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Abstract: In the past two decades, ground-based synthetic aperture radars (GB-SARs) have devel-
oped rapidly, providing a large amount of SAR data in minutes or even seconds. However, the
real-time processing of big data is a challenge for the existing GB-SAR interferometry (GB-InSAR)
technology. In this paper, we propose a near-real-time GB-InSAR method for monitoring slope
surface deformation. The proposed method uses short baseline SAR data to generate interferograms
to improve temporal coherence and reduce atmospheric interference. Then, based on the wrapped
phase of each interferogram, a network method is used to estimate and remove systematic errors
(such as atmospheric delay, radar center shift error, etc.). After the phase unwrapping, a least squares
estimator is used for the overall solution to obtain the initial deformation parameters. When new data
are added, a sequential estimator is used to combine the previous processing results and dynamically
update the deformation parameters. Sequential estimators could avoid repeated calculations and
improve data processing efficiency. Finally, the method is validated with the measured data. The
results show that the average deviation between the proposed method and the overall estimation
was less than 0.01 mm, which could be considered a consistent estimation accuracy. In addition, the
calculation time of the sequential estimator was less sensitive than the total amount of data, and
the time-consuming growth rate of each additional period of data was about 1/10 of the overall
calculation. In summary, the new method could quickly and effectively obtain high-precision surface
deformation information and meet the needs of near-real-time slope deformation monitoring.

Keywords: GB-InSAR; near-real-time deformation monitoring; sequential estimation; systematic
error correction

1. Introduction

Slope deformation is the most direct manifestation of slope instability. Slope deforma-
tion monitoring could directly reflect the occurrence, development, and evolution of slope
instability. Accordingly, it is of great significance to study slope deformation monitoring
technology for slope prediction and slope stability analyses. Commonly used deformation
monitoring techniques are based on points, such as leveling, total station, GNSS, etc. These
point-based monitoring methods have problems with the inaccurate and difficult layout
of monitoring points for high, steep, and complex slopes. Even if intensive monitoring
equipment is deployed, it is difficult to obtain the spatial-, continuous-, and whole-process
deformation information of a slope. However, this information is very critical for high-risk
slopes. Therefore, it is very necessary to use new deformation monitoring technology for
slope monitoring.

Ground-based synthetic aperture radar interferometry (GB-InSAR), developed in
recent years, is weakly affected by fog, rain, snow, dust, etc., and could achieve all-day,
all-weather, and high temporal and spatial resolution observations [1]. It has become a new
non-contact monitoring technology for local area deformation. GB-InSAR was first pro-
posed in [2] and used to monitor dam deformation, and then it was widely used in disaster
monitoring, such as landslides [3–5], glaciers [6–8], volcanoes [9,10], and structures [11,12].
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The existing GB-InSAR time series data processing methods could be divided into
two types: post-event and real-time processing. The post-event method is mostly used
to monitor slow deformation, and the data processing method draws on the time se-
ries processing method of spaceborne InSAR technology, such as permanent scatterer
interferometry (PSI) [13,14] and small baseline subsets (SBASs) [15], etc. With the help
of high-performance computer equipment, these post-processing methods could realize
pseudo-real-time operations on small amounts of data. However, the overall processing
of large amounts of data is still a major problem restricting the application of GB-InSAR
slope monitoring.

For a very long period of time, real-time GB-InSAR monitoring focused more on
real-time data acquisition by equipment [16,17] than real-time data processing. Real-time
processing is a new method emerging in recent years, which emphasizes the timeliness of
data processing and is mostly used for emergency monitoring, e.g., slope early warning
monitoring and emergency rescues [18,19]. In [20], the data grouping processing strategy
was adopted, and the adjacent interferograms were directly integrated to realize real-
time computation; after accumulating certain data, the interferometric stack was used
to re-estimate the deformation to improve the computational accuracy. However, data
processing accuracy is proportional to stack size, and it is difficult to consider both accuracy
and efficiency. In recent years, sequential estimation methods [21,22] have been proposed
to trade off accuracy and efficiency, but the processing methods were based on spaceborne
InSAR technology, which is not effective in dealing with errors, such as the atmospheric
delay of GB-InSAR. In recent years, a large number of GB-InSAR atmospheric correction
methods have been proposed, such as ground control points [23], meteorological data [24],
modeling corrections [25], etc. In [26], an atmospheric phase correction method that could
be used for near-real-time monitoring was further proposed. However, these methods are
all based on phase unwrapping, which inevitably reduces the efficiency and accuracy of
data processing.

The main goal of this paper is to propose a new near-real-time processing method for
GB-InSAR, which could quickly remove systematic errors and realize dynamic estimation of
deformation parameters from real-time acquired SAR data. Based on the spatial distribution
characteristics of the GB-InSAR phase, the method uses low-order polynomials to model
the systematic error and uses the network constructed by coherent points to estimate the
model parameters without phase unwrapping. Then, a sequential estimator is used to
calculate the deformation parameters of the newly added data, which could maintain the
same accuracy as the overall solution and greatly improve computational efficiency. Finally,
the method is validated with the data collected from the pumped-storage power station
under construction in Zhen’an County, Shangluo City, Shaanxi Province, China.

2. Near-Real-Time GB-InSAR Deformation Measurement Method

The near-real-time GB-InSAR deformation measurement method could be divided
into two major steps: the initial dataset deformation estimation and the additional dataset
deformation dynamic update. Since the overall solution strategy was adopted first, the
amount of initial SAR data N1 was relatively large (not less than 10 scenes) to ensure
accuracy. On the contrary, the accuracy of the sequential strategy was independent of the
size of the dataset. Therefore, the amount of newly added SAR data N2 was as small as
possible, such as N2 = 1, to achieve optimal timeliness. The additional dataset contained
some SAR data from the initial dataset, and the number depended on the combination of
the interferometric pairs.

The specific algorithm flow is shown in Figure 1. The preprocess included a series of
conventional D-InSAR operations, such as registration, interferometry, difference, filtering,
etc. Some GB-InSAR devices, especially rotating scanning devices, have deviations in their
imaging, so registration is required first. After that, a redundant network of interference
pairs was constructed according to the length of the baseline. Finally, adaptive spatial
filtering was performed on all interferograms to improve the coherence.
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After the preprocessing, the conventional method performs the phase unwrapping
first and then removes the systematic errors [15]. On the contrary, we first corrected the
systematic error. In this paper, systematic errors refer to modelable errors, including the
stratified atmosphere, radar phase center offset errors, etc. It should be noted that if the
observation time interval is short enough, the surface deformation does not exceed the
quarter wavelength of the radar. When the systematic error phase is corrected, there is no
ambiguity in the residual phase (the deformation and random noise); hence phase unwrap-
ping is not necessary for this circumstance. In addition, even if the time interval is long,
the gradient of the wrapped phase after the systematic error correction would be reduced,
which would improve the accuracy and efficiency of the subsequent unwrapping operation.
Finally, the least squares (LS) method was used to obtain the deformation parameters of the
initial dataset. In the additional dataset, it was only necessary to process the new data and
then use the sequential estimator to combine the results of the initial dataset and update the
deformation parameters. The systematic error correction method for the wrapped phase,
the LS overall estimation, and the sequential estimation is introduced later.

2.1. Systematic Error Correction Method for the Wrapped Phase

In this paper, we provide a systematic error correction framework rather than an
exact error model. Specifically, according to the performance characteristics of the system-
atic errors, different error models could be substituted into our proposed framework to
estimate the model parameters and correct the systematic errors. Compared with conven-
tional error model correction methods, the proposed framework is based on the wrapped
phase and avoids unwrapping operation errors. In this subsection, we introduce several
commonly used systematic error models and the parameter estimation methods of the
proposed framework.
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The atmospheric delay is the most important error source in GB-InSAR technology and
could be divided into the systematic layered atmosphere and random local turbulence [27].
The layered atmosphere is related to the spatial location information of the observed target,
such as line-of-sight (LOS) distance [28,29], elevation [25], etc. Therefore, this systematic
atmospheric delay phase could be expressed as a multivariate function model:

ϕsys(r, θ, h, . . .) = f (β0, β1, β2, . . .) (1)

where ϕsys is the unwrapped error phase. (r, θ, h, . . .) represents the known radar observa-
tion parameters, such as the LOS distance from the target to the radar center, the azimuth
angle, the relative elevation, etc. β is the unknown parameter whose number is equal to
the number of terms of the polynomial model. One of the most commonly used models is
proposed in [25]:

ϕsys = β0 + β1r + β2rh (2)

In addition, the slight displacement of the equipment during the observation process
would also cause similar systematic errors. In [30], the error phase caused by the radar
center offset and the atmospheric delay was comprehensively considered, and the error
phase model was described as follows:

ϕsys = β0 + β1r + β2r2 + β3
h
r
+ β4 cos θ − β5 sin θ (3)

where θ is the azimuth angle from the radar phase center to the target.
In the above model, the interferometric phase is unwrapped first. Then regression

analysis is used to determine the best estimates of the unknown parameters. Finally,
Equation (1) is used to calculate the systematic error phase. However, phase unwrapping is
inefficient and prone to introducing errors. At this point, the unwrapped systematic error
phase could be expressed as follows:

Φsys = ϕsys + 2kπ = W{ f (β0, β1, β2, . . .)} (4)

where Φsys is the unwrapped systematic error phase, k is an unknown integer, and W{·}
represents a wrapping operator.

The spatial variation of the systematic error phase is relatively stable. If the two
points are close enough to have an equal integer number k, a new error phase model could
be constructed by using the difference between the wrapped phases of the two points.
To ensure computational efficiency and accuracy, we simply used a coherence threshold
to filter out the high-coherence points and then used Delaunay triangulation to connect
these points.

Assuming that an interferogram contains P high correlation points, the constructed
triangular network includes G edges, and the number of terms of the polynomial (1)
(excluding constant term) is U. Then the wrapped phase difference between two points on
the kth (k ∈ [1, G]) edge can be expressed as:

∆Φk(drk, dθk, dhk, . . .) = ∆ fk(β1, β2, . . . , βU) (5)

d· represents the difference operation, and the constant term β0 is eliminated. Let ∆Φ
G×1

=[
∆Φ1 ∆Φ2 . . . ∆ΦG

]T, D
G×U

=
[
dr dθ dh . . .

]
and B

U×1
=
[
β1 β2 . . . βU

]T, then

the differential phase of all the edges can be unified into a matrix ∆Φ:

∆Φ
G×1

= D
G×U

B
U×1

+ e
G×1

, P
G×G

(6)
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where e is the error term, including the random errors and unmodeled interference phase
values. P is the weight matrix of the observations and could be considered an identity matrix
in the first calculation. Equation (6) could be solved according to the least squares principle:

B̂ =
(
DTPD

)−1DTP∆Φ

QB̂ =
(
DTPD

)−1

e = ∆Φ−D
(
DTPD

)−1DTP∆Φ

(7)

where B̂ is the estimate value of the unknown parameter, and QB̂ is the co-factor matrix.
In the above calculation, the influence of deformation is not considered, and some

differential phases have phase ambiguity. In these cases, the k values of the adjacent
points are inconsistent, and the interference phase difference deviates abnormally from
the model. Therefore, a residual threshold needs to be set to detect and remove these
abnormal edges. In addition, the residual error e could be used to determine the weight
matrix to weaken the influence of the abnormal edges. In this case, the new weight
matrix is Pnew = diag

(
e1
−2, e2

−2, . . . , eG
−2). Then, the observation equation according

to Equations (6) and (7) is constructed, and the exact estimated value of the unknown
parameter is calculated. By bringing the unknown parameter estimates B̂ into Equation (4),
you could further solve the constant term β̂0:

β̂0 =

W
{

G
∑

k=1

(
Φk − fk

(
β̂1, β̂2, . . . , β̂U

))}
G

(8)

Finally, after all the unknown parameters are obtained, they are substituted into
Equation (4) to estimate the wrapped systematic error phase:

Φ̂sys = W
{

f
(

β̂0, β̂1, β̂2, . . . , β̂U
)}

. (9)

2.2. GB-InSAR Least Squares Overall Estimation

In order to reduce the decoherence caused by the long baseline, the initial dataset
includes N1 ground-based SAR images that are constructed according to the principle of a
short baseline to generate M1 scene interferograms. Obviously, M1 satisfies the condition:

(N1 − 1) ≤ M1 ≤
N1(N1 − 1)

2
(10)

If an interferometric pair is composed of i and jth scene images, its unwrapped
deformation phase could be expressed as φi,j, where i, j ∈ [1, N1] and i < j. Then the
deformation phase set L1 (the observation vector) could be expressed as follows:

L1 =
[
φ1,2 φ1,3 φ2,3 · · · φi,j

]T (11)

In order to determine the weight of observations vector L1, a conventional approach is
to estimate the correlation coefficient in a small window [31]. Generally, the weight of a
single observation value could be approximately expressed as follows:

p =

(
n

∑
i=1

(
φi − φ

)2/(n− 1)

)−1

(12)

where φi and φ represent the phase of the ith point and the average phase of all points in
the window, respectively. Moreover, n is the number of points in the window. The weight
matrix P1 of the observation value could be calculated by pixel. However, pixel-by-pixel
calculations are inefficient, so it is feasible to simply use an identity matrix as the weight
matrix after filtering out the highly coherent points.
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Correspondingly, the cumulative deformation phase at the jth scene is represented
by the unknown x1,j (j ∈ [2, N1]). The unknown parameter X1 vector could be expressed
as follows:

X1 =
[
x1,2 x1,2 x1,3 · · · x1,N1

]T (13)

If the weight matrix of the observation vector L1 is P1 and the error vector is e1, then
the observation equation is:

L1
M1×1

= C1
M1×(N1−1)

X1
(N1−1)×1

+ e1
M1×1

, P1 (14)

where C1 is a design matrix of size M1 × (N1 − 1), which is constructed according to the
serial numbers of the master and slave images of each interferometric pair. Additionally,
−1 is set for the master image, and +1 is set for the slave image. The general form of C1 is:

C1 =


−1 +1 0 · · · 0
−1 0 +1 · · · 0
0 −1 +1 · · · 0
· · · · · · · · · · · · · · ·

. (15)

According to the principle of least squares, the solution of Equation (14) is:

X̂1 =
(

CT
1 P1C1

)−1
CT

1 P1L1

QX̂1
=
(

CT
1 P1C1

)−1 (16)

where X̂1 is the estimated value of the cumulative deformation series and QX̂1
is the co-

factor matrix. At this point, we obtained the least squares solution for the deformation
parameters of the initial SAR dataset.

2.3. GB-InSAR Sequential Estimation Method

After obtaining the overall solution of the deformation sequence of the initial SAR
dataset (including the N1 scene data), we obtained the newly acquired N2 scene SAR
data. Following the same short baseline principle, the newly added SAR constituted
interferometric pairs. The unwrapped phase of the initial and new data constituted the
observation vectors L1, L2, respectively. The cumulative deformation sequences (unknown
parameter vectors) were:

X1 =
[

x1,2 x1,3 · · · x1,N1

]T
X2 =

[
x1,N1+1 x1,N1+2 · · · x1,N1+N2

]T (17)

The observation equation according to the conventional ground-based SAR overall
solution method was:

L1 = C1X1 + e1, P1
L2 = D1X1 + D2X2 + e2, P2

(18)

where C1, D1 and D2 are the design matrices. P1and P2 are the weight matrices of the
observed values of the two datasets, respectively.

In order to avoid the repeated operation of the overall solution of the conventional
ground-based SAR data, we used the sequential estimation strategy to acquire the deforma-
tion phase sequence. According to Equation (18), the estimated value X̂1 and the co-factor
matrix QX̂1

of the initial data set were obtained. Substituting X̂1 as prior information into
the observation equation, the new observation equation was:[

X̂1
L2

]
=

[
I 0

D1 D2

][
X′1
X2

]
+

[
e1
e2

]
(19)
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where I is the identity matrix; X’
1and X2 are the new unknown parameter vectors to be

determined. At this point, the weight matrix of the observations was:

PX̂1L2
=

[
Q−1

X̂1
0

0 P2

]
=

[
CT

1 P1C1 0
0 P2

]
. (20)

According to the principle of least squares, the estimated value of the unknown
parameter could be obtained:[

X̂′1
X̂2

]
=

[
CT

1 P1C1 + DT
1 P2D1 DT

1 P2D2
DT

2 P2D1 DT
2 P2D2

]−1[
CT

1 P1C1X′1 + DT
1 P2L2

DT
2 P2L2

]
. (21)

The co-factor matrix for the estimated value was:

QX̂′1X̂2
=

[
CT

1 P1C1 + DT
1 P2D1 DT

1 P2D2
DT

2 P2D1 DT
2 P2D2

]−1

. (22)

3. Results

The experimental area was located downstream of the pumped-storage power station
under construction (Figure 2a) in Zhen’an County, Shangqiu City, Shaanxi Province. During
the experiment, the site underwent blasting excavation (Figure 2b), and the newly excavated
slope was exposed (Figure 2c). In addition, the continuous rainfall further aggravated
the risk of slope instability. We established a long-term GB-InSAR observation point on
a pre-embedded cement pile approximately 50 m from the slope (Figure 2d). The GB-
InSAR system used GPRI-II equipment developed by GAMMA Remote Sensing AG in
Switzerland. The main technical parameters of GPRI-II are shown in Table 1.
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Table 1. The main parameters of GPRI-II.

Parameter Value

Center frequency 17.2 GHz
Bandwidth 2000 MHz

Effective measuring range 50 m to 10 km
Range resolution 0.95 m

Azimuth resolution 0.385 deg

From 3 April 2021, we conducted a 3-day slope monitoring experiment. The radar
equipment performed imaging every 5 min, with an imaging range of 50 m to 425 m,
covering the entire exposed slope. A total of 121 single-look complex images (SLCs) were
acquired in 3 days (Table 2).

Table 2. Observations from 3 April to 5 April 2021.

NO. Starting Time End Time Number of Images

1 3 April 2021 14:32 3 April 2021 16:12 21
2 4 April 2021 08:31 4 April 2021 15:53 44
3 5 April 2021 08:25 5 April 2021 15:16 56

Figure 3a is the intensity image of the acquired SLC data of the first scene, and
Figure 3b,c are the interferometric phase map and coherence map generated after the
interferometric SLC data of the first two scenes. In the bare soil area, the intensity value
was larger, the interference phase distribution was regular, and the coherence was higher.
While the intensity value in the dense vegetation area was smaller, the interference phase
was randomly distributed, thus, showed complete decoherence.

A total of 357 interferometric pairs were constructed by combining the SLC data of
the three adjacent scenes in two pairs. There was a significant phase error in some of
the interferograms due to the rapidly changing moisture conditions and the radar center
shift caused by the re-installation of the instrument. Therefore, we adopted the method
proposed in this paper, the correction model in Equation (3), a correlation threshold of 0.95,
and the systematic errors were estimated and removed. The correction effect of five typical
areas are seen in Figures 4 and 5, and Table 3. After the systematic error correction, the
trend of the wrapped phase was significantly reduced. The average value of the corrected
phase was less than 0.05 rad (the corresponding deformation value was less than 0.07 mm),
which could meet the accuracy requirements of millimeter-level monitoring. Even for the
interference pair (e) with obvious phase jumps, this method had a superior correction result.

Table 3. Statistics of the phase before and after the systematic error correction of five typical interfero-
metric pairs.

Mean Standard Deviations

Original Corrected Original Corrected

(a) 0.4970 0.0038 0.4550 0.3513
(b) 0.5259 0.0341 0.5702 0.5182
(c) −0.6595 0.0406 0.4578 0.3874
(d) −0.2627 −0.0305 2.0912 0.3520
(e) −0.6186 0.0238 0.4766 0.4401

Because the observation time was not continuous, the minimum cost flow (MCF) [32]
was used in the experiment for phase unwrapping. To verify the feasibility of not doing an
unwrapping, we compared the difference between the wrapped and unwrapped phases
(Figure 6). If the difference of a point exceeds 0 (due to the rounding error, the threshold
may be slightly greater than 0), the point is considered to have phase ambiguity. In the spa-
tial domain, the points with a large proportion of phase ambiguity were mainly distributed



Remote Sens. 2022, 14, 5585 9 of 16

at the edge or in an isolated area (Figure 6), which is mainly caused by errors introduced
with path-dependent phase unwrapping. In the temporal domain, the interferograms com-
posed of different days had a high proportion of ambiguity points (Figure 6b, cross mark),
especially between 4 April and 5 April. In addition, the proportion of some interference
pairs was slightly higher because of the large deformation on 5 April.
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The 21 SAR data acquired on the first day (3 April 2021) were used as the initial
data set, and the coherence threshold was 0.8 to filter out the high coherence points. The
conventional SBAS-InSAR (LS overall estimation) was used to process the data to obtain
the initial cumulative deformation sequence and average deformation rate. Figure 7 shows
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the deformation rate of the experimental area in mm/day, and a positive value indicates
that the line-of-sight distance from the point to the radar phase center is decreasing and
vice versa. There were some isolated regions with abnormal velocity in the figure, mainly
due to phase unwrapping errors. From the figure, an obvious deformation region (the box-
selected region in Figure 7) is observed, and its central deformation rate was approximately
11 mm/day.
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During the next two days, for each SLC acquired, interference was performed with the
nearest two SLC scenes to obtain interferograms, and the same method was used to remove
the systematic errors. After completing the phase compensation and unwrapping, the
cumulative deformation sequence and the average deformation rate were updated using
the sequential estimation method in conjunction with the initial cumulative deformation
sequence. Figure 8 is the final three-day average deformation rate map, in which three
deformation regions, a, b, and c, could be observed. For every point in each deformation
region, the cumulative deformation sequence and average deformation rate are shown
in Figure 9 and Table 4. The average deformation rate of region a was the fastest, and
there was an obvious accelerated deformation process on 4 April, and the deformation rate
decreased on 5 April. Regions b and c were relatively stable in the first two days, and their
deformation rates increased to 85.49 and 43.81 mm/day, respectively, on 5 April. It is worth
noting that the cumulative deformation values were lower in the interval between the
two-day observations. There are two possible reasons. On the one hand, the disturbance to
the slope was small due to the stop of construction at night. On the other hand, it is more
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likely that the deformation amount at night exceeded the half-wavelength of the radar, and
the integer number of the deformation phase was lost after phase wrapping.
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Table 4. The central deformation rate of regions a, b, and c.

Region
Daily Rate (mm/day) Average

Rate(mm/day)3 April 2021 4 April 2021 5 April 2021

(a) 10.70 78.83 15.18 18.64
(b) 3.66 5.06 85.49 8.25
(c) 2.92 3.02 43.81 8.61

Finally, all SLC data were processed with a least squares overall estimation. Figure 9
shows that the two methods had a consistent deformation sequence in the deformation
regions a, b, and c. The statistics on the cumulative deformation sequence of all points
show that the deviation of the deformation value of 99.35% of the points is less than
0.1 mm, and the mean and standard deviation of the deviation are both better than
0.01 mm. The results obtained by LS overall estimation and the sequential estimation are
highly consistent.

Figure 10 recorded the time consumption of the two methods separately, and the
programs of the two methods were run independently on a workstation without inter-
ference. The data processing started from the 21st period, and the time consumption of
the program operation was recorded for each additional period of data. Sequential pro-
gram time consumption spikes were due to saving data when processing the last period
of the day. Nonetheless, the sequential estimation consumed less time than the overall
estimation after 21 periods. The average time growth rate of the sequential estimates was
approximately 0.018 s/epoch, which is approximately one-tenth of that of the SBAS method
(0.182 s/epoch).
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4. Discussion

The experiment in Zhen’an County, Shangqiu City, Shaanxi Province proved the
feasibility of the wrapped phase systematic error correction method and the sequential
estimation method in obtaining the slope deformation sequence.

By constructing a two-dimensional polynomial based on a network, the systematic
error correction method could estimate and remove the phase error without phase un-
wrapping. Figure 4 shows that after the systematic error correction, most of the phases
tended to be zero, and the phase gradient changes were significantly reduced, which could
improve the accuracy and efficiency of phase unwrapping. The comparative analysis of the
wrapped and unwrapped phases proved that phase unwrapping is not necessary under
specific conditions. First, during repeated observations, the LOS distance change could not
exceed a quarter of the radar wavelength, which means that the radar observation interval
was short enough or the target deformation was slow. Second, the systematic error led to
a wide range of phase ambiguity, and proper error correction was necessary. In this way,
the efficiency of data processing could be greatly improved, and the unwrapping error
could be avoided. Of course, it is undeniable that in most cases, phase unwrapping could
help improve the reliability of the results, especially under complex observation conditions.
Furthermore, it should be noted that different systematic error models have different ap-
plication environments. Generally, the correction accuracy of complex models is higher,
but the calculation efficiency is reduced. Therefore, it is necessary to comprehensively
evaluate the efficiency and accuracy and use an appropriate model in the rapid monitoring
of slopes. At the same time, the current systematic error model is difficult to correct the
local atmospheric turbulence caused by extreme weather or complex terrains, which is also
the focus and difficulty of phase error research.

The sequential estimation method uses the previous cumulative deformation sequence
and a newly added interferogram to obtain a new cumulative deformation sequence
according to the principle of least squares. This method has the same deformation accuracy
as the least squares overall estimation method and avoids the complexity and repetition
of processing the entire data overall. As the amount of data increases, the time consumed
by sequential estimation does not grow significantly. This advantage makes it possible to
realize real-time monitoring in big data scenarios. The accuracy of sequential estimation
is limited by the quality of the observed data; that is, the coherence. However, in the
whole observation sequence, the phase quality of the pixel is constantly changing. In order
to pursue higher monitoring accuracy, prior weighting (such as correlation) or posterior
weighting (such as iterative reweighted least squares or M estimation) could be used.
However, these methods inevitably reduce the efficiency of data processing. Therefore,
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it is a difficult point, and further research direction is needed to detect and weaken the
influence of poor coherence without affecting efficiency.

Due to the limitation of the field conditions, this experiment still has some defects:
between the repeated observation intervals, the deformation value exceeded the half wave-
length of the radar due to phase wrapping (in Figure 9, after a long interval, the deformation
observation change value was close to 0). Additionally, due to the characteristics of GB-
InSAR imaging, only the LOS deformation could be observed, which also led to a low
observed value. Therefore, it is very important to observe the target continuously and from
multiple perspectives in actual slope monitoring.

5. Conclusions

In this paper, a near-real-time dynamic GB-InSAR monitoring method for slope stabil-
ity is proposed. Benefiting from the first correction of the systematic error phase, the phase
unwrapping, and the adoption of the sequential estimation strategy, the proposed method
could update the deformation sequence of the target with minute-level time resolution and
millimeter-level deformation accuracy. The experiment verified that the method could be
applied to the deformation monitoring of slopes with steep terrains and risks of instability.
With the proposed method, large-area, real-time, high-precision, high-resolution slope
deformation data could be used as a preliminary basis for managers and operators to avoid
or reduce the damage and losses caused by slope instability.

The method proposed in this paper was developed using MATLAB software, and the
demo code and case data can be obtained by contacting the authors.
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