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Abstract: Climate change is known to significantly affect vegetation development in the terrestrial
system. Because Southwest China (SW) is affected by westerly winds and the South and East
Asian monsoon, its climates are complex and changeable, and the time lag effect of the vegetation’s
response to the climate has been rarely considered, making it difficult to establish a link between
the SW region’s climate variables and changes in vegetation growth rate. This study revealed the
characteristics of the time lag reaction and the phased changes in the response of vegetation to climate
change across the entire SW and the typical climate type core area (CA) using the moving average
method and multiple linear model based on the climatic information of CRU TS v. 4.02 from 1982 to
2017 together with the annual maximum (P100), upper quarter quantile (P75), median (P50), lower
quarter quantile (P25), minimum (P5), and mean (Mean) from GIMMS NDVI. Generally, under the
single and combined effects of temperature and precipitation, taking the time lag effect (annual
and interannual delay effect) into account significantly improved the average prediction rates of
temperature and precipitation, which increased by 18.48% and 25.32%, respectively. The optimal
time delay was 0–4 months when the annual delay was taken into consideration, but it differed when
considering the interannual delay, and the delaying effect of precipitation was more significant than
that of temperature. Additionally, the response intensity of vegetation to temperature, precipitation,
and their interaction was significantly more robust when the annual delay was taken into account
than when it was not (p < 0.05), with corresponding multiple correlation coefficients of 0.87 and
0.91, respectively. However, the degree of response to the combined effect of individual effects and
climate factors tended to decrease regardless of whether time delay effects were taken into account. A
more comprehensive analysis of the effects of climate change on vegetation development dynamics
suggested that the best period for synthesizing NDVI annual values might be the P25 period. Our
study could provide a new theoretical framework for analyzing, predicting, and evaluating the
dynamic response of vegetation growth to climate change.

Keywords: time lag effect; multiple time delay combination model; annual delay effects; interannual
delay effects; typical climate types

1. Introduction

Climate change can significantly affect vegetation development and plays a decisive
part in its growth. The response of vegetation to climate conditions has become a hot topic at
regional and even global scales, and the connection between vegetation and climate against
the background trend of global warming has significant theoretical research value [1–5].
Vegetation development is mainly influenced by temperature and precipitation and is
closely related to hydrothermal conditions, making it an ideal choice for considering the
relationship between climate and vegetation change [6–10]. In addition, because of the
different demands for hydrothermal conditions at each life cycle stage of vegetation growth,
the impact of climate factors on vegetation is variable and changes with the interaction of
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different spatial patterns and time delay effects [11–16]. When the amplitude of climate
change exceeds the tolerance limit of vegetation growth in a particular month, vegetation
will respond differently to climate change [17]. For example, in European beech saplings,
the effect of temperature on leaf senescence in autumn was greater than that on deciduous
leaves in spring [18]. Furthermore, climate change could directly or indirectly induce
and disturb the ecosystem by changing the chemical and physical properties of soil—for
example, by increasing temperature, reducing the availability of soil water, and promoting
the availability of nitrogen, phosphorus, potassium, and other nutrient elements [19,20].
This has an indirect impact on vegetation development and means that the reaction of
vegetation change to meteorological factors has a specific delayed interaction [11]; that is,
there is a time lag effect [13,14,16,21–23].

Many studies have shown that utilizing the time lag effect could effectively improve
the prediction rate for climate impacts on vegetation development at the global scale
within the annual cycle, including the developing period, the aging stage, and the complete
development season [11,12,14–16]. For example, Wu et al. [11] revealed that the clarification
rate of climate variables for worldwide changes in vegetation development increased by
about 11% and the explanation rate reached 64% when the time lag effect was taken into
consideration. Zhao et al. [12] pointed out that when the time lag effect was considered
within the Amazon Basin, the explanation rate increased by about 12% to about 40%. Ding
et al. [14] indicated that on a global scale, the explanation rate increased by about 15%,
19%, and 17% in the developing period, the aging stage, and the complete development
season, respectively. Zhao et al. [16] pointed out that the climatic factors (precipitation
and temperature) increased by more than 95% relative to the typical watershed on the
Loess Plateau when the time lag was taken into consideration. In the Xijiang River Basin
in southern China, the areas where vegetation has been significantly affected by rainfall
and temperature exceed 30% of the total basin after accounting for the delay effect [15]. In
addition, the length of the delaying effect of climate factors on vegetation varies greatly
globally. In low-latitude regions, the delaying effect of temperature on vegetation was
more than one month; in the middle- and high-latitude regions, it was generally less than
one month [11]; and in the Northern Hemisphere (>30◦N), the autumn leaf senescence
and drought displayed a lag period of 2–6 months [24]. The lag time of the response of
vegetation to climate variables in Northern Eurasia [25] was about 3 months, and in the
Qinghai–Xizang Plateau region [26], it was generally 1–4 months. However, the reaction of
vegetation to climate variables is not synchronous; for example, in the Red River Basin in
southern China [27] and in Ethiopia [22], the reaction of NDVI to temperature was faster
than it was to precipitation, and the extreme alpine region of southern Xizang [28] was
more sensitive to precipitation than temperature. Similarly, some researchers found that
vegetation developed in the southwestern United States [29], inland Australia [21], the
Yun–Gui Plateau [30], and Inner Mongolia [31] were unequivocally positively connected
with precipitation one month before.

Current research has widely proved the connection between climate and vegetation
at both regional and global scales. However, most of these studies considered only the
annual cycle and utilized only a maximum or average value of NDVI to establish the
annual growth. In reality, in the many growth stages in the life cycle of vegetation, the
heat and moisture required are variable, and because of global climate change, there are
obvious regional differences, change trends, and volatility, which make research findings
inconsistent, complex, and difficult to interpret quantitively; as a result, the explanation
rate of climatic factors to vegetation growth is low. Consequently, we posed the following
scientific questions: (1) How should we characterize the time delay effect of individual
and multiple climatic factors on vegetation and select the optimal time delay? (2) How can
we determine the strength variation trend of the delay effect in relation to the response of
vegetation to climate factors?
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2. Materials and Methods

Therefore, based on the core areas screened out by Wang and An [32], the annual values
of maximum (P100), upper quarter quantile (P75), median (P50), lower quarter quantile
(P25), minimum (P5), and mean (Mean) of GIMMS NDVI were selected to represent the
development status of vegetation at different growth stages. These were used alone and in
combination to analyze the time lag’s impact of temperature and precipitation factors and
identify the optimal time lag when individual and joint action had a significant impact on
NDVI. The response characteristics and periodic change trends in the reaction of vegetation
to climate factors (temperature and precipitation, separately and jointly) were analyzed to
help us to predict and evaluate the dynamic response of vegetation to worldwide climate
change and to provide a theoretical basis for the wider study of global climate change.

2.1. Overview of the Research Area

In accordance with the concept of natural regionalization [33], the “Southwest Region
of China” in this study has a broader geographical meaning and takes into account vegeta-
tion and landscape settings between the coordinates 21.14◦–36.48◦N and 83.87◦–110.19◦E,
which cover the Himalayan mountains, the eastern Qinghai–Xizang Plateau, the Hengduan
Mountains, the Yun–Gui Plateau, the Sichuan Basin, and other terrain units (Figure 1a) [34].
The entire study area spanned Sichuan, Chongqing, Guizhou, Yunnan, Eastern Xizang,
and southern Qinghai. Combined with the unique climatic characteristics of the Qinghai–
Xizang Plateau, this area has a critical effect on East Asian and worldwide climate [16,35]
and has become an area of significant interest to domestic and foreign scholars [32,34,35].
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Figure 1. Outline of (a) geography, (b) vegetation divisions, and (c) types of vegetation in the SW area.

2.2. Acquisition and Analysis of Research Data
2.2.1. Data Sources and Processing

(1) A digital elevation model (DEM) with a resolution of 1 km obtained from the
Resource and Environmental Science and Data Center (as shown in Table 1) was used
to characterize the topography of the SW (Figure 1a). Then, the bilinear interpolation
extrapolation method was used in ArcGIS10.6 to resample the raster data with a resolution
of 0.25◦ × 0.25◦.

Table 1. The source of primary data and related descriptions.

Name Sources Resolution Web Site Access Date Format

GIMMS NDVI3g GIMMS 8 × 8 km https://ecocast.arc.nasa.
gov/data/pub/GIMMS/

18 November
2018 .nc4

CRU_TS4.02 Climate Research Unit 0.5◦ × 0.5◦ https://crudata.uea.ac.uk/
cru/data/hrg/ 28 June 2019 .nc

Global Artificial
Impervious Area Tsinghua University data 30 × 30 m http:

//data.ess.tsinghua.edu.cn
31 December

2019 .tif

Digital elevation model
Resource and

Environment Science and
Data Center

1 × 1 km https://www.resdc.cn/
data.aspx?DATAID=123

28 September
2019 GRID

1:1 million vegetation
map of China

Resource and
Environment Science and

Data Center
— https://www.resdc.cn/

data.aspx?DATAID=122 1 December 2017 .shp

China’s vegetation
zoning data

Resource and
Environment Science and

Data Center
— http://www.resdc.cn/

data.aspx?DATAID=133 1 December 2017 .shp

(2) Using the resource environment cloud platform (as shown in Table 1) to obtain
China’s vegetation zoning data, the SW was divided into six main subregions (Figure 1b).

(3) A high-resolution gridded climatic variables dataset (CRU_TS4. 02) with a deter-
mination of 0.5◦ × 0.5◦ [36] was obtained from the Climate Research Unit, University of
East Anglia, UK (as shown in Table 1). This has been regularly utilized as reliable climate
information for the study of global or regional climate changes and the impacts on biolog-
ical systems (e.g., Buermann et al. [37]; Wang et al. [34]; Wang and An [32]). According
to Wang’s research [34], the region’s average temperature and annual precipitation from
1901 to 2017 showed significant inflection points in 1954 and 1928, respectively, and other
relevant reports pointed out that the temperature in the Northern Hemisphere began to

https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
http://data.ess.tsinghua.edu.cn
http://data.ess.tsinghua.edu.cn
https://www.resdc.cn/data.aspx?DATAID=123
https://www.resdc.cn/data.aspx?DATAID=123
https://www.resdc.cn/data.aspx?DATAID=122
https://www.resdc.cn/data.aspx?DATAID=122
http://www.resdc.cn/data.aspx?DATAID=133
http://www.resdc.cn/data.aspx?DATAID=133
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rise in the mid-1970s, and in particular after 1980 [38,39]. Combined with the longest NDVI
time sequence (GIMMS NDVI3g) [40], we selected the period from 1982 to 2017 for our
preliminary inquiry.

Because the SW extends across three topographic zones from west to east, with areas
of fragmented transition between adjacent zones and a wide range of altitudes, there
are significant climate characteristics at different altitudes (such as elevation-dependent
warming [41], elevation-dependent wetting [42], etc.). As a result, the 0.5◦ × 0.5◦ spatial
resolution meteorological data could obscure the subtle relationship between climate
change and the environment. Therefore, this study used the cubic spline method [43] to
interpolate climate data with a spatial resolution of 0.5◦ × 0.5◦ and downscale the resolution
to 0.25◦ × 0.25◦.

(4) The NDVI information was selected from the Global Inventory Monitoring and
Modeling Studies (GIMMS) dataset from January 1982 to December 2015 (as shown in
Table 1) with a time step of 15 d and a spatial grid of 8 km. Although this dataset has been
widely used to study vegetation dynamics at global and regional levels after geometric
correction, radiometric correction, and atmospheric correction [40], because of the high
frequency of clouds and precipitation in the SW, we combined it with Savitzky–Golay
filtering [44] to reconstruct the sequence and eliminate cloud interference and used the
maximum-value composite method (MVC) [32,34,39] to eliminate interference from cloud,
atmosphere, rain, and the altitude of the sun.

In addition, because cultivated vegetation is frequently affected by human activity,
such areas needed to be excluded from the analysis in order to focus on the relationship
between climate change and natural vegetation growth. In addition, the rapid urbanization
of the study area due to the implementation of the Strategy for Large-Scale Development
of Western China in around 2000 led to a rapid increase in the number of impervious
areas, which also needed to be excluded from the analysis. Therefore, the area of cultivated
vegetation obtained from the Resource and Environmental Science and Data Center and the
artificial impervious area obtained from the Global Artificial Impervious Area (as shown
in Table 1) [45] from the Tsinghua University data open platform were excluded from
this study.

To comprehensively display the changing vegetation trends, in accordance with the
method described by Wang and An [32], the annual maximum (P100), upper quarter quan-
tile (P75), median (P50), lower quarter quantile (P25), minimum (P5), and mean (Mean) of
GIMMSNDVI were chosen to represent the annual diverse development stages of vegetation.

(5) The topographic, climatic, vegetation, and ecoregion distribution data for the study
area were obtained from publicly available sources. To ensure scale consistency, they were
resampled or reduced to 0.25◦ × 0.25◦ raster data to meet the requirements of this study.

2.2.2. Research Methods

(1) Trend analysis and detection: The least square method was utilized for examining
the trend of a specific factor, and the trend of the fair condition was used to indicate the
change intensity of the factor [34,42]. The formula was:

slope =
n

n
∑

i=1
ixi −

n
∑

i=1
i

n
∑

i=1
xi

n
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (1)

where n is the research phase and xi is the factor number of the ith year. When slope > 0,
it indicates an expanding drift within the investigated phase; otherwise, it indicates a
diminishing drift. The T-test was utilized to test the importance of the changing trend of
this factor.

(2) Moving average method: The moving average method was utilized to remove
the effect of information interference and reduce the effect of irregular impacts and thus
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achieve a generally smoother time arrangement that would more intuitively represent the
changing trend [46]. The moving average formula was:

pj =
i+L−1

∑
i=j

xi
L

(2)

where L = 15 years is the sliding step according to the research results of Fu et al. [47], i is
the sequence number, and j = (L− 1)/2.

(3) Time delay effect of vegetation on individual climatic variables: In order to deter-
mine the time delay impact of climate variables on the six annual characteristic values, the
month with the highest frequency of characteristic values (except the Mean) in all windows
was selected as the month with occurrence of the annual characteristic values, and the
month closest to the Mean was defined as the month of Mean occurrence (see Appendix A
for details).

The monthly temperature and precipitation data were utilized as independent vari-
ables, and six annual synthetic data from GIMMS NDVI (P100, P75, P50, P25, P5, and Mean)
were successively taken as response variables to calculate the delay effect of synthetic data
with different annual values. Previous studies found that the time lag impact of climate
factors on vegetation was, for the most part, less than four months [11,19], and a 2-year
time lag impact was also found [48]. Considering that P25 or P5 may occur in January
or December of the current year, we selected the current and previous year’s monthly
temperature and precipitation data as independent variables. The formula model of NDVI
and temperature and precipitation was as follows:

NDVI = β0 + βiTMP + ε (3)

NDVI = β0 + βiPRE + ε (4)

where NDVI is the response variable and is the synthetic data of the annual values of NDVI
(P100, P75, P50, P25, P5, and Mean, respectively); βi represents the regression coefficient of
climate factors within the ith month, with i ranging from 1 to 24, where 1–12 represent
months 1–12 of the previous year and 13–24 represent months 1–12 of the current year,
respectively; TMP and PRE correspond to time arrangement information of temperature
and precipitation in the i-th month; β0 is the constant term of the regression model; and ε is
the random error term. NDVI, TMP, and PRE were averaged over a sliding 15-year period
before being entered into Equations (3) and (4).

The optimal time delay selection rule: Firstly, in this study, the occurrence month of
synthetic data of NDVI annual value is defined as the month with the highest occurrence
frequency and is represented by n (1≤ n ≤24) in the new series formed after 15 years
of sliding [47], in which the occurrence frequency of Mean is defined as the occurrence
frequency of the month with the smallest error with Mean. In the reaction of vegetation to
a single climate factor, the ith month with the most significant assurance coefficient R2 is
selected, which is the ideal time delay. Additionally, i cannot exceed the month n in which
the synthetic data of six NDVI annual values appear. If this restriction condition i ≤ n
is not considered, the eigenvalues may have the largest coefficient of determination with
respect to the climatic factor after the month of occurrence, which is clearly against the
objective law. The calculation formula of the maximum determination coefficient R2 is:

maxR2 = max
{

R2
1, R2

2, R2
3, ..., R2

i−1, R2
i

}
(1 ≤ i ≤ n) (5)

where maxR2 is the maximum lag determination coefficient; i is the ith month;
R2

1, R2
2, R2

3, . . . , R2
i−1, R2

i are determinant coefficients of January of the previous year, Febru-
ary of the previous year, and so on, respectively, and n in the same month; and the maximum
value is selected from those determinant coefficients as the optimal lag-determining coef-
ficient. If maxR2 = R2

1, the optimal lag ∆i of NDVI to this climate factor is n − 1 months,
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and so on; if maxR2 = R2
n, the optimal lag ∆i is 0 months—that is, there is a maximum

determination coefficient in the same month.
(4) Vegetation responses to a combined model of multiple climate factors with multiple

time delays: The multiple linear regression model is simple in form and makes it easy to
estimate and test parameters which can effectively explore the collective impact of temper-
ature and precipitation on NDVI multiple delays. The multiple time delay combination
models are as follows:

NDVI = β0 + βiTMP + β jPRE + ε (6)

where NDVI is the response variable and the synthetic data of the six annual values
(P100, P75, P50, P25, P5, and Mean, respectively); βi and β j are the regression coefficients of
independent variables TMP and PRE in the ith and jth months, respectively, with i and j
ranging from 1 to 24, where 1–12 represent months 1–12 of the previous year, respectively,
and 13–24 represent months 1–12 of the current year, respectively; TMP and PRE correspond
to time sequence information on temperature and precipitation in the ith and jth months,
respectively; β0 is the constant term of the regression model; and ε is the random error term.
NDVI, TMP, and PRE were averaged over a sliding 15-year period before being entered
into Equation (6).

The optimal time delay selection rule is as follows: In this case, the rule is similar to
the optimal time delay selection rule for the delay effect on vegetation of a single climate
factor. Specifically, in the response of vegetation to the combined model (the maximum
number of 24 × 24 = 576) with multiple delays of temperature and precipitation, the ith
and jth months with the maximum determination coefficient R2—that is, the optimal time
delay—are selected. In addition, i and j should not exceed the month n in which the
synthetic data of six NDVI annual values appear. If the restriction condition i ≤ n was not
considered, the eigenvalues may have the largest coefficient of determination with respect
to the climatic factor after the month of occurrence, which is clearly against the objective
law. The calculation formula of the maximum determination coefficient R2 is:

maxR2 = max


R2

11 R2
12 · · · R2

1j
R2

21 R2
22 · · · R2

2j
...

...
. . .

...
R2

i1 R2
i2 · · · R2

ij

(1 ≤ i ≤ n, 1 ≤ j ≤ n) (7)

where maxR2 is the maximum lag determination coefficient; i and j are the ith and jth
months, respectively; R2

11, R2
12, . . . , R2

ij are determinant coefficients of January of the pre-
vious year, the temperature in January and the precipitation in February of the previous
year, and n in the same month, respectively; and the maximum value is selected from those
determinant coefficients as the optimal lag-determining coefficient. If maxR2 = R2

11, the
optimal lag ∆i for both temperature and precipitation factors in NDVI is n − 1 months,
and so on; if maxR2 = R2

nn, the optimal lag ∆i is 0 months—that is, there is a maximum
determination coefficient in the same month.

(5) The strength of the delay effect in the vegetation response to climate factors: Partial
and complex correlation coefficients were utilized to characterize the individual and com-
bined intensity of the vegetation response to temperature and precipitation in completely
different months. According to Formula (9), monthly temperature (precipitation) data were
fixed, and a partial correlation between precipitation (temperature) and six annual data of
GIMMS NDVI (P100, P75, P50, P25, P5, and Mean) was calculated. The multiple relationships
between NDVI, temperature, and precipitation were calculated according to Formula (10).

Rxy =

n
∑
1
(xi − x)(yi − y)√

n
∑
1
(xi − x)2

√
n
∑
1
(yi − y)2

(8)
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Rxy,z =
Rxy − RxzRyz√

(1− R2
xz)

√(
1− R2

yz

) (9)

Rx,yz =

√
1−

(
1− R2

xy

)(
1− R2

xz,y

)
(10)

Here, Rxy represents the correlation coefficient of the x and y factors; xi,yi and x, y
represent climate variable and NDVI in the ith year and the multi-year average, respectively;
n is the research phase; Rxy,z represents the partial correlation coefficient between x and
y when z is fixed, and the T-test was utilized to test the importance; and Rx,yz represents
the multiple correlation coefficient between x and y and z, and the F-test was utilized to
test the importance. x, y, and z were averaged over a sliding 15-year period before being
entered into Equations (8), (9), and (10).

Formulas (11) and (12) are used to calculate the optimal intensity of the time delay
response of vegetation to climate factors singly and in combination:

max|R| = max{|R1|, |R2|, |R3|, . . . , |Ri−1|, |Ri|}(1 ≤ i ≤ n) (11)

max|FR| = max{|FR1|, |FR2|, |FR3|, . . . , |FRi−1|, |FRi|}(1 ≤ i ≤ n) (12)

where max|R| and max|FR| represent the maximum absolute value of partial correlation
coefficient (R) and complex correlation coefficient (FR), respectively, with time delay; i
is the ith month; |R1|, |R2|, . . . , |Ri−1|, |Ri| and |FR1|, |FR2|, . . . , |FRi−1|, |FRi| are the |R|
and |FR| of January of the previous year, February of the previous year (and so on), and n
in the same month, respectively; and the maximum value is selected from these partial or
complex correlation coefficients as the optimal lag correlation coefficient. It is important to
note here that if max|R| = |Ri| and Ri < 0, then the intensities of x and y are negative and
the time lag effect of the final response intensity is of size −|Ri|.

(6) The strength of the variation in the delay effect trend of vegetation response to
climate factors: We took every 15 years as a period and calculated the max|R| and max|FR|
in this period by combining Equations (8)–(12). In addition, combined with the particular
interpretation of step (5), we revealed the response intensity for each period. Then, the
response intensities for 1982–1996, 1983–1997, and 2001–2015 were calculated separately,
the sequence reconstructed, and the variation tendency calculated in accordance with
Equation (1), which referred to the variation tendency of response intensity of vegetation
to climatic variables and the importance test using the T-test method.

3. Results
3.1. Time Delay Effect of Climatic Factors on Vegetation

When time delay effects (annual and interannual time delays) were considered,
the temperature and precipitation factors and their combined effects significantly im-
proved the prediction rate for vegetation growth compared to the same period (p < 0.05)
(Figures 2 and 3). With regard to the annual time delay, the corresponding optimal R2

with the annual time delay increased by 0.02 (3.44%)–0.43 (173.06%), 0.06 (9.75%)–0.31
(80.61%) and 0.07 (9.99%)–0.48 (190.04%), respectively (the percentage in brackets indicates
the relative increase in percentage, and this is repeated below). The corresponding optimal
R2 of the interannual time delay was further improved by 0.07 (9.99%)–0.48 (190.04%), 0.15
(25.02%)–0.37 (147.34%), and 0.15 (25.02%)–0.37 (147.34%), respectively. Based on the com-
prehensive results, it was further found that the maximum or submaximum prediction rate
exists in the P25 period at the same time, and taking the time delay effect into consideration,
the difference between the submaximum and the maximum was less than 0.04, which
was higher than the prediction rate in the P100 period. Taking the annual time delay into
consideration, the optimal time delay relating to temperature, precipitation and the inter-
action between them was generally less than or equal to four months, consisting of about
0.40 ± 0.55–3.80 ± 2.59 months for temperature alone and 0.20 ± 0.45–3.80 ± 3.35 months
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for precipitation alone. The occurrence months of the maximum prediction rate of NDVI by
both temperature and precipitation climatic factors were concentrated in the 13–17 months
(90%), 18–20 months (60%), 13–17 months (90%), 15–19 months (80%), 13–16 months (100%),
and 13–16 months (100%) ranges (the percentages in brackets indicate the frequency of
occurrence of the month in which the maximum explanatory rates for temperature and
precipitation occur). When at Mean, P100, and P5, the annual optimal time delay months
for temperature (∆tannual-T) were more significant than those for precipitation (∆tannual-P),
and at P75–P5, ∆tannual-T < ∆tannual-P, the optimal time lag was within the range of one
month. Furthermore, it was also found that the optimal time delay for temperature of
P100 in SW, P100 in T+*-P+*, P50 in T+*-P−, P50 in T+*-P+, and P75 in NSC was more than
four months, and the optimal time delay for precipitation of P50 in SW, P100 in T+*-P+*,
Mean in T+*-P−, and P75 in NSC was over four months. With regard to interannual delay,
the maximum R2 had a significant difference in the number of optimal delay months,
and when temperature and precipitation act together at P100–P50, the interannual time
optimal delay months for temperature (∆tinter-annual-T) were more significant than those for
precipitation (∆tinter-annual-P). At Mean, P25, and P5, ∆tinter-annual-T < ∆tinter-annual-P and the
average optimal delay differed by 1.2, 8.0 and 5.8 months, respectively.

3.2. The Intensity of the Delay Effect of Climate Factors on Vegetation

Under the condition of controlling the influence of precipitation (Figure 4a), the signif-
icantly negative delay responses of temperature on vegetation were mainly concentrated in
T+*-P+*, P100, P75 in SW and T+*-P+, P50 in T+*-P−, and NSC, whereas elsewhere there were
more significant positive delay responses. It can also be seen from Figure 4b that under
the condition of controlling temperature, the significantly negative time delay response
of vegetation to precipitation was mainly concentrated in T+*-P− and NSC (except Mean)
as were the P100 period in the SW and the P50 period in the T+*-P+*. In other cases, the
time delay response of vegetation was mainly significantly positive. When the time delay
effect was taken into account, the mean value of the precipitation diphasic coefficient |R|
at P100, P50–P5 was less than that of the temperature diphasic coefficient |R|. Taking the
time delay effect into consideration, the correlation coefficient of the annual time delay
of temperature and precipitation on vegetation increased by 0.15 (24.48%)–0.51 (165.77%)
and 0.23 (39.93%)–0.42 (128.48%), respectively, and the interannual delay increased by 0.22
(36.53%)–0.57 (188.68%) and 0.32 (56.16%)–0.61 (227.23%), respectively, compared to the
same period. The complex correlation coefficients (Figure 4c) achieved the significance
level of p < 0.05 when the annual and interannual time delays were considered, and this
was successively increased by 0.02–0.20 (2.73%–30.28%) and 0.08–0.24 (8.73%~37.19%), re-
spectively, compared to the same period. The mean values were 0.87 and 0.91, respectively.
The variance analysis showed that the |R| and |FR| of temperature and precipitation
alone and in combination significantly improved (p < 0.05) when the time delay effect was
considered. This suggested that when considering the time delay, the correlation between
vegetation development and climate factors was greater and that there was a certain delay,
which—when the lag correlation coefficient was taken into account—increased further; the
average of the complex correlation coefficients |FR| was greater than 0.85 and reached as
high as 0.87 and 0.91, suggesting that the reaction of vegetation to climate changes reflected
the complexity of multidimensional space.
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Figure 2. Time delay effects on vegetation of (a) temperature factors and (b) precipitation factors over
the 15-year periods. The numbers 1–24 represent the corresponding months, in which 1–12 represent
January to December of the previous year; 13–24 represent January to December of the current year;
and T1, T2, . . . , T24 and P1, P2, . . . , P24 represent the corresponding months of temperature and
precipitation factors, respectively.
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Figure 3. Time delay effects of multiple combinations of climate factors over the 15-year periods on
vegetation. The numbers 1–24 represent the corresponding months, in which 1–12 represent January
to December of the previous year, and 13–24 represent January to December of the current year,
where T1, T2, . . . , T24 and P1, P2, . . . , P24 represent the corresponding months of temperature and
precipitation factors, respectively. (a–f) refer to Mean, P100, P75, P50, P25, and P5, respectively. The
numbers 1~5 of the lower indices refer to SW, T+*-P+*, T+*-P−, T+*-P+, and NSC, respectively.
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demonstrate the importance of p < 0.1, p < 0.05, and p < 0.01, respectively.
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3.3. The Intensity Variation Trend of the Delayed Effect of Climate Factors on Vegetation

The temporal changes of vegetation reaction to climate changes at particular times (the
same period, the particular year considered, and the interannual year considered) in the SW
and the CA showed different directionality (Figure 5). With the time delay effect of NDVI
(that is, when the time delay effect was not taken into account), the vegetation growth in
different periods (six annual characteristic values) was affected by temperature, and the
vegetation growth in SW, T+*-P−, T+*-P+, and NSC showed a decreasing trend. In contrast,
the vegetation development in T+*-P+* appeared to show a significantly decreasing trend
at P100 and P75. Furthermore, under the influence of precipitation, there was a decreasing
trend in SW and T+*-P+ and at P100 and P25 in T+*-P+*, P75 to P25 in T+*-P−, and P50 to P25
in NSC. The impact of two climate factors showed a decreasing trend in T+*-P− and NSC,
and at the Mean, P100, and P50 in SW, and T+*-P+ and the P75 and P25 in T+*-P+*. When
the annual time delay effect was considered, the vegetation was affected by temperature,
and the influence of temperature generally decreased in T+*-P+*, T+*-P−, and NSC and in
the P75 to P50 in SW and P50 to P25 in T+*-P+. Under the influence of precipitation, in SW,
T+*-P− and at Mean and P50~P25 in NSC, P75 and P5 periods in T+*-P+ showed a decreasing
trend, whereas T+*-P+* showed a generally increasing trend. Under combined action, there
was a predominantly decreasing trend.
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Figure 5. The variation tendency of the correlation coefficient between NDVI and temperature
and precipitation in a 15-year period considering (a) the same period, (b) the annual, and (c) the
interannual time lag. PR1 and PR2 represent the partial correlation coefficient between NDVI and
temperature and precipitation, respectively, and FR represents the multiple correlation coefficient.
“*”, “**”, and “***” demonstrate the importance of p < 0.1, p < 0.05, and p < 0.01, respectively.

When the interannual time delay effect was considered, vegetation was mainly affected
by temperature, which showed a decreasing trend. Furthermore, precipitation affected
vegetation, which showed a decreasing trend in SW and at Mean, P25, and P5 periods in
T+*-P−, P75, and P5 periods in T+*-P+ and at P100 and P75 in NSC, whereas in the T+*-P+*,
it exhibited an expanding drift. Under the impact of temperature and precipitation, the
vegetation was affected by climate factors in SW, NSC, and at P100-P75 in T+*-P+*; P50-P5 in
T+*-P− and P100-P75; and at P25 in T+*-P+, it exhibited a decreasing trend.

4. Discussion
4.1. Considering the Time Delay Effect Could Significantly Improve the Prediction Rate of the
Effect of Climate on Vegetation Change

The correlation between climate factors and NDVI has been widely confirmed at
landscape, regional, and global levels [11,13,14,16,21–23]. This study also confirmed that
compared to the interpretation rate for the same period, considering the time delay effect
(annual and interannual delay), the interpretation rates for temperature and precipitation
factors and their combined effects on NDVI were significantly increased by 17.97% (43.78%)
and 23.31% (56.79%), 20.15% (52.92%) and 27.21% (71.47%), and 18.48% (31.85%) and 25.32%
(43.63%), respectively, and this was consistent with research results concerning the influence
of most temperature and precipitation factors on vegetation delay [11,14–16]. Jia et al. [15]
found that the impact of temperature and precipitation on vegetation in the Xijiang River
Basin in southern China reached significant levels of 31.47% and 32.99%, respectively,
when accounting for the time delay effect. Zhao et al. [16] found that the explanation rate
of climate factors (temperature and precipitation) in the same period (without the time
delay effect) was less than 10%, but when time delay was taken into account, the relative
increase was over 95%. Wu et al. [11] showed that accounting for time delay effects could
increase the rate of global vegetation growth explained by climate factors by 11%. In our
study, when the time delay effect was considered, the improvement was more significant,
particularly in the T+*-P+* in the P75 period, in which the temperature to NDVI increased
by 39.80% (2080.92%). In the T+*-P+* in the P100 period, the explanation rate of NDVI by
precipitation increased by 52.09% (5482.63%).

When considering the annual time delay effect, at Mean and P100–P5 periods, the
averages of the optimal time delays were 1.60, 3.40, 2.20, 3.80, 0.40, and 1.00, respectively,
and were in the main 0–4 months, results which were essentially consistent with the
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findings of Wu et al. [11] and Ding et al. [14] at the global level, Gessner et al. [49] for
central Asia, Piao et al. [1] for northern Eurasia, Workie and Debella [22] for Ethiopia,
and Daham et al. [13] for Sulaimaniyah and Wasit. This study also identified several
optimal time lags longer than four months. For example, in the SW in the P100 period,
the time lag of temperature on vegetation growth was seven months, and in the P50
period, the time lag of precipitation on vegetation growth was nine months. Similarly, Tei
et al. [23] pointed out that the forest ecosystem in the Arctic Circle between 50◦N–67◦N
was driven by the temperature and precipitation factors of the previous year (from summer
to winter); Zhao et al. [12] suggested that vegetation in the Amazon region had a time lag
of 0–6 months to temperature; and Braswell et al. [50] found that NDVI had a 2-year lag
reaction to temperature. Our further analysis showed that although the optimal time delay
considering the annual delay effect was concentrated in 0–4 months, the optimal time delay
relating to temperature and precipitation was not entirely synchronized, and the time delay
for temperature (3.40 and 0.40 months) was more extensive than that for precipitation (2.40
and 0.20 months) in the P100 and P25 period. These findings were similar to those of Ye
et al. [28] in the high mountainous locale of southern Xizang, where vegetation was more
sensitive to precipitation than temperature. Conversely, the time delay for precipitation
(1.60 months) was more extensive than that for temperature (2.8 months) at Mean, which
was similar to the findings of Workie and Debella [22] in Ethiopia and Gu et al. [27] in the
Red River Basin in southern China. These researchers found that the reaction of NDVI to
temperature was faster than it was to precipitation. However, at periods P75, P50, and P5,
the two delays were equal.

When all the results were integrated, it was further found that the P25 period was the
period with the maximum or submaximum explanation rate, whether within the same
period or when time delay effects were taken into account, rather than the annual maximum
or average combined results commonly used by most scholars (Figure 3). Combined
with the results in Figure A1, it can be seen that the P100 and P75 in the vigorous plant
growth period mainly occurred from June to August (summer) in the entire SW and CA,
that vegetation development entered a relatively stable state and was less dependent
on temperature and precipitation, and that there was sufficient hydrothermal energy to
meet vegetation development needs [16]. Summer is the season in which precipitation is
intensively dispersed within the considered zone; during summer, there is a large amount
of water vapor in the air and the area is prone to rainfall and cloudy weather. Furthermore,
the GIMMS NDVI data had been obtained using optical sensors, which are limited by the
optical sensor characteristics [51] and were greatly affected by the suspension and scattering
of external weather (cloud, fog, etc.) and aerosol in the atmospheric components [52]. Even
though the data set had been pretreated using geometric, radiometric, and atmospheric
correction, cloud interference could be further eliminated through filtering [44]. Since there
are fewer valid images from June to August, the reliability of the images decreases.

4.2. Considering the Time Delay Effect Could Significantly Improve the Response Intensity of
Vegetation to Climate

When the time delay effect was considered, the response intensity of vegetation to tem-
perature, precipitation, and their interaction was significantly improved, which was consistent
with the findings of most researchers [11,13,14,16,21–23]. However, the direction of the re-
sponse strength was not uniform. In the P100 period, NDVI was mainly adversely connected to
temperature, demonstrating that within the most vigorous vegetation growth period (P100),
this occurred from July to August of a year (i.e., summer) (Figure A1), and the optimal time
delay was 3.40 months when the annual delay effect was taken into account. This proved that
the temperature 3.40 months before the most vigorous period of vegetation growth (from about
3.6 months to 4.6 months, i.e., from mid–late March to mid–late April) had already met the heat
required for vegetation growth (Figure 2a). When the temperature increased and exceeded
the optimum temperature, photosynthetic enzyme activity [53] and potential photosynthetic
utilization capacity [20] would be enhanced, evaporation would be accelerated, and water
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utilization reduced, thus inhibiting plant development [10,11,54,55]. When the temperature of
the month in which the optimal interannual delay occurs increased (the optimal time delay
was 7.80 months, which was roughly during the 11.2–12.2 months of the previous year, i.e.,
early November to early December), this reduces the cold shock effect of the temperature
on vegetation. When the temperature cold shock effect decreased, the accumulated temper-
ature required for vegetation leaf-spreading increased [47], further aggravating evaporation,
reducing soil moisture, and affecting vegetation growth the following year. Tei et al. [23]
also obtained the same results, describing how the previous year’s temperature damaged the
ecosystem in the woodlands around the Arctic Circle between 50◦N and 67◦N.The primarily
negative relationship between NDVI and temperature appeared in T+*-P+*—the higher the
temperature, the lower the NDVI. This might be because of the T+*-P+* in the northwest, which
is part of the plateau that shapes the semi-arid zone (as shown in Table 1), where there was
less rainfall and the soil moisture content was low, so that when temperature increased, soil
temperature also increased, resulting in accelerated evaporation and reduced water availabil-
ity [28,54], further aggravating soil water shortage and aridity [10] and also threatening plant
growth and photosynthesis [10,11]. The intensity of the reaction of vegetation to precipitation
was mostly negatively correlated at P100–P5 periods in T+*-P− and NSC, indicating that the
more precipitation, the lower the NDVI, which may be because T+*-P– and NSC belong to
the moist subtropical area, the humid subtropical humid temperate semi-humid zone, and
the plateau area (as shown in Table 1). Here, high precipitation increased the soil moisture
content and directly influenced the development of vegetation, and the more significant the
precipitation, the more waterlogged the soil became, which lowered the temperature of the
surrounding environment, reduced solar radiation [25,31], and offset the positive effect of
precipitation on vegetation. In addition, soil became more susceptible to erosion because of
higher precipitation, and according to the RULSE loss equation, increased soil loss would
inhibit vegetation growth [56]. Under other conditions, the correlation was primarily pos-
itive in that increased precipitation replenished soil water, and plants absorbed the water
through their roots and transported water to the leaves for photosynthesis, thus increasing
chlorophyll and promoting vegetation growth [14,25,57]. Similarly, some researchers have
detected a strong positive relationship between vegetation change and precipitation in the
southwestern United States [29], the Australian outback [21], the Yun–Gui Plateau [30], and
Sulaimaniyah [13]. When considering the annual and interannual delay effect, the complex
correlation coefficients increased significantly (p < 0.05), reaching 0.87 and 0.91, respectively,
which indicated that vegetation development was closely related to changes in precipitation
and temperature. Climate change has significantly affected and played a critical part in the
development of terrestrial vegetation [1,3–5,11,13,14,16,21–23].

4.3. The Phased Responses of Vegetation to Climate Change

Based on the results shown in Figure 2, Figure 3, and Figure 4 and the findings of
previous studies, it has been demonstrated that climate change significantly affects the
growth of terrestrial vegetation. We analyzed the correlation between NDVI and climatic
factors (temperature and precipitation) over 15-year time periods, and the decreasing
trend was dominant both for the same period and also when (annual and interannual)
time delay effects were taken into account. This indicated that with continued global
warming, the impact of climate factors on vegetation development tended to decrease,
which may result from changes in other surrounding environmental factors connected with
global warming, altering the relationship between climate and vegetation over time [58–63].
When the temperature increases and exceeds the optimum temperature for vegetation
photosynthesis and evaporation accelerates, the probability of vegetation being subjected
to drought stress is increased, and this changes the way in which plant development
reacts to temperature change. The influence of drought also weakens the response of
NDVI to temperature change [55,59], and higher temperatures lead to increased plant
respiration, which in turn affects net primary production through consumption of organic
matter [64]. As more water is needed for vegetation growth, an increase in precipitation can
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supplement soil water, the primary source of water in the soil, and plants can absorb water
through their roots and promote vegetation growth [16]. However, when the precipitation
surpassed a certain threshold, the correlation between NDVI and precipitation showed a
diminishing trend [60,63]. D’Arrigo et al. [65] pointed out that the increase in temperature
was the potential reason why tree development became less sensitive to temperature in
the second half of the 20th century. Piao et al. [58] confirmed that the correlation between
NDVI and temperature during the developing season would be weakened because of the
continuous warming of the Northern Hemisphere. Fu et al. [47] also proved that global
warming had reduced the cold shock temperature for vegetation and that the lower the
cold shock temperature, the higher the required accumulated temperature for vegetation
leaf expansion, which further reduced soil moisture, affected leaf expansion the following
spring, and reduced the growth of vegetation.

5. Conclusions

This research attempted to establish the impact of climate factors on vegetation growth,
which was difficult to quantify and had a lower explanation rate, and explored the reaction
characteristics of vegetation to climate change. The changing trend of reaction intensity
generated the following research questions: (1) How can the optimal time lag for the
impact of climate factors on vegetation growth be determined? (2) How can the trend of
the intensity of the time delay reaction of vegetation to climate change be characterized
and quantified? To answer these questions, we used CRU and GIMMS NDVI data to
explore the changing trend of the optimal delay response and the response intensity
of vegetation to single and multiple factors in different periods (P100–P5 and Mean) in
SW and CAs. Generally, we found that in the different growth periods of vegetation
(P100–P5 and Mean) across the entire SW and CA, the prediction rate of climate change on
vegetation development was significantly improved when the (annual and interannual)
time lag impact was taken into account, and we also proved that the reaction of vegetation
change to meteorological factors had a specific time lag. The response was more significant
when the interannual time lag effect was taken into consideration. Vegetation growth has
gradually reduced under the influence of climate change, which may be the result of other
surrounding environmental factors which are also affected by global warming, causing
the relationship between climate and vegetation to alter over time. The optimal synthesis
of the NDVI annual value may be in the P25 period rather than the annual maximum
value or annual mean value commonly used by most scholars. To an extent, our study
provides a relevant theoretical basis for analyzing, predicting, and evaluating the dynamic
response of vegetation and its reaction to climatic alterations against the background of
global climate change.

Author Contributions: Conceptualization, M.W.; methodology, M.W. and S.W.; software, M.W. and
S.W.; validation, M.W. and Z.A.; formal analysis, M.W. and S.W; investigation, M.W.; resources,
M.W.; data curation, M.W.; writing—original draft preparation, M.W. and Z.A.; writing—review and
editing, M.W. and Z.A.; visualization, M.W.; supervision, M.W.; project administration, M.W.; funding
acquisition, M.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Chaozhou Special Fund for Human Resource Develop-
ment, grant number 2022.

Data Availability Statement: The NDVI datasets used in our work can be freely accessed at
https://ecocast.arc.nasa.gov/data/pub/GIMMS/, accessed on 18 November 2018. The climate
data (CRU_TS4.02) were obtained from https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 18
December 2018.

Conflicts of Interest: The authors declare no conflict of interest.

https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://crudata.uea.ac.uk/cru/data/hrg/


Remote Sens. 2022, 14, 5580 19 of 22

Appendix A

Screening Steps for the Occurrence Month of the Six Annual Characteristic Values

(1) Preprocessing: using 15 years as a sliding window, the NDVI series of 1982–1996,
1983–1997, . . . , 2001–2015 were successively screened, resulting in 20 windows, after
which a new NDVI matrix sequence was generated (Figure A1).

(2) Calculating eigenvalue: according to the method described by Wang and An [32], the
annual maximum (P100), upper quarter quantile (P75), median (P50), lower quarter
quantile (P25), minimum (P5), and mean (Mean) of GIMMSNDVI in each time period
were screened out, and then the NDVI eigenvalue sequence was regenerated.

(3) Calculation relative frequency: the frequencies for each month were counted and
then divided by the total number of 20 windows to obtain the relative frequency for
each month.

(4) The screening principles for the occurrence month: (1) the month with the most
significant relative frequency was the month with the occurrence of an eigenvalue;
and (2) if the frequency was the same, the month with the smaller number was defined
as the occurrence month.
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Figure A1. Changes in NDVI during each year of the 15-year windows. The horizontal axis is
the upper limit year of the 15-year moving window, with 1996, 1997, . . . , 2015, representing the
mobile windows of 1982–1996, 1983–1997, . . . , and 2001–2015, respectively. P100, P75, P50, P25, and P5,
individually represent the filter month in which the occurrence occurs from the moving window, and
the Mean refers to the month closest to the Mean. (a–e) separately refer to the SW, T+*-P+*, T+*-P−,
T+*-P+, and NSC.
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