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Abstract: UAVs are widely used in agriculture, the military, and industry. However, it is easy to
perform GPS spoofing attacks on UAVs, which can lead to catastrophic consequences. In this paper,
we propose CONSTDET, a control semantics-based detection approach for GPS spoofing attacks of
UAVs using machine learning algorithms. Various real experiments are conducted to collect real
flight data, on the basis of which CONSTDET is designed as a practical detection framework. To train
models for the detection of GPS spoofing attacks, specified flight data types are selected as features
based on the control semantics, including the altitude control process and the horizontal position
control process, since these data are able to represent the dynamic flight and control processes.
Multiple machine learning algorithms are used to train and generate the best classifier for GPS
spoofing attacks. CONSTDET is further implemented and deployed on a real UAV to support onboard
detection. Experiments and evaluations validate that CONSTDET can effectively detect GPS spoofing
attacks and the detection rate can reach 97.70%. The experimental comparison demonstrates that
CONSTDET has better performance than existing detection approaches.

Keywords: UAV; GPS spoofing attacks; GPS spoofing detection; control semantics; machine learning

1. Introduction

UAVs are widely used in photography, light shows, firefighting, agriculture, the
military, and industry. They are playing increasingly important roles in daily life. The
accurate control of UAVs is of great importance to reach the designed 3D position so
that UAVs can perform the specified task such as aerial photography, crop dusting, fire
extinguishing, etc. However, it is easy to perform GPS spoofing attacks on UAVs through
software-based global navigation satellite system (GNSS) signal generators [1–3]. GPS
spoofing is a well-known threat that can lead to catastrophic consequences such as security
problems (e.g., hijacking by attackers) and safety issues (e.g., crashing). It can be imple-
mented with a low-cost apparatus [4–6]. The effects of GPS spoofing have been analyzed
and demonstrated on UAVs [4,7–10].

A GPS spoofing attack is when attackers use fake GPS signals to replace the actual GPS
signals and guide the UAV to a fake destination. UAVs can also be captured and controlled
through GPS spoofing [9,10]. There are a variety of GPS spoofing techniques targeting
UAVs [11,12]. An attacker is able to manipulate the true state of a UAV with a GPS spoofing
attack, which makes it possible to guide the UAV far from its planned flight path without
raising alarms. A scenario of a GPS spoofing attack on a UAV is shown in Figure 1. We
can compare the UAV’s actual path and the fake flight path. For example, suppose that a
UAV is flying to the desired destination following the planned flight path. At some point,
the UAV is spoofed with GPS signals from the attacker. The result is that the flight control
system generates a current fake position for the UAV location, deviating from the current
actual position. It further computes a fake position for the subsequent flight and guides the
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UAV to the desired destination. Since the UAV has deviated from its planned flight path
due to the GPS spoofing attack, the UAV is flying to the fake destination along the actual
flight path as shown in this figure. However, from the UAV ground control station (GCS),
the operators can only observe that the UAV is flying to the desired destination along the
fake flight path.

Planned flight path

Starting 

position

Desired 

destination

Current 

fake 

position

Current 

actual 

position

Fake 

destination

Attacker

Figure 1. Scenario of GPS spoofing attack on a UAV. A UAV takes off from the starting position and
then flies to the desired destination along the planned flight path. At some point, an attacker begins
to launch a GPS spoofing attack on this UAV, changing the UAV’s location from the current position
to the fake position. With sustained attacks, the ground control station shows that this UAV is flying
along the fake flight path to reach the desired destination. However, this UAV is flying along the
actual flight path to reach the fake destination.

There is no quick, easy, and cheap way to fix the inherent problem of GPS spoofing,
especially for an insecure civil GPS signal [4], which is unencrypted, designed with an open
standard, and freely accessible to all. This advantage has made civil GPS popular, but at
the same time, it means that so many devices, including UAVs and cars, are faced with the
challenge of being attacked by GPS spoofing.

To ensure the security and safety of UAVs, there are a variety of studies working on
the detection of GPS spoofing attacks. Most detection approaches are based on satellite
images, sensor data (including acceleration, angular velocity, video, optical flow, magnetic
induction, etc.), GPS signals, and GPS-based positions. Currently, different kinds of machine
learning (ML) algorithms are used by many approaches for model training [13–19], so that
they can predict the positions for detection or directly determine if a UAV is under a
spoofing attack. This is an effective way to detect spoofing attacks. Some methods [20–24]
compute the position with sensor data according to the physical significances among the
different kinds of sensor data, for example, speed can be obtained from acceleration by
integration, distance can be obtained by further integration, and the current position can be
obtained based on the distance and yaw. In addition, some methods can detect spoofing
attacks based on the cooperation of multiple UAVs [22,25,26]. To determine if there is a
GPS spoofing attack, the difference between the predicted position and the GPS-based
position is compared with a given threshold value, which is set as a constant value in most
detection approaches. Moreover, simulations are used by most existing works to evaluate
the performance of their methods [15–19,22–28].
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On the whole, ML-based detection approaches have higher detection rates than other
approaches. However, there are still some weaknesses in current ML-based detection
research into GPS spoofing attacks on UAVs and they are as follows:

• The control semantics are not considered in these detection approaches. However,
control theory is the basis of stable flight for UAVs [29,30]. The control semantics
include the mechanism and theory about how to control UAVs using flight data. This
mechanism is constant for UAVs. The flight data can represent not only this mechanism
but also the dynamic flight state. Each kind of UAV data is not independent; therefore,
it is necessary to integrate the control semantics into the selection of the training data.

• A majority of existing ML-based detection approaches [15–18] are trained and evalu-
ated using data collected by simulations. The classifiers are built based on the datasets.
Simulated data are quite different from real data. For model training, a real or simu-
lated dataset can not only affect the detection accuracy but also reduce the credibility
of the method.

• Some detection approaches [14,17,18] only take part of the flight data into considera-
tion. The considered data cannot comprehensively represent the relationships between
the position-related flight data. The actual position data follow multiple changing
mechanisms since they can be affected by changes in the external environment, differ-
ent flight modes, changes in the UAV attitude, and so on.

This paper proposes a control semantics-based detection approach called CONSTDET,
which is based on the constant control semantics to intelligently detect attacks using
ML algorithms. The UAV flight is controlled by commands from flight control systems,
which are implemented according to the control semantics designed for the specified
UAV. CONSTDET is proposed based on both the horizontal position control semantics
and altitude control semantics, making it reasonable to select certain flight data for GPS
spoofing detection. CONSTDET is designed according to the original data, which are
collected through real flights. CONSTDET is an intelligent detection approach for GPS
spoofing attacks on UAVs using ML algorithms. Given the required flight data about the
horizontal position control and altitude control, it directly generates results that show
whether the UAV is under a spoofing attack.

In summary, this paper makes the following contributions:

• Feature selection based on control semantics. We select key data from UAV control
systems by analyzing the control semantics, which contain the real control mechanisms,
that is, the horizontal position control process and the altitude control process. Since
such flight data can represent both the control process of UAVs and the dynamic flight,
these flight data types are selected as features. The horizontal position control system
is in charge of the position control, horizontal speed control, and attitude control so
we select the actual horizontal position, speed, angle, and angular rate as features.
The altitude control system is in charge of the altitude control, vertical speed control,
and vertical acceleration control so the actual altitude, vertical speed, and vertical
acceleration are selected as features for model training.

• Intelligent detection framework. We design an intelligent detection framework for
the detection of UAV GPS spoofing attacks. Different kinds of ML models are applied
for model training using real flight data. The models intelligently learn the data
relationship between the control data obtained from the altitude controller and the
horizontal position controller. The trained model (classifier) can be deployed in a
UAV to implement the detector for GPS spoofing attacks. The detector analyzes the
onboard flight data based on the learned data relationship and then provides an alarm
if there is a spoofing attack.

• Real flight dataset. We perform a variety of experiments to collect flight data. For
intelligent detection methods, the dataset used for model training is one of the key
factors for the selection of the ML algorithms and model construction since different
datasets can produce different detection models and come to different conclusions.
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Thus, it takes us a lot of time and effort to collect real data so that the framework and
evaluation can be designed based on real data.

• Deployment in a real UAV. To demonstrate the effectiveness of CONSTDET, the
detector for GPS spoofing attacks is deployed in a real UAV. We implement the online
data acquisition on a companion computer so that CONSTDET can obtain flight data
and detect GPS spoofing attacks in real time.

The remainder of the paper is organized as follows. Section 2 introduces some related
works about detection approaches for GPS spoofing attacks on UAVs. Section 3 provides
the feature analysis that explains how to select data features for model training based on
control semantics and presents the control semantics-based intelligent detection framework.
Section 4 describes the experimental setup, feature selection, model selection, and model
evaluation. Section 5 reproduces the existing detection method and compares our approach
with existing works. Finally, Section 6 concludes this paper.

2. Related Work

According to whether ML algorithms are applied or not, GPS spoofing detection
solutions for UAVs are divided into two categories: ML-based detection [13–19] and non-
ML-based detection [20–28]. Detailed explanations of these approaches are provided below.

2.1. ML-Based Detection

Most ML-based detection methods [15–19] are evaluated with simulated data.
Xue et al. [13] proposed DeepSIM, a satellite imagery matching approach, to detect

GPS spoofing attacks of UAVs based on different deep neural network models. DeepSIM
achieved detection through a comparison of historical satellite images (collected from
Google Earth) at the GPS-based position and real-time aerial images (taken by cameras).
Their best model had a detection rate of 94.8% (on-ground detection model) and 89%
(onboard detection model) for the detection of GPS spoofing attacks.

Feng et al. [14] proposed an XGBoost-based detection method (called the JSA method)
for GPS spoofing attacks on UAVs. The model training was performed with angular velocity,
acceleration, and GPS data. To improve the accuracy of the detection, the genetic algorithm
was used to tune the parameters of the XGBoost model. To reduce the computation load on
UAVs, the model was first generated by off-board training and then deployed to the UAV
board for onboard training and predictability. The experiment illustrated that their method
was capable of detecting all GPS spoofing attacks according to their dataset. We implement
the JSA method for a comparison with our method in Section 5.

Kim et al. [15] proposed a deep learning-based framework to detect sensor spoofing
attacks. To learn the nonlinear dynamics, the multi-layer perceptron (MLP) model was
trained with the sensor data collected by the software-in-the-loop (SITL) simulation. These
data were obtained from the gyroscope, accelerometer, and GPS. Moreover, to make the
model training better, generative adversarial networks (GANs) were leveraged to generate
a segment of sensor traces for data augmentation. The performance of the proposed
techniques was evaluated using the SITL simulation and should be further demonstrated
on a real system.

Calvo-Palomino et al. [16] presented a GPS spoofing detection method based on
long short-term memory (LSTM). The neural network was trained with GPS Doppler shift
measurements in 5 s of granularity. Using low-cost software-defined radio (SDR) receivers
embedded in UAVs, UAVs processed the received GPS signals to predict the Doppler
characteristics. GPS spoofing attacks were detected with a comparison of the Doppler effect
and its predictable pattern originating from the moving GNSS satellites. The effectiveness
of the detection function was demonstrated using a simulated GPS spoofing device. More
experiments are necessary to further evaluate the detection rate.

Wang et al. [17] also proposed a GPS spoofing attack detection method using LSTM.
The model was trained with velocity, acceleration, latitude, and longitude in the x-direction
and y-direction of UAVs so that the trained model could predict UAV positions based
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on a given flight path. Moreover, UAVs should fly upon the path of a given shape to
support the detection of GPS spoofing attacks. GPS spoofing attacks were determined by
comparing the predicted position with the position calculated using the GPS signals, and
a threshold value was used to measure the difference between the two positions. This
method is applicable when UAVs can run smoothly. A MATLAB simulation was leveraged
to explain the effectiveness of their method and the detection rate was about 78%.

Panice et al. [18] proposed a detection approach for UAV GPS spoofing attacks based
on the support vector machine (SVM) approach with the data from an inertial navigation
system (INS). The detection was based on the error data between the GPS-based position
and the INS-based position over a period of time. The detection model was trained and
evaluated with the simulated data.

Khoei et al. [19] also used machine learning algorithms to train and detect GPS spoof-
ing attacks. Their selected features were the characteristics of the GPS signals including
the signal-to-noise ratio, carrier-loop Doppler measurements, prompt quadrature prompt,
prompt in-phase prompt, early correlator output, late correlator output, prompt correlator,
carrier phase shift, decoded time information, receiver time, pseudo range, Doppler-shift
measurements, and satellite number. They were obtained through a simulation using a
software-defined radio (SDR) device. In fact, the user could not obtain these data using a
widely used GPS receiver.

2.2. Non-ML-Based Detection

Jansen et al. [25] presented Crowd-GPS-Sec, a method of detecting GPS spoofing at-
tacks and localizing GPS spoofers for moving airborne targets such as UAVs or commercial
airliners. Crowd-GPS-Sec utilized crowdsourcing to monitor position data derived from
GPS data, which were periodically broadcast for air traffic surveillance by UAVs or aircraft.
The GPS spoofing detection and localization function were designed based on those data
by analyzing the contents and the time of arrival. They evaluated Crowd-GPS-Sec with
both the real-world data and the simulated data and the detection rate was about 75%.

Feng et al. [20] proposed a GPS spoofing detection method (called the DATE method)
using onboard motion sensors. The angular velocity measured by the gyroscopes was
used to compute the coordinate transform matrix. GPS positions were used to compute the
acceleration in the geographic coordinate. The matrix and the acceleration were combined
to generate the acceleration in the body-fixed coordinate, which was compared with the
acceleration measured by the accelerometers to determine if there was a GPS spoofing
attack according to a given threshold value. To reduce the errors accumulated by accelerom-
eters, they provided another GPS spoofing detection method called the TECS method [21].
The gyroscope data were utilized to compute the coordinate transform matrix and finally
generate the yaw angle. The GPS position was used to compute the angle, which was com-
pared with the yaw angle to detect if GPS spoofing attacks had been performed on UAVs
according to a given threshold value. Their ML-based detection approach, the JSA method,
was better than the DATE method and TECS method, as seen in the evaluation in [14].

Liang et al. [22] provided a detection solution for UAV GPS spoofing attacks using the
positions of multiple UAVs. The ground control station (GCS) received position information
from the UAVs and then calculated and sent the positions to specified UAVs. The detection
of GPS spoofing attacks was performed based on the calculated position and the original
GPS position, which was demonstrated in simulation experiments, and the detection
rate reached 98.6% if the number of UAVs was greater than four. If the number of UAVs
was less than four, it took 28 s to accomplish detection, in which case the detection rate
reached 96.7%.

Meng et al. [23] introduced a GPS spoofing detection approach for UAVs based on
linear regression (LR). LR was leveraged to describe and predict the flight trajectory to
the destination for UAVs. The predicted longitude and latitude were compared with the
longitude and latitude provided by the GPS to determine if there was a GPS spoofing attack
based on a given threshold value. The experiment was carried out in the UAV simulation
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platform and a dynamic Stackelberg game between a GPS spoofer and a UAV was used to
evaluate the performance. The detection rate is an important indicator for demonstrating
the effectiveness of a GPS spoofing detection method but it was not evaluated in the
above study.

Bada et al. [26] presented a policy-based detection approach for the detection of collud-
ing UAV GPS spoofing attacks in flying ad hoc networks (FANETs). Unlike conventional
GPS spoofing attacks, spoofing attacks in FANETs can be performed by several UAVs. The
authors added a trust model based on the beta Weibull distribution to overcome the blind
trust problem. Simulations were implemented to evaluate their approach and the mean
detection probability reached 96.08% for UAVs in FANETs, which was higher than the
existing method.

Eldosouky et al. [24] introduced a mathematical framework to protect UAVs against
GPS spoofing attacks. They applied system dynamics to describe the UAV motion model
to derive the optimal routes that were adopted by UAVs for reaching their destinations,
making it possible to obtain the spoofer’s optimal imposed locations on the UAVs and
predict their traveling routes under attacks. To mitigate the effect of GPS spoofing attacks,
they developed a countermeasure mechanism based on the premise of the cooperative
localization of multiple nearby UAVs. To improve the defense mechanisms, the interactions
between a GPS spoofer and a drone operator were modeled using a dynamic Stackelberg
game. The simulation experiments showed that their defense mechanisms were better than
other strategy selection techniques in terms of reducing the possibility of capturing UAVs.

Elena et al. [27] applied the Kullback–Leibler divergence to detect GPS spoofing attacks
on UAVs. Firstly, the Poisson distribution was used to describe the random variation of
parameters, including the altitude, number of visible satellites, GPS speed, angle, latitude,
and longitude. Then, the Kullback–Leibler divergence was used to calculate the entropy
value. The evaluation was performed through the simulation. However, this method could
not distinguish between a higher entropy value produced by abnormal behavior such as an
attack and environmental influences.

Barak et al. [28] presented a detection approach for UAV GPS spoofing attacks using
frames collected from cameras’ video streams and locations obtained from a GPS. They
fit the similarity correlation between the frames and the distance between the frame-
corresponding GPS-based positions to construct a linear regression function, which could
predict the UAV position for a comparison with the GPS-based position. They evaluated
this method using the simulation data and real data. However, this method was sensitive
to different terrains, ambient light, and altitudes, which shows that it was impractical.

3. Method
3.1. Feature Analysis of Flight Data

Selecting appropriate data is an important step in ML. Specific relevant features can
speed up ML processing and improve accuracy [31]. We selected the features for our ML-
based approach, CONSTDET, through an analysis of the control semantics. The control
semantics are the mechanism and theory about how to control UAVs using flight data.

Stable flight is assured by UAV PID control systems [29,30], which contain lots of
control data, as shown in Figure 2. A UAV PID control system is constructed by a flight
altitude PID control system and a horizontal flight position PID control system. The UAV
control system controls a UAV to accomplish the mission, which is composed of the desired
altitude and desired horizontal position for the altitude control and horizontal position
control, respectively.
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Figure 2. A UAV PID control system.

The flight altitude PID control system is a three-loop cascading controller, which
contains an altitude controller, a vertical speed controller, and a vertical acceleration con-
troller. To reach the desired altitude, it computes and generates the controlling value by
processing the actual altitude, actual vertical speed, and actual vertical acceleration, which
are obtained from the control system.

The horizontal flight position PID control system is a four-loop cascading controller,
which is composed of a position control system (including a position controller and a
horizontal speed controller) and an attitude control system (including an angular controller
and an angular rate controller). To reach the desired horizontal position, the horizontal
position controller computes and generates the controlling value by processing the actual
horizontal position, actual horizontal speed, actual angle, and actual angular rate, which
are derived from the control system.

The control semantics are essentially the same for the various UAVs. The control
process depends on the data gathered by the UAV sensors that perceive the state of the
UAV. Meanwhile, these data are relevant since they represent the control process and the
UAV’s dynamic flight, which reflects the control semantics. Therefore, these data can be
used to represent the control semantics of UAVs. It is reasonable to select these data types
as features for model training. The flight data features of the above UAV PID control
theory are summarized in Table 1 including the 12 features used for model training. The
explanation and units of the features are provided in the 3rd and 4th columns, respectively.
The 3rd, 5th, and 12th features (the altitude, vertical speed, and vertical acceleration) are
collected from the flight altitude PID control system and the other features are collected
from the horizontal flight position PID control system. The first two features represent the
horizontal position. The 6th, 7th, and 8th features denote the actual angle. The 9th, 10th,
and 11th features represent the actual angular rate. To train the ML models, these data were
obtained from flight logs. Specified log messages that store these feature data are shown in
the 5th column.
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Table 1. Summary of flight data features for model training.

NO. Features Explanation Units Log Messages

1 latitude latitude degree GPS
2 longitude longitude degree GPS
3 altitude altitude m GPS
4 horizontal speed actual horizontal speed m/s GPS
5 vertical speed actual vertical speed m/s GPS
6 roll actual vehicle roll degree ATT
7 pitch actual vehicle pitch degree ATT
8 yaw actual vehicle yaw degree ATT
9 roll rate actual vehicle roll rate degree/s RATE

10 pitch rate actual vehicle pitch rate degree/s RATE
11 yaw rate actual vehicle yaw rate degree/s RATE
12 vertical acceleration actual vehicle vertical acceleration cm/s/s RATE

3.2. Control Semantics-Based Intelligent Detection Framework

The framework of our detection approach, CONSTDET, is shown in Figure 3. It contains
seven steps, as seen below.

2 Feature analysis
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Figure 3. Framework of our detection approach.

(1) Data acquisition. To train ML models, we first collected the UAV data from the
flight log generated by a real flight. The required data were discussed in the previous
section (Section 3.1) and are shown in the 2nd column in Table 1 including the 3D position
(latitude, longitude, and altitude), speed (horizontal and vertical speed), attitude (roll,
pitch, and yaw), and rate (roll rate, pitch rate, yaw rate, and vertical acceleration). The
flight log contained a lot of flight information such as the 3D position, speed, attitude, rate,
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and so on. They were generated through specified log message structures [32] so that the
original flight data could be recorded in the log. The relationship between the required
data and log messages is shown in the 5th column in Table 1 and includes the GPS, ATT,
and RATE messages. When CONSTDET was implemented on a UAV, the data for detection
were obtained from flight controllers in real time.

(2) Feature analysis. The feature analysis was carried out in Section 3.1. The selected
features are presented in Table 1.

(3) Data preprocessing. Firstly, data filtering was carried out. Since the flight log of the
attack scenario contained normal data and attack data, we distinguished between these data
for the data collection. For example, to obtain the attack dataset, normal data needed to be
removed from the log. Additionally, the sensors had different data acquisition frequencies
so it was necessary to unify the frequency of these data. Applying the StandardScaler
module is an important step in data preprocessing. There was a need to scale the original
data in our dataset because the features had diverse proportions and different units, such
as degree, meter, m/s, degree/s, and cm/s/s, as shown in the 4th column in Table 1, so the
units cm/s/s were converted to m/s/s. When features are scaled, these multidimensional
features have similar scales and the accuracy of models can be effectively improved. Finally,
we obtained the dataset of the features for model training.

(4) Feature selection. Since we were not sure of the representative ability of each
data feature to reflect the UAV position, there was a need to measure the importance of
these features so that we could discard the lower correlated or even irrelevant features.
This can save time and resources for model training and classification. Therefore, we first
applied the random forest (RF) model to the dataset based on the information gain theory
to compute the feature importance. Then, we chose the most informative features that had
the most stable and lowest mean absolute errors (MAE).

(5) Model training. Different kinds of ML algorithms were applied for model training
using the feature data including support vector machine (SVM), K-nearest neighbor (KNN),
RF, gradient boosting decision tree (GBDT), decision tree (DT), multi-layer perceptron
(MLP), and extreme gradient boosting (XGBoost). In this paper, various models were
used so that we could (1) compare the performance of these models and (2) know which
model was suitable for the detection of GPS spoofing attacks, and then the best detector
could be built. SVM is suitable for a small sample and nonlinear datasets, as well as
high-dimensional pattern recognition problems. However, it is not suitable for multiple
classification problems and is sensitive to missing data so it is necessary to select the
appropriate kernel function. KNN is simple and easy to understand. It requires no training
and no parameter estimation. It is suitable for multi-label problems and has high accuracy.
However, its prediction speed is slow and its interpretability is poor. If the sample number
of a class is not balanced, accuracy will be affected. RF has low computational overhead
and powerful performance in many real-world tasks. For imbalanced datasets, it can
balance the errors. However, random forest has demonstrated that it will overfit for certain
classification or regression problems with high noise. GBDT has high prediction accuracy.
It can deal with nonlinear data and flexibly deal with various types of data including
continuous and discrete values. However, it is difficult to train the data in parallel due to
the dependency between the weak learners. DT is simple and easy to understand and can
handle multiple output problems. However, it is easy to overfit, the generation of decision
trees is unstable, and small data changes may lead to different generated decision trees.
MLP has a good recognition rate and faster classification speed. However, it may lose
the spatial information between pixels and only accept vector inputs. XGBoost can solve
both the linear classification and logistic regression problems. XGBoost allows custom loss
functions as long as the function supports first- and second-order derivatives. However,
the space complexity of the pre-sorting process is too high and it needs to store not only
the feature values but also the index of the gradient statistics of the corresponding sample
of the feature, which consumes twice the memory. The dataset obtained through the data
acquisition, data preprocessing, and feature selection steps was used as the input of the ML
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algorithms. The dataset was divided into two parts: 70% of the data were used for training
and 30% of the data were used for testing and evaluation.

(6) Model evaluation and selection. Various ML algorithms were used in this paper
and they had different detection performances. To demonstrate the effectiveness of the
trained models and determine which was the best model, we performed a model evalua-
tion. CONSTDET evaluated the trained models using several assessment criteria including
accuracy, precision, recall, missing, mistake, and the F1-measure. Moreover, the receiver
operating curve (ROC) function was used to demonstrate the discriminative potential of
the classifiers. Based on the evaluation, the best classifier was selected as the detector of the
CONSTDET to detect GPS spoofing attacks on UAVs.

(7) Deployment. To apply CONSTDET on a real UAV, we deployed the classifier on the
companion computer of the UAV. Onboard detection was executed using real-time flight
data, which were gathered from the flight controller via the MAVLink communication [33].
The original onboard flight data needed to be preprocessed before they were detected by
the classifier because some feature data had different units to the training data from the
flight log. Moreover, these real-time data also needed to be scaled as with the preprocessing
of the training data so that the classifier was suitable for detection with these onboard data.
After the deployment, the UAVs could detect GPS spoofing attacks during flight.

The purpose of our approach is for onboard detection of GPS spoofing attacks. We
implemented the best classifier in a real UAV. After the detector was deployed in the UAV,
it could detect GPS spoofing attacks during flights in real time. The detector was able to
read real-time data from the flight controller and then preprocess these data to obtain the
same data types and format as the trained data. Using the real-time and preprocessed
data, the classifier computed and output the results about whether there were existing GPS
spoofing attacks on the UAV.

4. Results
4.1. Experimental Setup

The UAV platform was constructed as shown in Figure 4. This quad-rotor UAV
contained a flight controller and a companion computer. The flight controller, a Pixhawk
2.4.8 [34], was deployed using the flight control software ArduPilot 4.0.5 [35]. We only
selected some sensors for the experiment, including a GPS receiver, an MPU-6000 (a three-
axis accelerometer and a three-axis gyroscope), an HMC5883 (a magnetometer), and an
MS5611 (a barometer). The companion computer was a Raspberry Pi 4B with 8G RAM on
which Ubuntu 20.0.04 was installed. The Raspberry Pi 4B communicated with the flight
controller to obtain the UAV data according to the MAVLink communication protocol [33]
so it was able to obtain flight data from the flight controller and then detect whether there
was a GPS spoofing attack on the UAV during the flight. The GPS, accelerometer, gyroscope,
and magnetometer were connected with the flight controller to perceive the flight state of
the UAV. The sampling frequencies of these sensors were set to 5 Hz, 25 Hz, 25 Hz, and
10 Hz, respectively.

We deployed the classifier on the companion computer and implemented the detection
function using dronekit-python [36], which allowed us to control the UAV using the Python
programming language. The classifier was deployed on the Raspberry Pi 4B using the
Python programming language. The control and communication process followed the
MAVLink protocol, which is a lightweight messaging protocol between onboard UAV
components. MAVLink is the de facto communication protocol for UAVs. It is utilized not
only by ArduPilot but also by PX4 [37], Paparazzi [38], and DJI [39].
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Flight controller Companion computer

MAVLink

Accelerator

Gyroscope
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Magnetometer

I/O

Quad-rotor 
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Figure 4. The structure of our UAV

The necessary feature data for detection are presented in Table 2 and correspond to
the data from the flight log in Table 1. We used MAVLink messages [40] to transmit data
from the flight controller to the companion computer. The third column in Table 2 shows
the MAVLink messages through which the detector obtained the flight data. The units
of the onboard flight data were different from those in the flight log. Thus, there was a
need to ensure that the units of the required data were uniform. For example, since the
unit for latitude in Table 1 is different from that in Table 2, the latitude obtained via the
GPS_RAW_INT message was divided by 1 × 107 before the classifier used the latitude for
the GPS spoofing detection.

Table 2. MAVLink messages for onboard feature data acquisition

NO. Features MAVLink Messages Units

1 latitude GPS_RAW_INT degree × 1 × 107

2 longitude GPS_RAW_INT degree × 1 × 107

3 altitude GPS_RAW_INT mm
4 horizontal speed GPS_RAW_INT cm/s
5 vertical speed Global_Position_INT cm/s
6 roll Attitude rad
7 pitch Attitude rad
8 yaw Attitude rad
9 roll rate Attitude rad/s

10 pitch rate Attitude rad/s
11 yaw rate Attitude rad/s
12 vertical acceleration RAW_IMU cm/s/s

4.2. Data Acquisition

To gather actual flight data for model training, a UAV was used to experiment with
normal flights and attacked flights. Different flight paths can affect the sensor data and
control process. When a UAV is turning or flying in a curved line, the yaw will change
quickly resulting in the desired value being different from the actual value. Although
the difference exists, it should be seen as a normal flight. Moreover, when a UAV flies in
a straight line as opposed to other flight paths, it is much easier to detect GPS spoofing
attacks. Thus, the flight paths designed for the experiments included straight line paths,
curved line paths, turning paths, ascending line paths, and descending line paths, as shown
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in Figures 5 and 6. For the ascending and descending line paths shown in Figure 6, the
UAV flew from a low position to a high position and from a high position to a low position,
respectively. In such scenarios, the acceleration and speed in the z-axis change quickly. The
actual acceleration and speed values differed from the desired values, which is a normal
change for flight data. Thus, the flight experiments could cover various flight scenarios. In
our experiments, GPS spoofing attacks were implemented using attack software, which can
randomly generate the longitude and latitude to replace the GPS-based position so that the
UAV will deviate from the actual position. The random spoofing positions outperformed
the linear changing spoofing positions because when the changing pattern of the latter was
fixed, it was easy to detect such kinds of spoofing positions.

Planned path

Landing position

(a)

Planned path

Landing position

(b)

Planned path

Landing position

(c)

Figure 5. Flight paths. (a) Straight line path; (b) Curved line path; (c) Turning path.
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Figure 6. Flight paths. (a) Ascending path (from a low position to a high position); (b) Descending
path (from a high position to a low position).

A picture of our real flight experiment is provided in Figure 7. It is dangerous to collect
the attack data since UAVs may fly in a random direction because of random spoofing
positions. During our experiments for data collection, the UAV hit a tree several times. To
keep the UAV and people safe, we fastened a 50 m nylon cord to the bottom of the UAV.
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Figure 7. An actual experimental attack picture: a nylon cord is fastened to the bottom of the UAV.

We experimented with normal and attacked flights. The experimental dataset was
extracted from the flight log including the 3D position (latitude, longitude, and altitude),
speed (horizontal and vertical speed), attitude (roll, pitch, and yaw), and rate (roll rate,
pitch rate, yaw rate, and vertical acceleration). These feature data were stored in the GPS,
ATT, and RATE parts of the flight log, as shown in the fifth column in Table 1.

4.3. Data Preprocessing

For the attacked flights, since we needed to ensure that the UAV took off safely in the
real flight experiment, a UAV was not attacked at the beginning. After a UAV had taken off
and reached more than 4 m in height, attacks were launched to deceive the UAV with the
faked position. Thus, the flight log of the attacked flight contained both normal flight data
and attacked flight data. We needed to distinguish between the attacked flight data and
the normal flight data. To solve this problem, we checked the altitude and compared the
differences between the desired values and the actual values for the latitude and longitude
so that we could find out the time the GPS spoofing attacks started and the time the GPS
spoofing attacks stopped. The attacked data were extracted from the flight log with the
start and end times. Moreover, for the original dataset, data preprocessing was performed
to unify the sampling frequencies. We set the frequency to 5 Hz for data preprocessing, that
is, the interval between two pieces of preprocessed data was 0.2 s. After data preprocessing,
the collected dataset was ready for model training and is summarized in Table 3. There
were 10,296 pieces of data in total. The normal data contained 4950 pieces and the attacked
data contained 5346 pieces.

Table 3. Our UAV dataset for model training.

Data Category NO. of Data

Normal data 4950
Attacked data 5346

Total 10,296

4.4. Feature Selection

We analyzed the data features based on the control semantics in Section 3.1. There
were a total of 12 features, as summarized in the second column in Table 4. We chose these
features from the altitude control process and horizontal position control process.
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Table 4. All features and their importance scores.

Serial Number Feature Importance Score

1 GyrXVar: Variance of Gyroscope X-axis 0.033768529723899314
2 GyrXStd: Standard deviation of Gyroscope X-axis 0.025600626113929277
3 GyrXMean: Mean of Gyroscope X-axis 0.03780320826069406
4 GyrYVar: Variance of Gyroscope Y-axis 0.01755298967944973
5 GyrYStd: Standard deviation of Gyroscope Y-axis 0.026789173200955398
6 GyrYMean: Mean of Gyroscope Y-axis 0.015273964748774242
7 GyrZVar: Variance of Gyroscope Z-axis 0.007971069715234017
8 GyrZStd: Standard deviation of Gyroscope Z-axis 0.00799819035975945
9 GyrZMean: Mean of Gyroscope Z-axis 0.008285023600927378

10 AccXVar: Variance of accelerometer X-axis 0.01273626523457876
11 AccXStd: Standard deviation of accelerometer X-axis 0.005590607777735804
12 AccXMean: Mean of accelerometer X-axis 0.01550091392149543

To select the most significant features, firstly, the RF model was run on the dataset to
choose the appropriate number of decision trees. This number was related to the accuracy
of the classification. We used the out-of-bag (OOB) error to optimize this number. The OOB
error represented the misclassification probability. Thus, we selected the smaller number,
which reduced the training time and saved computing resources. This ensured that the
OOB error was relatively stable and low and would not seriously fluctuate. In this paper,
we computed the OOB error with the varying number of trees from 15 to 600, as shown
in Figure 8. It can be observed that the OOB error tended to be stable and close to the
minimum value (about 0.012) when the number of trees was 370, which was a parameter
for calculating the feature’s importance.

Figure 8. OOB error rate versus the number of trees.
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Secondly, we used the RF model with 370 trees to measure the importance of the
features. The serial numbers of the features and their corresponding importance scores
are provided in Table 4. The importance of each feature was computed according to
the information gain it provided [41]. For each node of the tree, the information gain
represented the information entropy change of the node from the current state to the
proposed state. We sorted these features based on their importance in descending order, as
presented in Figure 9. We can see that feature 3 had a higher score than the other features.
This feature was the altitude in Table 4. As seen in Figure 9, from feature 2 to feature 7,
the importance score decreased steadily, from about 0.1 to 0.07. From feature 6 to feature
9, the importance score basically remained unchanged. From feature 10 to feature 12, the
importance score stayed at around 0.02.

Figure 9. Feature importance sorting.

Finally, the MAE was generated by running the RF model with the varying features
from 1 to 12. The MAE is a measure of errors between the original data and predicted data.
The most informative features were selected based on the minimum MAE. The number
of features and the corresponding MAEs are shown in Figure 10. It can be observed that
when the number of features was 11, the MAE had the lowest value. Therefore, we selected
11 features for model training. They had a significant contribution to the representation of
the UAV position. The elimination of features improved the efficiency of the classifier and
decreased the training time. By querying the importance sequence seen in Figure 9, the
11 selected features were 3, 8, 2, 1, 7, 5, 6, 4, 11, 9, and 12. The names of these features were
queried based on the serial numbers in Table 4.
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Figure 10. MAE vs. number of features.

4.5. Model Training, Evaluation, and Selection

To train the various ML algorithms, 70% of the data were applied including the SVM,
KNN, RF, GBDT, DT, MLP, and XGBoost, and 30% of the data were utilized to evaluate
the trained models. We ran these algorithms on the 11 selected features (discussed in
Section 4.4) of the dataset.

Receiver operating curves (ROC) are often used to illustrate the validity and classifi-
cation performance of ML algorithms. An ROC curve is used to express the relationship
between the false positive rate (FPR) and the true positive rate (TPR) with a range of
assessment scores for the determination of a binary classification. The performance of
CONSTDET is shown in Figure 11, including the various ML models. The area under the
curve (AUC) was calculated for the model evaluation. As shown in the figure, XGBoost
was the best model of CONSTDET with a value of 0.996887, followed by RF (0.996782),
GBDT (0.974714), DT (0.958309), SVM-rbf (0.922729), KNN (0.860934), MLP (0.853909), and
SVM-linear (0.767151).

The classifier needed to compute the score of a sample for the determination of the
classification. This score was the threshold used to determine whether the sample was
normal or malicious. Different scores can produce different classification performances.
In this paper, we computed the threshold value (the score) by maximizing the TPR and
minimizing the FPR. The optimal cutoff points for all classifiers in the ROC curve represent
this value. They are labeled in Figure 12 in the zoomed-in ROC curve. The FPR, TPR, and
corresponding thresholds of the different models are summarized in Table 5. The XGBoost
model had the highest TPR (96.82%) and the lowest FPR (1.32%). The RF model had similar
TPR and FPR values.
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Figure 11. ROC curve.

Figure 12. Zoomed-in ROC curve in the top left.
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Table 5. Optimal thresholds of each model.

Model FPR(%) TPR(%) Threshold

SVM-linear 36.85 74.62 0.458250
SVM-rbf 17.80 90.46 0.433721

KNN 32.43 86.70 0.500000
RF 1.38 96.76 0.550000

GBDT 7.45 89.50 0.556963
DT 8.77 95.93 0.400000

MLP 27.62 83.84 0.314078
XGBoost 1.32 96.82 0.670852

For the performance evaluation of CONSTDET with the optimal thresholds (in the
fourth column in Table 5), the accuracy, precision, recall, missing, mistake, and F1-measure
were calculated. The formulae of these measures are presented in Equations (1)–(6), respec-
tively. Explanations are provided below the equations.

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
(1)

Precision =
#TP

#TP + #FP
(2)

Recall =
#TP

#TP + #FN
(3)

Missing =
#FN

#TP + #FN
(4)

Mistake =
#FP

#TN + #FP
(5)

F1 =
2Precision ∗ Recall
Precision + Recall

(6)

True positive (TP) means that an attack was detected correctly. True negative (TN)
means that a normal GPS signal was detected correctly, that is, the detector knew that the
UAV was flying properly. False negative (FN) means that an attack was detected incorrectly
as a normal GPS signal. False positive (FP) means that the normal GPS signal was detected
incorrectly as an attack.

Accuracy means the correct detection rate for GPS spoofing attacks. Precision means
the percentage of correctly detected attacks from all the results detected as attacks. Recall
means the percentage of correctly detected attacks from all the actual attacks. Missing
means the degree of actual attacks detected incorrectly as normal GPS signals from all the
actual attacks. Mistake means the percentage of normal GPS signals detected incorrectly as
attacks from all the normal GPS signals.

The experimental results are provided in Table 6. The XGBoost model had the best
performance. Its accuracy, precision, recall, missing, mistake, and F1-measure had the best
performance over the other models. Therefore, the XGBoost classifier was selected as the
detector for CONSTDET. This means that the detection rate of CONSTDET was 97.70%.
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Table 6. Experimental results of various ML models with optimal thresholds.

Model Accuracy (%) Precision (%) Recall (%) Missing (%) Mistake (%) F1-Measure (%)

SVM-linear 68.95 67.71 74.55 25.45 36.85 70.97
SVM-rbf 86.34 84.02 90.33 9.67 17.80 87.06
KNN 77.11 75.10 82.32 17.68 28.28 78.54
RF 97.57 98.70 96.50 3.50 1.32 97.59
GBDT 90.97 92.56 89.44 10.56 7.45 90.97
DT 93.59 91.94 95.80 4.20 8.70 93.83
MLP 78.18 75.86 83.78 16.22 27.62 79.63
XGBoost 97.70 98.70 96.76 3.24 1.32 97.72

The XGBoost is an optimized distributed gradient boosting tool. It provides paral-
lel tree boosting (also known as GBDT, GBM) to solve data classification problems, so it
achieved the highest detection rate. The SVM with the linear kernel had the worst perfor-
mance, as shown in Table 6 because it tried to directly classify the original samples in a
linear way. However, the UAV data did not follow a linear distribution so this model had
the worst performance. The SVM with the rbf kernel had much better performance. Since
it added more characteristics to the samples using the rbf kernel, this allowed the samples
to be further classified in a linear way.

4.6. Deployment of the Best Detection Model

The best detection model, the XGBoost model, was deployed on the UAV. The real-time
flight data were preprocessed and then used for detection. The data were preprocessed
as explained in Section 4.3. Additionally, another data preprocessing step was carried out.
Since the data units of some real-time data were different from the data in the flight log,
we needed to unify the data units before the onboard detector used the real-time data. For
example, the units of horizontal speed, vertical speed, roll, yaw, and pitch were different,
which can be seen in Tables 1 and 2.

5. Discussion: Reproduction and Comparison of Existing Detection Methods
5.1. Reproduction and Comparison

Feng et al. [14] applied the XGBoost and SVM algorithms to detect GPS spoofing
attacks (called the JSA method). Since their code and dataset were not open source, the JSA
method was implemented by us and evaluated using our dataset so that we could compare
it with our CONSTDET method. The implementation and comparison are explained below.

To implement the JSA method, first, the original data obtained from the flight log
were preprocessed. The angular velocity and acceleration were selected as the features.
The GPS data, including latitude, longitude, and altitude, were utilized to compute the
distance between two positions as a feature. The sampling time was 0.2 s, which was the
same value as our CONSTDET approach. The preprocessed data of our dataset contained
10,298 items including 4951 normal data and 5347 attacking data. Second, 70 percent of the
preprocessed data were used to train the models (XGBoost and SVM) and 30 percent were
used for testing. The XGBoost model using the same optimized parameters provided by
the JSA method was trained, and these optimized parameters were learning_rate = 0.153,
min_child_weight = 0.636, max_depth = 4, gamma = 0.123, and subsample = 0.5. The
XGBoost model using the default parameters was also trained for a comparison with our
CONSTDET approach. In addition, the SVM model with the rbf kernel and linear kernel
was also trained using the default parameters. To evaluate the performance of the trained
models, the accuracy, precision, recall, missing, mistake, and F1-measure were calculated
to support the comparison, as shown in Table 6.

For the JSA method, the XGBoost models with the default parameters or optimized
parameters had similar performances, as shown in Table 7. We can see that CONSTDET

had better performance than the JSA method, as shown in the last three rows in Table 7,
even though the JSA method used the optimized model parameters. Moreover, many of
the models (such as RF, DT, GBDT, and SVM-rbf ) in our detection framework in Table 6
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also had better performance than the JSA method, as seen in Table 7. We can conclude that
the proposed CONSTDET approach is better than the JSA method.

Table 7. Comparison of experimental results between the JSA method [14] and our CONSTDET

approach. We implemented the JSA method. For the JSA method, the SVM-linear, SVM-rbf, XGBoost
(with default parameters), and XGBoost (with optimized parameters provided by the JSA method)
models were trained and tested using our UAV dataset. The last row is the performance of our
CONSTDET approach using the default ML model parameters.

Model Accuracy (%) Precision (%) Recall (%) Missing (%) Mistake (%) F1-Measure (%)

SVM-linear 77.51 85.30 68.11 31.89 12.49 75.74
SVM-rbf 79.13 87.62 69.30 30.70 10.42 77.39
XGBoost (default parameters) 84.56 86.95 82.42 17.58 13.16 84.63
XGBoost (optimized parameters) 84.66 88.77 80.41 19.59 10.82 84.39

Our CONSTDET (default parameters) 97.70 98.70 96.76 3.24 1.32 97.72

Feng et al. proposed the DATE method [20] and the TECS method [21] for the detection
of GPS spoofing attacks. These methods were compared with the JSA method in terms of
the correctness ratio provided in [14]. The JSA method was much better than the DATE
method and TECS method. In this paper, the comparison shows that our CONSTDET

approach was better than the JSA method. Thus, we can conclude that our CONSTDET

approach is also better than both the DATE method and the TECS method.
In our experiment, we found that one of the weaknesses of the DATE and TECS meth-

ods was that they only considered some flight data and a few kinds of data relationships,
which could not sufficiently represent the principle of the position calculation. This means
that these methods could not detect flight data samples in various flight scenarios.

5.2. Comparison of Accuracy with Existing Works

CONSTDET was compared with prior works that provided detection rates such as the
LSTM-based detection method of Wang et al. [17], the Crowd-GPS-Sec detection method
of Jansen et al. [25], the multi-UAV-based detection method of Liang et al. [22], and the
DeepSIM detection method of Xue et al. [13], as shown in Table 8.

Table 8. Comparison of the performance of CONSTDET and those of existing works. LSTM-based,
DeepSIM, and CONSTDET are ML-based detection approaches. Crowd-GPS-Sec and multi-UAV-based
are non-ML-based detection approaches.

Approach Reference Detection Rate (%) Experimental Data

LSTM-based Wang et al. [17] 78 simulated data

Crowd-GPS-Sec Jansen et al. [25] 75 real data and simulated data

multi-UAV-based Liang et al. [22] 98.6 (>4 UAVs, on-ground detection)
96.7 (≤4 UAVs, on-ground detection) simulated data

DeepSIM Xue et al. [13] 94.8 (on-ground detection)
89 (onboard detection) real data

CONSTDET Ours 97.70 real data

The multi-UAV-based approach required several UAVs working together. The Crowd-
GPS-Sec method needed the GPS data broadcasted by other UAVs or aircraft. These
two methods are not suitable for a single-flying UAV.

In general, it is easier to derive a higher detection rate for on-ground detection than
for onboard detection since there are many more computing resources on the ground so
more complex detection approaches can be applied for spoofing detection. CONSTDET can
be an onboard or on-ground detection approach. In addition, CONSTDET is based on real
data, which makes the detection framework more reliable. Moreover, the detection rate of
CONSTDET is 97.70%, which is higher than most existing methods, as shown in the third
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column in the above table. Real data can make the detector reliable and practical. By taking
both the detection rate and experimental data (the real data or simulated data) into account,
we can conclude that CONSTDET is better than existing detection approaches.

6. Conclusions

GPS spoofing attacks are the primary threats to UAV security. It is not difficult to
implement GPS spoofing devices and these attacks can lead to catastrophic consequences.
Thus, this paper focuses on GPS spoofing attacks on UAVs and proposes a detection
approach, CONSTDET, based on the control semantics using ML algorithms. The control
semantics represent the principles of the UAV control process using flight data. The control
process consists of the horizontal position control process and the altitude control process.
The flight data are distinctly important in the flight control process and can affect the
control ability. The relationship between these flight data must satisfy the control semantics.
In other words, these UAV flight data can reflect the control semantics. Thus, flight data
features are analyzed and selected based on the control semantics. Features are selected
from the flight data produced by the horizontal position control system and altitude control
system. To design a practical detector, various experiments are conducted to collect real
flight data, supporting the proposal of the intelligent detection approach, CONSTDET.
Different ML algorithms are trained and evaluated using an actual flight dataset to obtain
the best classifier for CONSTDET. We implement CONSTDET in a real UAV. Through the
evaluation, the experiments demonstrate that CONSTDET is better than the existing works.
Our work shows that the control semantics have a crucial relationship with the flight data,
which is effective for the detection of GPS spoofing attacks. One of the reasons for the low
detection rates of some existing works is that they only consider part of the flight data,
which cannot comprehensively represent the relationship between the position-related
flight data.

Our work can be extended in the following directions. First, PID controllers are
indispensable components for UAVs and they are critical components for ensuring a stable
flight. Thus, our control semantics-based detection approach is suitable for all kinds of
UAVs. It can also be extended to the detection of spoofing attacks on other kinds of UAV
sensors. Moreover, we plan to test UAVs using actual GPS spoofing signals in an indoor
environment to further demonstrate the effectiveness of our approach. It is difficult to
conduct such experiments because actual attacks on UAVs are dangerous and it is illegal to
produce high-power spoofing signals in an open environment. These are also important
reasons why existing works do not test their detection approaches with spoofing attacks on
a real flight.
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Abbreviations
The following abbreviations are used in this manuscript:

GNSS global navigation satellite system
GCS ground control station
ML machine learning
CONSTDET control semantics-based detection approach
MAE mean absolute error
MLP multi-layer perceptron
SITL software-in-the-loop
GANs generative adversarial networks
SDR software-defined radio
LSTM long short-term memory
SVM support vector machine
FANETs flying adhoc networks
KNN K-nearest neighbor
RF random forest
GBDT gradient boosting decision tree
DT decision tress
XGBoost extreme gradient boosting
ROC receiver operating curve
TP true positive
TN true negative
TN false negative
FP false positive
AUC area under the curve
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