mechanisms of the interannual variabilities of Chl-a in the northwest Pacific,
therefore, following the same data processing scheme described above, we also calculated
the interannual trends of SST, PAR, and SSW on pixel levels in the northwest Pacific based
on the monthly anomalies of each. Specifically, due to the scarcity and coarse spatial and
temporal coverage of the field SSN data, we gridded the SSN data on monthly scales at a
spatial resolution of 2◦ × 2◦ in longitude and latitude following the published studies [47].
A longer data series between 1980 and 2020 was generated for SSN to compensate for the
strongly uneven data distributions in terms of data quantity over time. We clarify that, to
ensure the sufficiency of the SSN data series for interannual analyses, particularly for the
trend detection, a few criteria were set: the data series should cover at least 10 years of data,
with the number of monthly means being ≥20 and the data collections being available after
the year of 2010. Finally, for the targeted areas in the northwest Pacific, where Chl-a showed
significant increasing or decreasing trends, we calculated the correlation coefficients (R)
between the Chl-a anomalies data series and the anomalies of SST, PAR, SSW, and SSN, as
well as the climate indices (i.e., MEI, AOI, PDO). These statistical measures were used to
interpret the potential driving factors and mechanisms of the interannual variabilities and
trends in Chl-a.

3. Results
3.1. Seasonal Dynamics

The monthly averaged satellite Chl-a images in the period of 1997–2020 clearly pre-
sented the seasonal variability of the phytoplankton biomass in the northwest Pacific, with
spatial divergence (Figure 3). Specifically, in the subpolar waters, Chl-a was typically
≥0.5 mg m−3 over the year, with a seasonal variation amplitude of ≥1 mg m−3. Particu-
larly, in the eutrophic marginal seas (e.g., East Sea, China Seas), the seasonal Chl-a was
on levels of 1–10 mg m−3, with some spatial difference decreasing from the inshore area
towards the offshore area, consistent with the spatial patterns of Chl-a in the published
studies [23,37]. In the subtropical gyre, the water was oligotrophic, and Chl-a kept at low
levels, with values of ≤~0.2 mg m−3, year-round. It is noted that there was a transition
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band between the subpolar high Chl-a waters and the subtropical low Chl-a waters. The
geo-location of these transition bands had some seasonal migration dynamics, which ex-
tended equatorward in fall and winter and stepped poleward in spring and summer. This
seasonal migration of the Chl-a transition bands was most likely driven by the seasonal
eddy variability in the Kuroshio Extension, where the eddy kinetic energy reached the
maximum in the summer and the minimum in the winter [54].
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retrieval algorithms at large solar zenith angles (i.e., >60◦).

In the subpolar waters, where Chl-a had relatively high values over an annual cycle
(Figure 3), the Chl-a showed distinct seasonal dynamics, with peaks in both the spring and
fall. Specifically, in spring, with favored light and nutrient conditions, the phytoplankton
started to bloom, and the Chl-a reached the annual maxima (>1 mg m−3; in some cases,
>5 mg m−3). The magnitude of the spring blooms was around 1 mg m−3. With ocean
stratification and nutrient limitation, the Chl-a turned out to be relatively low in the summer.
The other algal bloom appeared in the fall. However, the magnitude of the fall blooms
in the subpolar waters was around 0.4 mg m−3, much smaller than that of the spring
bloom. With the cooling of the surface seawater and the reduction in light penetration in
wintertime, the Chl-a reached the seasonal minima. With the increase in latitude, the onset
and termination of the seasonal blooms seem to have a delay of one month. For example,
in terms of the spring blooms, the phytoplankton within the latitude of 36◦–42◦N started to
bloom in March and vanished in May; yet, the phytoplankton blooms above 42◦N initiated
in April and ended in June (Figure 3).
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In the subtropical oligotrophic waters, the Chl-a was much lower than that in the
subpolar regions. Corresponding to the migration of the transition bands of Chl-a in
the Kuroshio Extension, the spatial extension of the low Chl-a waters in the subtropical
region also showed some seasonal dynamics. Specifically, the bulk of these low Chl-a
waters started to expand in the spring, reached spatial maximum in the summer, and then
shrank in the fall and winter. From the perspective of seasonal blooms, different from the
dual-bloom signals in the subpolar regions, only spring blooms occurred in the subtropical
waters. Meanwhile, the magnitude of the spring blooms in the subtropical waters was also
significantly smaller than that in the subpolar regions.

To further quantify the seasonal dynamics of the phytoplankton Chl-a in the northwest
Pacific, the spatial averages of the Chl-a distributed northward and southward of 36◦N,
respectively, were extracted to generally represent the Chl-a dynamics in the subpolar
and subtropical waters (Figure 4a). Figure 4b shows the derived Chl-a data time series
in both sections. As described above, in the subpolar oceans (red curve in Figure 4b),
the phytoplankton Chl-a had two peaks in the spring and fall in response to the spring
and fall phytoplankton blooms. The spring blooms were much stronger than the fall
blooms, which dominated the phytoplankton growth on an annual cycle. In general, the
phytoplankton Chl-a had an annual baseline of ~0.5 mg m−3, and it peaked with a Chl-a
maximum of ~1.2 mg m−3 and 0.8 mg m−3 in the spring and fall, respectively. In contrast,
the phytoplankton Chl-a in the oligotrophic subtropical waters showed much weaker
seasonal dynamics (blue curve in Figure 4b), with a seasonal magnitude of ~0.2 mg m−3 in
Chl-a, and the baseline of the annual phytoplankton Chl-a was around 0.1 mg m−3. Clearly,
different from the dual-peaks of Chl-a in the subpolar waters, the phytoplankton Chl-a only
peaked in the spring, suggesting that only spring blooms occurred in the subtropical waters.
The Chl-a maxima of the spring phytoplankton blooms were in the order of 0.3 mg m−3,
much weaker than those of the spring blooms (i.e., Chl-a maxima of ~1.2 mg m−3) in
high-latitude waters.

3.2. Interannual Variability and Trends

Figure 4b also shows the interannual variabilities of Chl-a in the northwest Pacific in
the period of 1997–2020. In general, the phytoplankton biomass varied from year to year,
with differences identified in terms of the amplitude of seasonal blooms, and the maxima
and minima of Chl-a in each year. Specifically, in the subpolar waters (i.e., northward of
36◦N), the baseline of the phytoplankton Chl-a was 0.46–0.48 mg m−3 in most years of the
study period, but it kept a relatively low value of ~0.39 mg m−3 in 2003, 2012, and 2013.
The spring bloom peaks showed a clear increase between 1997 and 2002 and kept at levels
of 1.2 mg m−3 in the following 18 years, with some interannual variabilities. For example,
the spring blooms in 2007, 2008, and 2013 were significantly weaker than those in other
years, with Chl-a maxima of 1.0 mg m−3, 0.99 mg m−3, and 0. 91 mg m−3, respectively.
Correspondingly, the magnitudes of the spring blooms also varied accordingly in the period
of 1997–2020. The mean magnitude of the spring blooms was around 0.8 mg m−3, with a
maximum of 1.01 mg m−3 (i.e., Chl-a ranged from 0.44 to 1.45 mg m−3) and a minimum
of 0.52 mg m−3 (i.e., Chl-a ranged from 0.39 to 0.91 mg m−3) shown in 2002 and 2013,
respectively. In terms of the fall blooms, the initiation of the fall blooms started with a Chl-a
baseline of ~0.50–0.56 mg m−3 in the period of 1997–2003, yet the fall blooms initiated
with a relatively higher Chl-a of ~0.6 mg m−3 after 2003. The fall blooms were typically
lower than 0.8 mg m−3 before the year of 2008, but they tended to be stronger, with Chl-a
maxima reaching 1.0 mg m−3, in the past decade, particularly in the last three years (i.e.,
2018–2020). As a result, the Chl-a in the subpolar waters tended to increase in the study
period of 1997–2020. In the subtropical waters, the phytoplankton biomass showed few
interannual variabilities, and no visible trend in Chl-a was observed. In detail, the baseline
of the phytoplankton Chl-a was ~0.14 mg m−3, on average, and this baseline showed a
slight difference of ≤0.02 mg m−3 over the study period without interannual patterns. The
spring blooms occurred regularly in each year, and the Chl-a peaks of the spring blooms
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were ~0.3 mg m−3 at the mean state, which could reach 0. 36 mg m−3 in some years (i.e.,
2009, 2012, 2017), but the typical annual differences of the Chl-a peaks were ≤0.03 mg m−3,
significantly smaller than those in the subpolar waters.
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data time series (b) in the subpolar (i.e., poleward of the Kuroshio extension along 36◦N, red curve)
and subtropical (i.e., equatorward of the Kuroshio extension along 36◦N, blue curve) waters of the
northwest Pacific (Kuroshio extension southward and northward).

Following the procedure described in Section 2.3, we quantified the interannual
changing rates of the phytoplankton biomass in terms of the monthly Chl-a anomalies in
the northwest Pacific between 1997 and 2020. Figure 5 shows the spatial distribution of
the Chl-a interannual changing rates in the northwest Pacific at significant levels (p < 0.05),
with warm and cold colors indicating a significant increase and decrease in Chl-a and
the white color meaning no trends detected. We state that all the specified trends in the
remainder of the section are at significance levels with p < 0.05. It is found that the locations
where Chl-a had significant increasing or decreasing patterns were patchy, most likely in
response to the patchiness of the phytoplankton blooms. Most of the increasing trends
of Chl-a appeared in the subpolar section (i.e., poleward of 36◦N), including the East
Sea and the adjacent open ocean waters, and the negative trends of Chl-a appeared in
the subtropical section. To further investigate the interannual variabilities and trends of
the phytoplankton biomass, corresponding to the increasing and decreasing interannual
changing rates of Chl-a in the subpolar and subtropical waters, we generated the Chl-a
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data time series for the six subregions in different oceanic environments with contrasting
Chl-a trends (see Figure 5 for the locations). Figure 6 shows the interannual variabilities of
Chl-a in each subregion. The subregions of 1, 3, and 4 were located in the subpolar waters,
where both spring and fall blooms were identified. In these waters, the Chl-a was generally
≥0.5 mg m−3 on the mean state. There was some delay in the seasonal Chl-a maxima (i.e.,
bloom peaks) towards higher latitudes; yet, in some years, the bloom peaks appeared in
the same months. For the subregions of 2, 5, and 6, located in the subtropical waters, only
spring blooms were identified. Similarly, it is visible that the spring blooms postponed
towards a higher latitude.
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Figure 5. The spatial distribution of the interannual changing rates (unit: mg m−3 yr−1) of Chl-a in
the northwest Pacific, based on the monthly Chl-a anomalies in the period of 1997–2020, with warm
colors suggesting a Chl-a increase (i.e., positive trends) and cold colors suggesting a Chl-a decrease
(i.e., negative trends). Note that only data that passed the confident tests (p < 0.05) were shown; the
areas in white mean that the Chl-a had no significant interannual trends in the study period. The six
subregions outlined in a 2◦ × 2◦ box (i.e., boxes of 1–6 outlined in green) were selected for further
investigation of the contrasting Chl-a interannual dynamics (i.e., positive vs. negative trends).
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In the subpolar waters of the northwest Pacific, where the red belt with positive Chl-a
trends is located, the phytoplankton tended to accumulate more biomass in the study
period of 1997–2020. Specifically, in the East Sea at high latitudes (>48◦N), the Chl-a had a
much higher increasing rate of 0.06 mg m−3 yr−1, consistent with the findings of Park et al.
(2022). In the offshore waters of the East Sea (represented by subregion 1 in Figure 5), the
Chl-a had an increasing trend of 0.01 mg m−3 yr−1, on average. Overall, the Chl-a showed
significant increasing trends in most areas of the East Sea, except for the southern East Sea,
consistent with the published results (Park et al., 2022). In the China Seas, including Bohai
and Yellow Sea, the Chl-a also showed some increases. Initiating from the marginal seas,
continuous patches with increasing Chl-a extended towards the northeast in the northwest
Pacific, forming a Chl-a belt with positive interannual changing rates. We examined the
magnitude of Chl-a increasing trends around the Kuril Island chains off the Sea of Okhotsk
(subregion 3) and in the far northeast open waters (subregion 4). Off the Sea of Okhotsk,
the patches with positive Chl-a trends were continuous in space off the chain of islands,
and the Chl-a had an annual increasing rate of ~0.02 mg m−3 yr−1. Further toward the
northeast, the patches with increasing Chl-a continued off the south of the Bering Sea.
Based on the Chl-a interannual changing rates in subregion 4, we found that the Chl-a in
the high-latitude open oceans had an annual increasing trend of 0.01 mg m−3 yr−1.

Unlike the annual increasing patterns in Chl-a in most of the subpolar waters, the
Chl-a in the subtropical ocean waters showed little or very weak decreasing trends (e.g.,
<−0.0006 mg m−3 yr−1). Off the East China Sea and the south of the Japan Island (i.e.,
subregion 2), there were distinct small patches with small increasing rates of Chl-a; how-
ever, they did not show any spatial connection with adjacent waters, where either no or
very weak decreasing interannual signals in Chl-a were observed. The increasing rate
of the Chl-a off the Japan Island (i.e., represented by subregion 2) was pretty small at
0.002 mg m−3 yr−1. In the subtropical oligotrophic gyres, particularly southward of the
latitude of 30◦N, there was a large patch of waters with decreasing interannual changing
rates (e.g., <−0.0006 mg m−3 yr−1) in Chl-a. However, these Chl-a interannual decreases
were very small. Taking the subregions 5 and 6 as the representatives, we found that the
Chl-a decreasing trends in these regions were −0.00035 and −0.0004 mg m−3 yr−1.

4. Discussion
4.1. Seasonal Dynamics of Phytoplankton Chl-a

As described in Section 3.1, the phytoplankton Chl-a in the northwest Pacific showed
large seasonal variabilities, which reflected the seasonal growth of phytoplankton. The
mechanisms of the seasonal phytoplankton blooms in the global oceans have been studied
for over 60 years. Solar light radiation, nutrients availability, seawater temperature, marine
heatwaves, mixed layer depth, zooplankton grazing pressure, and the atmospheric condi-
tions were reported to be the environmental parameters that drive the seasonal variability
of phytoplankton growth and phenology [13,14,55–61]. Most of the published studies fo-
cused on the other ocean basins or marginal seas [23,38,43–45,61,62]; here, we investigated
the seasonal dynamics of the phytoplankton Chl-a in the northwest Pacific. Similar to the
spatial patterns identified in the North Atlantic [61,62], the Chl-a from the ocean color in
the northwest Pacific showed different seasonal cycles in the mid-high- (i.e., subpolar) and
low-latitude (i.e., subtropical) waters, with blooms in both spring and fall and a single
bloom in spring, respectively (Figures 3 and 4).

In the subpolar waters, the mixed layer depth modulated the initiation of the spring
and fall blooms of the phytoplankton [61]. In spring, with the warming of surface waters,
more light penetrated into the euphotic zone as a consequence of the ocean stratification
together with the sufficient nutrient support in the upper oceans (i.e., wind-driven mixing
in wintertime) [63,64], and spring blooms were triggered. The quick growth of phytoplank-
ton rapidly consumed the nutrients in the euphotic zone. In summertime, the mixed layer
depths were very shallow, and strong stratification blocked the nutrients supply from the
depth. With the additional increasing grazing pressure of zooplankton, as a result, the
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phytoplankton biomass kept at low levels. In fall, the vertical mixing started to prevail,
which alleviated the nutrients (e.g., iron, phosphorus, nitrate) limitation to some extent
(i.e., nutrients entrainment from the subsurface); yet, the light conditions and water tem-
perature still favored the phytoplankton growth during this time interval; thus, all these
supporting environmental conditions helped the phytoplankton to bloom again [62], but
the magnitudes of the fall blooms were much smaller than those in the spring (Figure 4).
In wintertime, the cold and strong winter mixing deepened the mixed layer depth, and
the mixed substances in the water column limited solar light penetration, leading to the
seasonal minima in the phytoplankton biomass [64].

In the subtropical ocean waters at low latitudes in the northwest Pacific, only spring
blooms were observed from the satellite-derived Chl-a. The onset of the spring blooms was
similar to the spring blooms in the subpolar oceans. With sufficient nutrients brought to
the ocean surface by previous wintertime mixing, increasing stratification and solar irradi-
ance, as well as the warm seawater temperature, which promoted the enzyme-catalyzed
metabolisms of the phytoplankton, the spring bloom occurred [61]. The termination of the
spring blooms was mainly controlled by nutrient depletion and zooplankton grazing [62].
However, no phytoplankton blooms were observed in other seasons in the subtropical
waters. High seawater temperatures and inhibited vertical mixing seem to be the main
factors that limited the phytoplankton growth in the summer and fall, resulting in a single
seasonal bloom in the subtropical waters. Specifically, based on Vant Hoff’s Law, the phyto-
plankton growth could be accelerated with an exponential increase in cell division rates in
response to increasing temperatures within a certain temperature range [55,65]. Once the
seawater temperature reached beyond the tolerating range, phytoplankton growth would
be dampened [66]. It is noted that, with the seasonal warming, the seawater temperature
in the subtropical gyres of the northwest Pacific could reach >30 ◦C in summer and fall,
which seems to constrain the phytoplankton growth during this period.

In addition to the common environmental forcings that define the different seasonal
bloom characteristics, the local oceanic environment also plays an important role in mod-
ulating the seasonal patterns of the phytoplankton biomass in the northwest Pacific (as
shown in Figure 3). For example, the Primorye coast of the East Sea was supplied with
ice-melting low-salinity water from the Liman cold current in March [67]. As such, the
seawater stratified at an earlier stage, which caused the spring bloom to occur earlier
(Figure 3). In contrast, in the Sea of Okhotsk, under the influence of the East Sakhalin
Current, the surface nitrate reservoir was greatly enriched from early winter to the next
spring; however, due to the postponed warming of the sea surface, which started in April,
the rapid increase in phytoplankton Chl-a was delayed to late spring [68].

4.2. Driving Factors of the Chl-a Interannual Dynamics

Based on the interannual variations of Chl-a in the study period of 1997–2020, we
found that the seasonal patterns of the phytoplankton blooms were stable, without any
potential advancing or delaying trends in the past 23 years (Figure 4); yet, the bloom timing
and durations varied to some extent over the study period. Studies show that the bloom
timing could affect the bloom duration, with early phytoplankton blooms tending to last
longer than late-initiated blooms, and the specific local environmental forcings drove the
interannual variabilities of the phytoplankton biomass [16]. As discussed in Section 4.1,
different environmental forcings, including warming and cooling, solar light penetration,
wind-driven mixing, and nutrient conditions, could trigger the onset and termination of
the seasonal blooms. For example, Yamada et al. [22] demonstrated that wind speed could
drive the initiation of spring blooms, and weaker wind speeds could lead to an earlier
development of the seasonal thermocline. Hereafter, using a Gaussian fitting curve between
the phytoplankton phenology matrix and the wind speed, Yamada et al. [33] simulated
the inter-annual variability of the spring phytoplankton blooms in the southern East Sea,
which further demonstrated the strong dependency between the bloom timing and wind
strength and the effects of climate changes (e.g., ENSO) on the wind variabilities.
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The analyses of the monthly Chl-a anomalies showed that the phytoplankton biomass
had significant increasing trends in some regions of the northwest Pacific (Figure 5). To
have a better understanding of the interannual variabilities of the phytoplankton Chl-a
in the northwest Pacific, we thoroughly examined the interannual variations of seawater
temperature (i.e., from SST), the solar light conditions (i.e., from PAR), the wind and mixing
conditions (i.e., from SSW), and the nutrient conditions (i.e., from SSN), as well as the
climate conditions (i.e., from MEI, AOI, PDO).

As mentioned above, SST not only influences the phytoplankton metabolism but
also affects surface stratification. The strength of the surface stratification controls the
intensity of vertical mixing, which in turn affects the development of the surface mixed
layer and the entrainment of nutrients at the base of the mixed layer [69]. Figure 7a shows
the spatial distribution of the interannual changing rates of SST between 2002 and 2020. It
was found that the SST was increasing in most of the northwest Pacific, which suggests
that the stratification of the northwest Pacific was getting stronger in the past two decades,
consistent with the published studies [42,70]. Still, it was noted that the SST showed little
interannual changes in the northeast Sea and the open ocean waters west of 168◦E and
north of 36◦N, with small patches of weak decreasing trends in the northern East Sea and off
the Japan Island in the Pacific. The interannual SST dynamics in the northern East Sea were
attributed to the warming of the Arctic Ocean in the winter [38,70]. Overall, the general
SST increasing trends in the northwest Pacific should set a stronger barrier (i.e., enhanced
stratification) to inhibit the nutrient transport from the subsurface, and the phytoplankton
Chl-a should have been decreasing in response to the reduced nutrient supplies. Indeed,
we found weak decreasing trends in Chl-a in the subtropical waters (i.e., equatorward of
36◦N; see Figure 5). However, this is not the case for the subpolar waters. In these waters,
we observed distinct increasing trends (i.e., the opposite phenomenon) in Chl-a, and these
waters formed a belt of phytoplankton expanding from the marginal seas towards the
northeast direction of the north Pacific. Statistically, for the six subregions with increasing
(i.e., subregions of 1–4) and decreasing (i.e., subregions of 5–6) trends identified in the Chl-a
data (see Figure 5), we found significant correlations between Chl-a and SST only in the
subregions 5 and 6 (note that these two subregions were located in the subtropical waters),
with R = −0.19 and R = −0.44 at p < 0.05 (see Table 1), which proved our hypothesis that the
decreasing trends in Chl-a in the subtropical waters were most likely driven by the ocean
warming and stronger stratification. However, for the other four subregions where Chl-a
showed increasing trends, we did not find any significant correlations between Chl-a and
SST. As such, we suspect that, instead of SST, other environmental forcings could potentially
drive the interannual increases in the phytoplankton Chl-a in the subpolar waters.

Table 1. Statistics of the correlation coefficient (R) between the Chl-a and different environmental
variables (i.e., SST, PAR, SSW, and SSN) and climate indices (i.e., MEI, AOI, PDO) in the six subregions
(see Figure 5 for the detailed locations). Note that the correlation analyses were based on the data time
series of monthly anomalies. The statistics shown in bold and italics mean correlation coefficients at a
significance level of p < 0.05.

Chl-a SST PAR SSW SSN MEI AOI PDO

Subregion 1 0.1092 −0.0280 0.0190 0.5815 −0.0241 0.0215 −0.1078

Subregion 2 0.0343 −0.0039 0.0532 0.3160 −0.0157 0.1658 −0.0053

Subregion 3 0.1180 −0.0374 −0.0070 0.4002 0.0080 0.0666 0.0317

Subregion 4 0.0725 −0.0688 0.0425 / −0.1331 0.0736 −0.0862

Subregion 5 −0.1858 0.0129 −0.0683 0.5087 −0.0129 0.0434 0.0465

Subregion 6 −0.4383 0.1739 −0.0852 / −0.0399 −0.0290 −0.0631
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Similarly, we further examined the interannual dynamics of SSW and PAR based on
the monthly anomalies of each in the period of 1997–2020. Figure 7b shows the interannual
changing rates of SSW in the northwest Pacific. The SSW showed a weak increasing pattern
around the marginal seas and coastal regions and few changes far offshore in the open
northwest Pacific on the eastern side. Particularly, it is noted that, corresponding to the
distinct Chl-a increase off the Sea of Okhotsk (see Figure 5), the SSW did not change much
along the years. Again, we examined the correlations between the interannual SSW and
the interannual Chl-a based on the monthly anomalies for each of the six subregions;
however, we did not find any significant relations between them. Based on the published
studies, we speculated that the SSW could affect the initiation and duration of the seasonal
blooms [22,33], but it was not responsible, to a large extent, for the annual increasing or
decreasing trends in Chl-a. In terms of PAR, there were some slight decreasing trends
(Figure 7c), which seem to be caused by the increasing anthropogenic aerosols in the
atmosphere [71,72]; however, the spatial pattern of the PAR trends was quite different
from that of Chl-a. From the statistical measures of R (Table 1), only subregion 6 showed
a somewhat positive correlation with PAR (R = 0.17, p < 0.05), but the PAR data in this
subregion had few trends, which still cannot support the Chl-a trends identified well.

For the interannual dynamics of the SSN in the northwest Pacific, extensive historical
in situ SSN data were processed following a defined procedure (see Sections 2.2 and 2.3).
Figure 8a shows the SSN interannual change in the northwest Pacific in the past 40 years.
Due to the data limitation in both the spatial and temporal coverage, there are lots of
data gaps shown in Figure 7, even with a grid size of 2◦ × 2◦. In general, for the areas
with increasing Chl-a in the subpolar waters, where SSN data were available, the SSN
tended to increase, particularly in the central East Sea (i.e., around the subregion 1). For
areas with decreasing Chl-a in the subtropical waters, the SSN was decreasing. However,
the SSN data were very limited. For example, in the open ocean waters along the Chl-a
increasing belt, unfortunately, there were few SSN data to support trend detections. It
is noted that the SSN around the Japan Island showed some pixelized increasing and
decreasing trends, indicating more complicated SSN dynamics in this area, which could
be caused by the data heterogeneity in temporal distributions between 1980 and 2020
(Figure 8b). Specifically, for the six subregions selected in Figure 5, the corresponding SSN
was only available for subregion 5. For a statistical measure, we expanded the targeted
subregions two times larger (i.e., expanded to 6◦ × 6◦, see the yellow boxes in Figure 8).
Still, no SSN data were available for the expanded subregions of 4 and 6. For the subregions
of 1, 2, and 3, where Chl-a had significant increasing trends, and subregion 5, where Chl-a
had significant decreasing trends, we found significant positive correlations between Chl-a
and SSN, with R = 0.58, R = 0.32, R = 0.40, and R = 0.51, respectively, at p < 0.05 (see Table 1),
suggesting the coupling of Chl-a and SSN in both the subpolar and subtropical oceans
of the northwest Pacific. In the open ocean waters, surface nutrients are either from the
recycling of nutrients in the euphotic zone or from the entrainment of nutrients from deep
waters via wintertime mixing. With the ocean warming identified in Figure 7a, the nutrients
transported from the subsurface via vertical mixing would be reduced to some extent. The
increasing abundance of SSN in the subpolar northwest Pacific (Figure 8) indicates that
there could be external nitrate inputs in these regions, such as anthropogenic nitrogen
deposition from the atmosphere, which was analyzed in [47,48]. However, more in situ SSN
data are needed to constrain the interannual variabilities of SSN in the northwest Pacific.
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Figure 8. (a) The spatial distribution of the interannual changing rates of SSN in the northwest Pacific,
based on the monthly means of in situ SSN with a grid size of 2◦ × 2◦ in the period of 1980–2020 (see
Section 2.3 for more details). Warm colors suggest positive trends and cold colors suggest negative
trends. Note that pixels with cross lines mean insignificant statistics at p > 0.05, and pixels in white
mean that no data are available. (b) The number of monthly data used to calculate the interannual
changing rates of SSN in (a). The six subregions outlined in a 2◦ × 2◦ box (i.e., boxes of 1–6 outlined
in green) are the same as those shown in Figure 5. The SSN anomalies within the yellow boxes
around the subregions of 1, 2, 3, and 5 were extracted for statistical measures of correlations with the
associated Chl-a anomalies.

Finally, we investigated the effects of climate variabilities on the interannual changes
in Chl-a in the northwest Pacific. In general, the global climate indices on annual and
decadal scales seemed to have limited effects on the Chl-a increasing or decreasing trends
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in the northwest Pacific; this was at least the case for the six representative subregions. Still,
we found somewhat significant but weak correlations with AOI and MEI in subregions 2
and 4 (see Table 1). Specifically, for the Chl-a off the Japan Island (subregion 2), it showed
some correlation with AOI at R = 0.17 (at p < 0.05), suggesting the positive effects of the
Arctic Ocean Oscillation on the Chl-a interannual variability in this spot. When the AOI
was in a warm phase, the Chl-a anomalies in subregion 2 tended to be positive, and vice
versa. However, further investigation is needed to explore the remote control of the AOI
on Chl-a in the northwest Pacific. Similarly, the Chl-a in subregion 4 were found to be
negatively correlated with MEI (R = −0.13, at p < 0.05), indicating the regional effects of
ENSO on Chl-a interannual dynamics.

4.3. Implication

The variabilities of the phytoplankton biomass, particularly on long-term scales, could
have a big impact on the oceanic uptake of atmospheric CO2 and the effective carbon
export to the ocean interior. The favorable conditions of phytoplankton growth tend to be
vulnerable under global climate change and global warming. In this study, using the ocean
color satellite Chl-a data records in the period of 1997–2020, we examined the seasonal and
interannual variabilities of the phytoplankton Chl-a in the northwest Pacific and revealed
the long-term trends of Chl-a in the past 23 years, with spatial divergence. Despite the
intrinsic uncertainties involved in the satellite Chl-a retrievals, small but significant trends
in Chl-a were observed. It was found that both SST and SSN were the dominant drivers
of the interannual dynamics of Chl-a. The warming of seawater tended to inhibit the
nutrient transport from deep waters, thus limiting phytoplankton growth and biomass in
the euphotic zone. Yet, in the subpolar waters under the downwind of the Asian continent
winds, the increase in phytoplankton Chl-a was most likely driven by external nutrient
supplies. Still, it should be noted that the SSN interannual dynamics analyzed in this
study were quite limited on both spatial and temporal scales, and finer SSN data products
(e.g., SSN from satellite remote sensing) as well as other nutrient data reservoirs would be
helpful in constraining the findings in this study. Furthermore, with sufficient field Chl-a
measurements available in the future, the uncertainties of the satellite Chl-a should be
assessed for each year for a more detailed quantification of the interannual trends in Chl-a.

5. Conclusions

In this study, our investigation of the phytoplankton biomass from the ocean color
Chl-a in the northwest Pacific in the past 23 years (1997–2020) suggests that: (1) the seasonal
blooms were the dominant characteristics of the seasonal variabilities of the phytoplankton
Chl-a, (2) there were interannual variabilities of the seasonal algal blooms in terms of
seasonal Chl-a maxima and minima, and (3) the Chl-a had significant long-term increasing
and decreasing trends in the subpolar and subtropical waters of the northwest Pacific,
respectively. By analyzing the interannual variabilities of different environmental factors
that could affect the phytoplankton growth, as well as the climate indices on different
scales, we found that the negative trends in Chl-a in the subtropical waters were most likely
to be induced by the surface warming, which inhibited the nutrients supplies to the upper
ocean. Yet, for the subpolar waters, where a Chl-a increasing belt was identified even under
surface warming, the increasing SSN tended to be the dominant factor. We speculate that
there were external nitrate supplies from other sources into the upper ocean environment,
for which further studies are needed in the future.
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