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Abstract: Predicting sea wave parameters such as significant wave height (SWH) has recently been
identified as a critical requirement for maritime security and economy. Earth observation satellite
missions have resulted in a massive rise in marine data volume and dimensionality. Deep learning
technologies have proven their capabilities to process large amounts of data, draw useful insights,
and assist in environmental decision making. In this study, a new deep-learning-based hybrid
feature selection approach is proposed for SWH prediction using satellite Synthetic Aperture Radar
(SAR) mode altimeter data. The introduced approach integrates the power of autoencoder deep
neural networks in mapping input features into representative latent-space features with the feature
selection power of the principal component analysis (PCA) algorithm to create significant features
from altimeter observations. Several hybrid feature sets were generated using the proposed approach
and utilized for modeling SWH using Gaussian Process Regression (GPR) and Neural Network
Regression (NNR). SAR mode altimeter data from the Sentinel-3A mission calibrated by in situ buoy
data was used for training and evaluating the SWH models. The significance of the autoencoder-based
feature sets in improving the prediction performance of SWH models is investigated against original,
traditionally selected, and hybrid features. The autoencoder–PCA hybrid feature set generated by
the proposed approach recorded the lowest average RMSE values of 0.11069 for GPR models, which
outperforms the state-of-the-art results. The findings of this study reveal the superiority of the
autoencoder deep learning network in generating latent features that aid in improving the prediction
performance of SWH models over traditional feature extraction methods.

Keywords: significant wave height; deep learning; autoencoder; principal component analysis; SAR;
altimeter; Gaussian process regression

1. Introduction

Wave conditions are important parameters in coastal engineering and the research of
maritime processes. Wave conditions such as wave height and wind speed may assist in
optimizing shipping routes and harvesting times of aquaculture farms. Wave height plays
a crucial influence in energy extraction from waves, sediment movement, harbor design,
and soil erosion. For any practical applications, long-term observed data are necessary.
Methods for determining wave heights include field measurements, theoretical research,
and numerical simulation. In most of these instances, however, there will be no long-term
measurements, making wave height prediction vital.

Recently, satellite-based remote sensing systems including electro-optical, microwave
radiometers, Synthetic Aperture Radar, and altimeters have been providing tremendous
amounts of data about earth. Satellite data collection and processing is being used to
significantly help to make operational decisions in many challenging environmental prob-
lems. For ocean observation from space, satellite imaging systems have demonstrated
their capability to provide ocean wave spectra at high spatial resolution [1–3]. The Wave

Remote Sens. 2022, 14, 5569. https://doi.org/10.3390/rs14215569 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215569
https://doi.org/10.3390/rs14215569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5462-595X
https://orcid.org/0000-0001-5957-1383
https://doi.org/10.3390/rs14215569
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215569?type=check_update&version=1


Remote Sens. 2022, 14, 5569 2 of 24

Mode (WM) has been specifically adopted by Envisat, ERS-1/2, and Sentinel-1A/B SARs
to provide information on ocean waves in open ocean [4–7].

Traditionally, SWH retrieval schemes in satellite imagery can be classified into three
categories as described in this section. The first group of algorithms depends on integrating
the directional ocean wave spectrum estimated from the SAR spectrum. These methods
require wind information or a first guess for the wave spectra [8–11]. Given that the relation
between the wave spectrum and the SAR spectrum is nonlinear [12], and that it is not
possible to predict the wave height below a certain frequency, estimation of wave height
using this scheme is incomplete [12].

The second group includes empirical algorithms that have emerged since the 2000s.
Empirical models can estimate SWH directly from features computed from SAR images
and/or SAR spectra and do not require prior wave/wind information as in the first scheme.
An example of these models that estimates significant wave height is the C-band WAVE
algorithm called “CWAVE”. The original CWAVE algorithm has two versions, one that uses
a mean and variance of image intensity (the base model) and one that adds 20 variables
calculated from the image spectrum (the full-spectrum model) [12]. Many versions were
developed for the CWAVE models such as the CWAVE_ERS for ERS-2 wave mode [13],
CWAVE_ENV for Envisat wave mode [14], and other empirical Hs retrieval attempts for
SAR data provided by Sentinel-1A [15,16], Radarsat-2 [17,18], and TerraSAR-X [19].

In the third category, various machine learning (ML) algorithms are employed for
the purpose of wave parameters estimation. Machine and deep learning techniques have
proven high prediction performance in several life fields. For instance, machine learning has
been used for the medical diagnosis of many diseases [20–23], cyberbullying detection [24],
environmental monitoring [25], augmentation of turbulence models [26], management of
vegetated water resources [27,28], and in other applications. In oceanography and Earth
sciences, ML has a diverse range of real-time applications. The primary applications of
machine learning in oceanography include ocean weather and climate prediction, wave
modeling, SWH, and wind speed predictions in regular sea state conditions [29,30] and
in complex sea state conditions [29,31,32]. For instance, the study in [29] developed an
ensemble of neural networks for the prediction of significant wave height from satellite
images in an offshore region of a wind farm. The study by Stefanakos [31] integrated
the Fuzzy Inference System with the Adaptive Network-based Fuzzy Inference System
to predict wind and SWH parameters from a nonstationary wave parameters time series.
Classical ML algorithms were used for wave height/wind speed estimation in the study
by Stopa and Mouche [33], in which they implemented the CWAVE using a shallow feed-
forward neural network using SAR images. They tested the full-spectrum model and the
base model, and experimented with a few other parameters in the base model [33]. Collins
et al. in [18] implemented the base and full-spectrum CWAVE models as neural networks
and used Radarsat-2 Fine Quad data. They trained and tested the networks using buoy
observations and investigated as well the effects of incidence angle and polarization. The
common conclusion among the aforementioned studies is that neural networks extend
the ability of retrieving the wave parameters using SAR images under a large range of
environmental conditions in which SWH estimation is challenging. Although the results of
the aforementioned study are promising, the approach of predicting SWH from satellite
imagery itself is complicated and tedious.

For more than 30 years, satellite radar altimeters have provided comprehensive cover-
age of wind speed and significant wave height [34]. Numerous applications have made
use of these data, such as offshore engineering design, numerical model validation, wind
and wave climatology, and the analysis of long-term trends in oceanographic wind speed
and wave height. However, the use of altimeter data for modeling SWH received little
attention in the literature. Altimeter data provide several SWH and wind-speed-related
parameters. The significance of these parameters for the prediction of SWH has not yet
been investigated in the literature. Nevertheless, a single study has been found to utilize
some altimeter features in the context of SWH prediction. The study of Quach et al. [35]
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integrated features from satellite altimeter data with a number of features that were de-
rived from the modulation spectra of SAR images and developed a deep-learning-based
prediction model for SWH. Their results show an improved prediction performance using
their proposed method. Studies in the literature used other dataset types for predicting
SWH. The majority of studies used buoy measurements for modeling SWH [32,36,37],
while some recent studies used satellite imagery and extracted image features and used
them for SWH prediction [12,14,29]. Only few papers have utilized altimeter data features
for SWH forecasting [35]. The investigation of the significance of the entire set of features
in altimeter data for SWH prediction is considered a gap in the literature. Motivated to fill
this research gap, in this study, we propose a new framework to investigate the significance
of altimeter data features in modeling SWH. Within this framework, a deep-learning-based
feature extraction approach is introduced to extract significant features from SAR mode
satellite altimeter data. The autoencoder deep learning neural network is utilized to extract
latent features from the altimeter data. The autoencoder network has the capability to map
the original input feature into an abstract set of significant latent features. Two traditional
feature extraction approaches are utilized as well to extract extra features: the Pearson
Correlation Coefficient (PCC) Analysis and the PCA. Several hybrid feature sets are then
formed by fusing traditionally extracted and deep-learning-derived features. The feature
sets are used for modeling SWH individually. This study proposes a novel hybrid ap-
proach for extracting significant features from altimeter data for SWH prediction. The deep
learning autoencoder neural network was utilized, separately, and hybridized with other
traditional feature extraction methods uniquely in this study for the prediction of significant
wave height. To the best of our knowledge, no research has used autoencoders for SWH
prediction in satellite data. Moreover, the hybrid combination of the (autoencoder–PCA)
has not been presented in the literature for wave parameter prediction to data. The main
contributions of the present study are listed as follows:

1. Proposal of a new hybrid deep-learning-based approach for extracting features from
SAR mode satellite altimeter data.

2. Proposal of a new framework to investigate the significance of altimeter data-driven
features for SWH prediction.

3. Utilization of autoencoder deep learning neural network to extract latent features
from the altimeter data.

4. Generation of several feature sets composed of the original data features, tradition-
ally extracted features, deep learning-derived features, and hybrid combinations
from them.

5. Utilization of the generated feature sets to model SWH using the Gaussian Process
Regression and Neural Network Regression algorithms and evaluate the predic-
tion performance.

6. Comparing the prediction performance of the SWH models trained using the basic
and hybrid feature sets.

7. Evaluation of the significance of the proposed features using hypothesis testing.

The paper is structured as follows: Section 2 describes the dataset used in this work,
Section 3 presents the used methods, Section 4 discusses the obtained results, and Section 5
concludes the work.

2. Dataset

The used dataset is satellite records of significant wave height and wind speed mea-
sured by the SENTINEL-3A altimeter. Sentinel-3A is an Earth observation satellite spe-
cialized to oceanography. It is the first of four Sentinel-3 satellites planned as part of the
Copernicus Program. On 16 February 2016, the European Space Agency launched the
Sentinel-3A satellite to measure sea surface topography, temperature, and color with high
accuracy and dependability to support ocean forecasting systems, as well as environmental
and climate monitoring [38]. SAR Radar Altimeter (SRAL) of SENTINEL-3A SLAR is a
new-generation altimeter that operates in Synthetic Aperture Radar (SAR) mode at all
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times [39]. SAR mode is the optimum mode for data recording over open ocean surface
since it is designed to achieve high along-track resolution over generally flat surfaces [39].
A summary of Sentinel-3A altimeter operating characteristics is provided in Table 1. Al-
timetry instrument, exact repeat mission period, orbit parameters such as inclination and
altitude, antenna properties such as frequency and frequency band, latitude coverage, and
operational time for Sentinel-3A are depicted in Table 1.

Table 1. Summary of Sentinel-3A altimeter operating characteristics [40].

Altimetry
Instrument

Revisit
Time Inclination Frequency Frequency

Band Altitude Latitude
Coverage Life Time

SRAL 27 days 98.650 13.575 GHz
5.41 GHz

KU
C 814.5 km −78 to 81 2016–ongoing

The dataset used in this study is a subset of the IMOS (Integrated Marine Observ-
ing System, Battery Point, Australia) Surface Waves Sub-Facility Altimeter Wave/Wind
database publicly available through the Australian Ocean Data Network portal (AODN:
https://portal.aodn.org.au/, accessed on 15 August 2022). The IMOS dataset is a large
archive of global significant wave height and wind speed records measured by 13 satellite
altimeters over 33 years from 1985 to 2018 [34]. The altimeters of GEOSAT, ERS-1, TOPEX,
ERS-2, GFO, JASON-1, ENVISAT, JASON-2, CRYOSAT-2, HY-2A, SARAL, JASON-3, and
SENTINEL-3A were used to collect the SWH and wind speed measurements. Values of
significant wave height and wind speed are derived from high-frequency altimeter data by
fitting a functional form to the radar return from the ocean surface through the waveform
retracking process. Altimeter data in this database were calibrated using a long-term
high-quality wind speed and wave height database measured by in situ buoys from the
National Oceanographic Data Center (NODC). Due to land and ice contamination, and the
quality of the altimeter waveform received by the satellite, altimeter-generated Geophysical
Data Records may contain data spikes. Therefore, quality flags were used to specify the
goodness level of the data and aid in quality controlling it. The archive data contains a
series of data flags defined as 1, 2, 3, 4, and 9; these flags represent ‘Good data’, ‘Probably
good data’, ‘Hardware error, ‘Bad data’, and ‘Missing data’, respectively [34]. In this study,
only good quality and probably good data are used.

Data of two geographical positions were selected for this study; throughout the paper,
the first position is referred to as ‘P0’, while the second location is referred to as ‘P1’.
Position P0 is located at 0◦ latitude and 0◦ longitude (0◦N 0◦E), which is a point in the
Atlantic Ocean. This point is called the Null Island and is located where the prime meridian
meets the equator. The Null Island lies in international waters in the Atlantic Ocean, about
600 km off the coast of West Africa in the Gulf of Guinea [41]. Position P1 is located at 0◦

latitude and 1◦ longitude (0◦N 1◦E), which is located as well in the Atlantic Ocean. For P0,
data records were acquired for the period from 26 March 2016 at 09:57:02 Z′ to 11 July 2018
at 09:57:30 Z′. The data file for P0 contains 1008 records. The data of position P1 contain
1033 entries and were acquired from 3 March 2016 at 09:53:25 Z′ to 15 July 2018 at 09:53:46
Z′. For each position, the data file contains 26 variables, as depicted in Table 2. The records
are binned into bins of 1◦ by 1◦. Full data resolution is provided within each bin for the
corresponding latitude and longitude of every 1 Hz measurement [34].

https://portal.aodn.org.au/
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Table 2. Data variables’ names and their definitions [34].

Feature Name Feature Description

TIME Time of data acquisition provided as a number referenced to 1985-01-01, 00:00:00 UTC.

LATITUDE The angle that is created when a vector that is perpendicular to an ellipsoidal surface is
drawn from a point on the surface.

LONGITUDE A type of geographic coordinate that indicates the position of a point on the surface of the
Earth with relation to the east–west axis.

BOT_DEPTH Ocean floor depths underwater.
DIST2COAST Distance from the coast.

SIG0_C Backscatter coefficient for C-band altimetry.
SIG0_C_quality_control Backscatter coefficients quality flags in C-band altimetry.

SIG0_C_num_obs The number of valid C-band altimetry backscatter coefficient measurements at 20 Hz that
make up the 1 Hz measurement.

SIG0_C_std_dev The 1 Hz measurement is comprised of the standard deviation of the data that make up
the 20 Hz C-band altimetry backscatter coefficient.

SIG0_KU Coefficient of backscatter for Ku band altimetry.
SIG0_KU_quality_control Quality flags of backscatter coefficient in Ku-band altimetry.

SIG0_KU_num_obs Amount of all valid 20 Hz Ku-band altimetry backscatter coefficient data used to calculate
the 1 Hz value.

SIG0_KU_std_dev The 1 Hz measurement is based on the standard deviation of the data for the 20 Hz
Ku-band altimetry backscatter coefficient.

SWH_C The height of a significant wave, as measured by uncalibrated C-band altimetry.
SWH_C_quality_control Significant wave height quality flag for C-band altimetry.

SWH_C_num_obs Significant wave height values taken at 20 Hz by C-band altimetry and converted to a
1 Hz scale.

SWH_C_std_dev Standard deviation of significant wave height measured at 1 Hz using C-band altimetry,
based on data collected at 20 Hz.

SWH_KU Significant wave height as measured by uncalibrated Ku-band altimetry.
SWH_KU_CAL The significant wave height was calibrated using the Ku-band altimetry.

SWH_KU_quality_control Flag indicating the quality of the Ku-band altimetry significant wave height data.

SWH_KU_num_obs The number of valid Ku-band altimetry readings of significant wave height that were
used to construct the 1 Hz measurement.

SWH_KU_std_dev The standard deviation of the significant wave height data collected at 20 Hz by Ku-band
altimetry and used to construct the 1 Hz measurement.

UWND Modeling zonal wind speed using ECMWF.
VWND Modeling meridional wind speed using ECMWF.
WSPD Wind speed derived from wind function alone and not calibrated.

WSPD_CAL The wind speed was calibrated based on the wind function.

3. Methods

In this section, the proposed framework and methods used for feature extraction are
presented. Regression algorithms used for SWH modeling and performance evaluation
methods are also provided.

3.1. Proposed Framework

In this study, the proposed framework introduces a hybrid approach for extracting
the significant features for the prediction of SWH from altimeter data. This hybrid ap-
proach combines the features generated by three feature extraction techniques. The Pearson
Correlation Analysis, Principal Component Analysis algorithms, and Sparse Autoencoder
deep neural network are utilized to extract the most significant attributes from the input
features. Multiple hybrid feature combinations are introduced and examined for modeling
SWH using Gaussian Process Regression and Neural Network Regression. The proposed
framework is composed of four phases: the data preprocessing phase, feature sets forma-
tion phase, SWR modeling phase, and model evaluation and testing phase. In the data
preprocessing phase, multiple preprocessing steps are conducted to prepare the data for
the feature sets formation phase. In the feature sets formation phase, a number of basic
and hybrid feature sets are created from the input data. Basic sets include the ALL-Set,
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PCC-Set, PCA-Set, and AUT-Set-N. The ALL-Set is composed of all features in the dataset
excluding the response variable to be predicted, namely SWH. Pearson Correlation Co-
efficients between input features and the response variable are thresholded to select the
features encompassed in the PCC-Set. Features in the PCA-Set are generated by the PCA
algorithm with 95% variance. Autoencoder-driven features are generated by training a
sparse autoencoder neural network by all input features and extracting a specified number
of latent space features from the encoder. Up to three latent features are derived by the
autoencoder network and formed three autoencoder-driven feature sets, namely AUT-Set-1,
AUT-Set-2, and AUT-Set-3. Multiple hybrid feature sets are further formed using various
combinations of the PCC, PCA, and AUT feature sets. Hybrid sets include the HAT-N
and HCAT-N sets. The composition of theses sets is elaborated in the Results section. In
the SWH modeling phase, the training dataset is used for training a number of Gaussian
Process regression and Neural Network regression models. The regression models are
validated using a 5-cross validation scheme and tested on a holdout test set in the final
model evaluation and testing phase. The prediction performance of the SWH models
trained on the hybrid feature sets are compared with that trained by the basic PCC, PCA,
and autoencoder feature sets, as well as all input features set. The proposed framework is
presented in Figure 1.
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3.2. Data Preprocessing

In this phase, multiple data preprocessing steps are conducted to prepare the data for
the feature sets formation phase, as shown in Figure 2. The target/response variable to
be predicted in this work is SWH. The remaining variables are preprocessed to prepare
the input features that will be used for predicting the target. In this study, quality control
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flags for the SWH and SIG0 are discarded, and the remaining features are divided into four
categories: observing condition features, site related features, wind speed features, and
measured features. The features under each category are depicted in Table 3. The measured
features are further categorized according to the frequency band used for data acquisition
into KU-band-related features and C-band features. The SRAL altimeter on Sentinel 3A uses
the KU-band (13.575 GHz, bandwidth 350 MHz) for range measurements. However, it uses
the C-band (5.41 GHz, bandwidth 320 MHz) for ionospheric correction [42]. This is achieved
in the SAR acquisition mode by using bursts of 64 KU-band pulses surrounded by two
C-band pulses [42]. Therefore, in this study, the SWH modeling was conducted using only
the KU-band-measured features along with the other site and observing condition features.
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Table 3. Categorization of input features.

Observing Condition Features Site Features
Measured Features

Wind Speed Features
KU-Band Features C-Band Features

TIME DIST2COAST SIG0_KU SIG0_C VWND
LATITUDE BOT_DEPTH SIG0_KU_std_dev SIG0_C_std_dev WSPD

LONGITUDE SIG0_KU_num_obs SIG0_C_num_obs UWND
SWH_KU_num_obs SWH_C_num_obs WSPD_CAL
SWH_KU_std_dev SWH_C_std_dev

In order to maintain close ranges of the input variables, the features are normalized to
have unit standard deviation and zero mean, with the following exceptions. The latitude
and longitude features are replaced by their sine and cosine values after converting them
into angles in the range [0, 2π] rad. Features containing the number of observations are
converted to discrete values in the range [0–3] by subtracting each entry by the feature’s
maximum value. After data normalization, the dataset is subdivided into training and
testing sets with 90:10 training to testing ratio.

3.3. Feature Sets Formation

In this phase, a number of basic and hybrid feature sets are generated and used to
model the SWH. A number of feature extraction and reduction approaches were used
to extract significant features from the input data. The Pearson Correlation Analysis,
Principal Component Analysis, and the autoencoder deep neural network are used for
feature extraction and selection. Three basic feature sets are formed using features extracted
from the all-features set (ALL-Set) by these algorithms: PCC-Set, PCA-Set, and AUT-Sets.
The feature formation phase is depicted in Figure 3.
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3.3.1. Pearson Correlation Analysis

Pearson Correlation Analysis is an approach to find the linear correlation between
two random variables. The Pearson correlation coefficient is considered a measure of
dependency between two vectors. PCC between a pair of variables X and Y can be evaluated
using Equation (1). PCC can take values in the range [−1, 1]. Absolute PCC values
near 1 mean high linear dependency between variables, while values close to zero show
low dependency.

PCC =
cov(X, Y)

2
√

σ(X)σ(Y)
(1)

where, σ(X), σ(Y) are the variance of X and Y, respectively, and cov(X, Y) is the covariance
matrix between X and Y.

In this study, Person Correlation Coefficients between input features and the response
variable are computed and thresholded to select the features encompassed in the PCC-Set.
The selection of the threshold value is data-dependent, as discussed in the Results section.

3.3.2. Principal Component Analysis

Principal component analysis, or PCA, is traditional data analysis approach that
generates a series of the best linear approximations for a given dataset. It is considered
the most widely used method for dimensionality reduction with minimum information
loss [22,43,44]. In this research, the PCA is employed to extract a sequence of uncorrelated
features, or principal components (PCs), from the altimeter observational data. The new
PC features represent linear combinations of the input variables and comprise the major
information contained in the original data. For data matrix Z with m number of variables

and n number of samples given as Z =

v11 v21 · · · vm1
...

. . .
...

v1n v2n · · · vmn

, the PCA algorithm could

generate k uncorrelated features using linear combinations of the input variables. The
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principal components denoted as u1, u2, u3, , . . . ., uk are given in Equation (2), where lij
is the linear combinations coefficient [44].

u1 = l11 v1 + l12 v2 + l13 v3 + . . . + l1m vm =
m
∑

i=1
l1i vi

u2 = l21 v1 + l22 v2 + l23 v3 + . . . + l2m vm =
m
∑

i=1
l2i vi

.

.

.

uk = lk1 v1 + lk2 v2 + lk3 v3 + . . . + lkm vm =
m
∑

i=1
lki vi

(2)

The principal components satisfy two conditions; the retrieved features (u1, u2, u3, . . . , uk)
are uncorrelated, and the first principal component, u1, has the highest variance followed
by u2, etc. The number of extracted features, PCs, is determined based on the Cumulative
Percent Variance (CPV). CPV is used as a threshold to determine the k number of PCs that
covers the required percent of information in the original data. The level of CPV is decided
in advance. In this work, the PCA-Set includes the principal components generated by the
PCA algorithm with a CPV of 95%.

3.3.3. Autoencoder Neural Network

An autoencoder is a deep learning neural network composed of an encoder–decoder
structure, as shown in Figure 4, that learns a compressed version of input data [45]. Ba-
sically, autoencoder networks are used for the reconstruction of input data. The encoder
converts the input to a compressed representation, while the decoder attempts to reverse
the mapping in order to reconstruct the input. The ability of autoencoder network to learn a
compacted representation of the input and deliver it at the encoder end makes it an effective
tool for feature extraction and dimensionality reduction. Autoencoders can map input
information into abstract latent space features, which are more informative and smaller in
size. In this study, an autoencoder is used to generate a set of compact latent features that
capture the most important attributes from the input data. These features are then used as
predictors for the SWH model. Unsupervised sparse autoencoder training is performed in
this study to generate the latent features. The autoencoder objective function is the mean
squared error function with weight regularization, Ωw, and sparsity regularization, Ωsp,
provided in Equation (3) [46]. Sparsity and weight regularization were included in the
objective function to enable the autoencoder to learn representations from a small number
of the training samples. The coefficients β and λ in Equation (3) control the effect of the
sparsity and weight regularizers on the objective function, respectively.

E =
1
S

S

∑
a=1

V

∑
b=1

(xba − x̂ba)
2

︸ ︷︷ ︸
mean squared error

+ λ×Ωw + β×Ωsp (3)

where x is a training example, x̂ is the estimate of the training example, and S and V are
the number of samples and the number of variables in the data, respectively. Ωsp and Ωw
are calculated using the Equations (4) and (5) [46]

Ωw =
1
S

L

∑
l

S

∑
j

V

∑
i

(
w(l)

ji

)2
(4)

Ωsp =
D(1)

∑
i=1

KL (ρ‖ρ̂i) =
D(1)

∑
i=1

ρ log
(

ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)
(5)
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where L is the number of network layers, and w is the weight of a network neuron located
according to the indices i, j, l. ρ̂i is the average activation of the ith network neuron, ρ is the
average of the first layer (D(1)) neurons, and KL (ρ‖ρ̂i) is the Kullback–Leibler divergence
between ρ and ρ̂i [46].
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In this work, to generate the latent features at the encoder end, the autoencoder was
fed by all input features and trained in an unsupervised fashion using the scaled conjugate
gradient algorithm (SCGA) [47]. The training process ends when either the gradient
reaches a minimum of 1 × 10−6 or the number of epochs approaches 5000. The weight
and sparsity regularizer coefficients were set to λ = 0.001 and β = 0.01, respectively, and
the Logistic Sigmoid function was used as the transfer function of both the encoder and
encoder. These values were selected by experiment as they provide the best autoencoder
performance. After training, the latent features are extracted from the encoder, and the
decoder is discarded. These latent features form the AUT-Sets are used for modeling the
SWH. Up to three latent features are derived by the autoencoder network, forming three
autoencoder-driven feature sets, namely AUT-Set-1, AUT-Set-2, and AUT-Set-3.

3.3.4. Hybrid Feature Set Generation

After generating the PCC-Set, PCA-Set, and AUT-Sets, several hybrid feature sets were
composed by merging features from these basic sets. Hybrid sets that were composed by
fusing the features of the PCC-Set, PCA-Set, and AUT-Set-N are demoted throughout the
paper as ‘HCAT–N’, where N is the number of autoencoder output features. Another group
of hybrid feature sets is formed by merging the features in the PCA-Set with that of the
AUT-Set-N. These sets are denoted herein as ‘HAT-N’. In this study, N takes the values 1, 2,
and 3. Therefore, there are three HCAT sets and three HAT sets: HCAT-1, HCAT-2, HCAT-3,
HAT-1, HAT-2, and HAT-3. The number of features in each hybrid set is dependent on the
number of features in the basic sets which, itself, is data-dependent.

3.4. SWH Modeling

An accurate prediction of SWH is challenging due to its strong intermittency and
instability [48]. Traditional regression models such as regression trees and K-nearest
Neighbor (KNN) are insufficient for an accurate prediction of SWH due to the complexity
of the data [29]. On the other, more sophisticated regression algorithms such as the artificial
neural networks and kernel-based models could offer better fits to this problem. The
Gaussian Processes is a kernel-based algorithm that provides flexible models that could
work well with such data due to its capability of defining distributions over functions [49].
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Therefore, the Gaussian Process Regression and neural network regression are utilized for
modeling SWH using altimeter data. Multiple GPR models with various kernel functions
were trained using the training set associated with each of the basic and hybrid sets.
Kernels utilized for the GPR models include the Exponential, Squared Exponential, Rational
Quadratic, and Matern functions.

3.4.1. Gaussian Process Regression

Gaussian Process Regression is a Bayesian approach to regression that is nonparamet-
ric. GPR computes the probability distribution for all admissible data-fitting functions [50].
Using the training data, the posterior probability is obtained, and then the predictive
posterior distribution on the points of interest is computed. In GPR, we begin by assuming
a Gaussian process prior, f(x), which may be characterized by a mean function, m(x),
and covariance function, k(x, x′), for every input x. Expressions of m and k are given by
Equations (6)–(8) [50].

f(x) ∼ GP(m, k) (6)

m(x) =
1
4

x2 (7)

k
(
x, x′

)
= e(−

1
2 (x−x′)2) (8)

Specifically, a Gaussian process is comparable to an infinite-dimensional multivariate
Gaussian distribution in which all sets of dataset labels are jointly Gaussian distributed. By
selecting the mean and covariance functions, we can include previous knowledge about
the space of functions into this GP prior. During model selection, the shape of the mean
function and covariance kernel function in the GP prior are chosen and tweaked. The
mean function can be zero or equals the mean of the training dataset. There are numerous
alternatives for the covariance kernel function. In this work, multiple kernel functions are
used for modeling the SWH using each feature set. The Exponential, Squared Exponential,
Matern, Quadratic, and Rational Quadratic kernel functions are used.

3.4.2. Neural Network Regression

The neural network used for the SWH regression in this study is a narrow feed-forward
NN with one hidden fully connected layer and one fully connected output layer. This
architecture was selected to accommodate the limited number of input features and data
size. The hidden layer contains 10 neurons and is followed by a ReLu activation function.
The first hidden layer is connected to the training data (the input feature matrix). Each
input is multiplied with a weight and then added to a bias at each neuron in the fully
connected layer. The output from this layer passes to the activation function and then to
the final fully connected layer, which produces the predicted response as the NN output.

3.5. Model Evaluation and Testing

After the GPR and NNR models are trained using the training set associated with each
of the feature sets individually, the models are evaluated in a 5-fold cross-validation scheme
to reduce potential overfitting. The trained models are then assessed using a hold-out set.
The prediction performance of the trained models is assessed using the root mean square
error (RMSE) and the coefficient of determination R2.

The RMSE is a measure of how far the predicted values and the true values in a dataset
differ from one another. The mathematical expression of the RMSE is given by Equation (9).

RMSE =

√
∑n

i=1(PVi − TVi)
2

n
(9)

where PVi and TVi represent the predicted and true values of the ith observation of
n samples.
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The coefficient of determination is a measure of the amount of variation in the depen-
dent variable that can be accounted for by the predictors in a regression analysis. R2 is an
indicator of how well a model fits a dataset. The value of R2 can be anywhere from zero to
one. R2 can be calculated using the formula of Equation (10);

R2 = 1− RSS/TSS (10)

where RSS = ∑n
i=1(yi − ŷi )

2 represent the sum of squares of residuals, and TSS =

∑n
i=1(yi − y )2 is the total sum of squares, respectively. The true target of the ith sam-

ple is denoted as y, the true observations mean is y , and ŷi is the predicted value of
the target.

4. Results and Discussion

According to the proposed framework, the input features were preprocessed, and
multiple feature selection techniques were used to generate several combination sets
of features. In the experiment conducted within the proposed framework, the SWH is
modeled using the KU-band features. The KU-band-measured features along with the
observing condition features, site-related features, and wind speed features are used to
form the feature sets. These sets are used individually to model the SWH measured by
the altimeter’s KU frequency band. Table 4 illustrates the KU-band-based features used in
this study.

Table 4. KU-band-based features used for modeling KU-based SWH.

KU-Band-Based Features

TIME
LATITUDE (sine and cosine): LATSINE, LATCOSINE
LONGITUDE (sine and cosine): LONGSINE, LONGCOSINE
DIST2COAST
BOT_DEPTH
SIG0_KU
SIG0_KU_std_dev
SIG0_KU_num_obs
SWH_KU_num_obs
SWH_KU_std_dev
VWND
WSPD
UWND
WSPD_CAL

4.1. Feature Sets Formation

In this work, the calibrated SWH measured using the altimeter’s KU frequency band,
SWH_KU_CAL, is considered the response variable. The KU-based features depicted in
Table 4 are used to form the basic and hybrid feature sets in this experiment. The ALL-
Set is composed of 16 features which represent all KU-based features except the target
variable and the noncalibrated version of it. To create the PCC-Set, Pearson correlation
coefficients between the input features and the target variable were calculated. Table 5
depicts the absolute values of the PCC for each input feature. Normally, SWH is highly
correlated with itself and its noncalibrated version. However, the recorded |PCC| values
for the other predictors are less than 0.6. For both positions P0 and P1, the calibrated
and noncalibrated wind speed based on the wind function predictors, WSPD_CAL and
WSPD, record the highest correlation with the target, followed by the VWND, and then
the KU-altimeter backscatter coefficient, SIG0_KU. It was noticed that the correlation
between the target and the rest of the predictors is low (less than 0.1); therefore, the absolute
correlation coefficients between the input features and the SWH_CAL were thresholded
with a value of 0.1. Thus, the PCC-Set is formulated from the features that satisfy the
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criterion |PCC| ≥ CCt. The features included in the PCC-Set for P0 and P1 and their
correlation values are highlighted in gray in Table 5. The SIG0_KU, VWND, WSPD_CAL,
SWH_KU_std_dev, SIG0_KU_std_dev, and WSPD are included in the PCC-Set of both
positions P0 and P1. However, it was noticed that for P1, the TIME variable achieved a
PCC of 0.1, and therefore, it was included in the PCC-Set of this position.

Table 5. Absolute values of Pearson correlation coefficients between SWH_KU_CAL and the KU-
based features for positions P0 and P1; The features included in the PCC-Set and their correlation
values are highlighted in gray.

Position P0 Position P1

Feature |PCC| Feature |PCC|

SWH_KU_CAL 1 SWH_KU_CAL 1
TIME 0.0163990439235463 TIME 0.102288865532865
SWH 0.999999732870120 SWH 0.999999542438490

SIG0_KU 0.336577351930497 SIG0_KU 0.445150343609593
UWND 0.082578003464963 UWND 0.0603089207682942
VWND 0.395006371045506 VWND 0.451649290833774

WSPD_CAL 0.455941025835115 WSPD_CAL 0.579889225755999
SWH_KU_std_dev 0.173924815008291 SWH_KU_std_dev 0.371314384227738
SIG0_KU_std_dev 0.188570572892636 SIG0_KU_std_dev 0.209765508152799

DIS2COAST 0.0120031039897664 DIS2COAST 0.0702488522142944
BOT_DEPTH 0.00854422341173639 BOT_DEPTH 0.0184796601456242

WSPD 0.457591377033189 WSPD 0.579140739443493
LATSINE 0.00510651233370158 LATSINE 0.000559112294287260

LATCOSINE 0.000914880701032926 LATCOSINE 0.0223517634977151
LONGSINE 0.00209464350081526 LONGSINE 0.0108063236584730

LONGCOSINE 0.0185392818790396 LONGCOSINE 0.00620089102115493
SWH_KU_num_obs 0.0204934366118391 SWH_KU_num_obs 0.00454090475465734
SIG0_KU_num_obs 0.0204934366118391 SIG0_KU_num_obs 0.00454090475465734

As the TIME feature records different PCC values for P0 and P1, we further investi-
gate the correlation behavior between the TIME feature and the target variable for seven
geographical positions. Table 6 presents the |PCC| values for the TIME feature for the
tested positions, the number of observations, and the time period over which the records
were collected for each position. It is observable from Table 6 that the TIME feature gener-
ally records low correlation with the SWH. For, P1, P3, and P4, the correlation coefficient
equals roughly 0.1. Therefore, for the PCC threshold used in this work, the TIME feature is
included in the PCC-Set of these positions. However, the PCC values for P0, P2, P5, and P6
are 10 times lower than the other positions, and thus the TIME feature is discarded from
the corresponding PCC-Set.

Table 6. Absolute values of Pearson correlation coefficients between SWH_KU_CAL and the TIME
feature for seven geographical positions; # DP is the number of data points (observations).

Position P0 P1 P2 P3 P4 P5 P6

Location (0◦N 0◦E) (0◦N 0◦E) (0◦N 2◦E) (0◦N 3◦E) (0◦N 4◦E) (0◦N 5◦E) (0◦N 6◦E)

Period of
Acquisition

26 March
2016–11 July
2018

3 March
2016–15 July
2018

7 March
2016–5 July
2018

11 March
2016–9 July
2018

1 March
2016–13 July
2018

19 March
2016–4 July
2018

9 March
2016–8 July
2018

# DP 1008 1033 1006 999 1034 1017 1089
|PCC| 0.01639 0.10228 0.06201 0.12204 0.12279 0.08812 0.02018

To generate the PCA features, the PCA algorithm was fed with the ALL-Set, and the
CPV was set to 95%. The PCA-Set contains the principal components that explain 95% of
the variance. It was found that for both positions P0 and P1, the PCA-Set contains the first
principle component only, which captures 95% of the variance contained in the data.
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The autoencoder-derived feature sets were generated through feeding a sparse autoen-
coder by the ALL-Set. By setting the number of latent features output from the encoder end
into a number less than the number of features in the ALL-Set, the autoencoder network
was utilized as a latent-feature generator and a dimensionality reduction tool. The number
of latent features output from the autoencoder, N, was set to 1, 2, and 3. Therefore, three
autoencoder sets are generated: AUT-Set-1, AUT-Set-2, and AUT-Set-3. The autoencoder
was trained in an unsupervised manner over 5000 epochs with the settings depicted previ-
ously in the Methods section. The performance of the autoencoder is measured using the
mean squared error with weight and sparsity regularizers (MSE-WSR). Table 7 shows the
starting and stopping values of the gradient and the MSE-WSR values for positions P0 and
P1 when N equals 1, 2, and 3. It is observable from Table 8 that the MSE-WSR decreases
with increasing the number of output features. Increasing the number of output features
helps including more details from the original data, which aids in reducing the output cost.
However, increasing the number of latent features would not guarantee better prediction
performance of the regression model. Therefore, the maximum number of output features
from the encoder was selected to be 3. This setting helped reduce the computational load
and time, and it was proved by experiment to be sufficient to enhance the regression model
performance. It is also noticed that the values of the gradient and MSE are the highest at the
beginning of the training process and the lowest at the stopping, which is a normal result
of algorithm learning. The behavior of the autoencoder performance against the training
epochs is depicted in Figure 5, which shows sample plots of the autoencoder performance
in Experiment 1 for N = 1 at P0 and P1.

Table 7. Autoencoder performance in generating latent features from original input features for
positions P0 and P1; ‘#’ denotes the number of features.

Position # Output
Features

MSE-WSR Gradient

Initial Stopped Initial Stopped

P0
1 3.71 × 103 40 138 0.076
2 3.71 × 103 3.22 178 0.031
3 3.71 × 103 1.66 200 1.16

P1
1 3.79 × 103 34.7 182 0.14
2 3.79 × 103 3.07 100 0.035
3 3.79 × 103 2.03 246 0.079

Table 8. Feature sets used for modeling SWH_KU_CAL using Positions P0 and P1 data. # F denotes
the number of features included in the feature set.

Position P0 Position P1

Feature Set # F Included Features Feature Set # F Included Features

ALL-Set 16

TIME, SIG0_KU, UWND, VWND,
WSPD_CAL, SWH_KU_std_dev,
SIG0_KU_std_dev, DIS2COAST,
BOT_DEPTH, WSPD, LATSINE,

LATCOSINE, LONGSINE,
LONGCOSINE,

SWH_KU_num_obs,
SIG0_KU_num_obs.

ALL-Set 16

TIME, SIG0_KU, UWND, VWND,
WSPD_CAL, SWH_KU_std_dev,
SIG0_KU_std_dev, DIS2COAST,
BOT_DEPTH, WSPD, LATSINE,

LATCOSINE, LONGSINE,
LONGCOSINE,

SWH_KU_num_obs,
SIG0_KU_num_obs.

PCC-Set 6
SIG0_KU, VWND, WSPD_CAL,

SWH_KU_std_dev,
SIG0_KU_std_dev

PCC-Set 7
TIME, SIG0_KU, VWND,

WSPD_CAL, SWH_KU_std_dev,
SIG0_KU_std_dev.

PCA-Set 1 First principal component
explaining 95% of data variance. PCA-Set 1 First principal component

explaining 95% of data variance.

AUT-Set-1 1 Single latent feature output from
the encoder AUT-Set-1 1 Single latent feature output from

the encoder



Remote Sens. 2022, 14, 5569 15 of 24

Table 8. Cont.

Position P0 Position P1

Feature Set # F Included Features Feature Set # F Included Features

AUT-Set-2 2 Two latent features output from
the encoder AUT-Set-2 2 Two latent features output from

the encoder

AUT-Set-3 3 Three latent features output from
the encoder AUT-Set-3 3 Three latent features output from

the encoder

HCAT-1 8
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-1

HCAT-1 9
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-1

HCAT-2 9
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-2

HCAT-2 10
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-2

HCAT-3 10
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-3

HCAT-3 11
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-3

HAT-1 2
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-1

HAT-1 2
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-1

HAT-2 3
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-2

HAT-2 3
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-2

HAT-3 4
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-3

HAT-3 4
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-3

Hybrid feature sets were formed by merging features from the basic feature sets.
Table 8 depicts the features in the basic and hybrid feature sets and their number of features
used for SWH_KU_CAL modeling for Positions P0 and P1.

The performance of the GPR and NNR models trained individually by the basic and
hybrid sets for modeling SWH_KU_CAL is depicted in Tables 9 and 10. Table 9 shows the
RMSE and R2 values for the regressors trained on position P0 data, while Table 10 presents
the regression performance for position P1. For position P0, the results show that GPR
models recorded higher prediction performance than the NNR models for all feature sets. It
was noticed that the basic feature sets generally yielded lower regression performance than
the hybrid sets. It is noticeable that GPR models trained by the HAT sets recorded higher
performance than the other hybrid sets. The best GPR model records the highest R2 value
of 0.92 and an RMSE value of 0.11724. This model has a Rational Quadratic kernel and was
trained by the HAT-2 set. The second-best GPR model recorded an R2 value of 0.91 and
was trained by the hybrid set HAT-1. On the other hand, the NNR model trained on the
AUT-Set-2 set recorded the highest performance, followed by the HAT-2-based model over
the other NNR models. The best models are highlighted in dark gray, and the second-best
performance regressor is highlighted in light gray in Tables 9 and 10.
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Figure 5. Autoencoder performance during the training process with N = 1 for (A) P0, (B) P1.

Table 9. SWH_KU_CAL prediction performance of GPR and NNR models trained on KU-based
feature combination sets for Position P0; Best models are highlighted in dark gray, and the second-best
performance regressor is highlighted in light gray; ‘#’ denotes the number of features.

Position: P0 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

ALL-Set 16 0.29262 0.41 Rational Quadratic 0.31634 0.32
PCA-Set 1 0.12792 0.87 Rational Quadratic 0.29677 0.31
PCC-Set 6 0.31881 0.36 Matern 5/2 0.33156 0.31

AUT-Set-1 1 0.20963 0.73 Squared Exponential 0.31853 0.37
HAT-1 2 0.12188 0.91 Squared Exponential 0.33354 0.36

HCAT-1 8 0.29877 0.38 Rational Quadratic 0.2625 0.52
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Table 9. Cont.

Position: P0 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

AUT-Set-2 2 0.12985 0.9 Rational Quadratic 0.24259 0.64
HAT-2 3 0.11724 0.92 Rational Quadratic 0.2601 0.6

HCAT-2 9 0.32058 0.32 Rational Quadratic 0.29551 0.4
AUT-Set-3 3 0.14791 0.89 Squared Exponential 0.31347 0.49

HAT-3 4 0.13112 0.8 Rational Quadratic 0.27078 0.13
HCAT-3 10 0.39404 0.23 Squared Exponential 0.33302 0.45

Table 10. SWH_KU_CAL prediction performance using GPR and NNR trained by various feature
combinations for Position P1; ‘#’ denotes the number of features.

Position: P1 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

ALL-Set 16 0.25525 0.44 Exponential 0.27248 0.36
PCA-Set 1 0.11961 0.86 Rational Quadratic 0.22502 0.49
PCC-Set 7 0.24238 0.4 Rational Quadratic 0.24024 0.41

AUT-Set-1 1 0.17635 0.64 Rational Quadratic 0.2258 0.33
HAT-1 2 0.10414 0.89 Squared Exponential 0.20098 0.6

HCAT-1 9 0.23234 0.47 Exponential 0.22728 0.49
AUT-Set-2 2 0.1046 0.87 Exponential 0.19511 0.54

HAT-2 3 0.1113 0.85 Matern 5/2 0.1889 0.58
HCAT-2 10 0.23529 0.31 Exponential 0.2236 0.38

AUT-Set-3 3 o.12272 0.84 Exponential 0.18277 0.65
HAT-3 4 0.13351 0.82 Matern 5/2 0.19522 0.61

HCAT-3 11 0.2367 0.37 Exponential 0.22549 0.41

Figure 6 illustrates the goodness of fit of the SWH predictions generated for the test
set by the best GPR and NNR models trained on P0 data. The plots of Figure 6 show the
predicted versus true values of the response, SWH_KU_CAL, and the residuals for the best
GPR and NNR models highlighted in dark gray in Table 9. It is clear that the GPR model
predictions are closer to the diagonal line, which represents the perfect prediction, than
those predicted by the NNR. This observation is consistent with the high R2 value of the
GPR model and is confirmed by the residual plot. The residuals of the GPR predictions
range between [−0.3, 0.3], while it ranges from [−0.8 to 0.7] for the NNR predictions.

For position P1, it is clear from Table 9 that the GPR model trained on the HAT-1
set achieved the highest performance compared with the NNR based on the highest R2.
The second-best performance is recorded by the AUT-Set-2-based GPR model with an
exponential kernel. On the other hand, the best NNR model recorded 0.65 for the coefficient
of determination and was trained by the AUT-Set-3. The second-best performer was the
HAT-3-based NNR model. Similarly to P0, the GPR models achieved higher performance
that the NNR. It is observed that the regressors trained on the PCC-Set, and the hybrid
features based on it, the HCAT sets, suffered from poor performance. This could be
interpreted as a result of the low correlation between the predictors in the PCC-Set and the
target, which hindered the improvement of the model performance, even after fusing the
PCC, PCA, and AUT features together. It was also noticed that the HAT sets provides better
regression performance than the PCA-Set and the AUT sets. This indicates the improving
impact of the autoencoder features on the prediction performance when added to the
PCA features.
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Figure 7 presents the goodness of fit of the SWH predictions generated by the best GPR
and NNR models trained on P1 data. The plots of Figure 7 illustrate the predicted versus
true values of the response, SWH_KU_CAL, and the residuals for the best GPR and NNR
models on the test set. It is clear that the predictions are scattered roughly symmetrically
around the diagonal line for both GPR and NNR. The predictions of the GPR model are
closer to the diagonal line than the NNR predictions. This observation is reflected in the
residual plots, which show the difference between the true and predicted target. The error
in the predictions with respect to the SWH true values ranges between [−0.3, 0.4] for the
GPR model and [−0.6, 0.5] for the NNR model. The performance plots of Figure 5 reveal
the superiority of the GPR model over the NNR.
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To summarize the findings of the current research, the prediction performance of
the first and second-best regressors recorded by the GPR and NNR models for position
P0 and P1 is presented in Table 11. The highest average RMSEs obtained over the two
positions are 0.11069 and 0.21268 for the GPR and NNR models, respectively. It was noticed
that The GPR models provides better prediction performance than the NNR models in
terms of RMSE and R2 metrics for both positions. This observation was further proved
by the residual plots of the regression models. It was noticed that the HAT feature sets
boosted the GPR model performance over that trained by the basic PCA or AUT feature
sets individually. In contrast, pure autoencoder features yielded better performance of
the NNR models over that of NNR models trained individually by the basic as well as
the hybrid sets. Moreover, it was observed that the HCAT sets yielded lower prediction
performance than the AUT sets and HAT sets for both the GPR and NNR. This observation
could be referred to the low correlation of the original predictors in the PCC-Set with the
response variable. Adding such features to the PCA and autoencoder-derived features
hindered the significant improvement of the model performance. It was shown that the
autoencoder-derived features aid in providing improved prediction performance of the
GPR and NNR models over the basic feature sets.
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Table 11. Summary of the performance of best SWH regression models for position P0 and P1; ‘#’
denotes the number of features.

Position Rank
GPR NNR

Features Set # F RMSE R2 Feature Set # F RMSE R2

P0
1 HAT-2 3 0.11724 0.92 AUT-Set-2 2 0.24259 0.64
2 HAT-1 2 0.12188 0.91 HAT-2 3 0.2601 0.6

P1
1 HAT-1 2 0.10414 0.89 AUT-Set-3 3 0.18277 0.65
2 AUT-Set-2 2 0.1046 0.87 HAT-3 4 0.19522 0.61

To discuss the results from the sea area (site) perspective, the PCC analysis showed
that the DIST2COAST, BOT_DEPTH, LONGITUDE, and LATITUDE-related features are
not significant with respect to SWH from the correlation perspective for both positions P0
and P1 (these features recorded very low PCC values). The observation that could be made
here is that these site-related features do not contribute significantly to SWH measurements.
However, the measured features showed generally higher PCC values than the site-related
features, and thus could effectively affect to SWH measurements. The measured features,
especially the wind speed, are characterized by their intermittent and stochastic nature.
Moreover, the data of the two used positions were collected over different times, and the
two positions are approximately 69 miles apart to the east, which means that the two sites
had different sea states at the time of data acquisition. Such variations would interpret
the difference in the best feature sets of the two positions (HAT-2 for P0 versus HAT-1
for P1 for the GPR and AUT_Set-2 versus AUT-Set-3 for the NNR). Nonetheless, the best
feature sets for both sites were based on the autoencoder-derived features, which reveal
the effectiveness of this technique in extracting significant features from the original data
features. The autoencoder-derived features even improved the prediction performance
when combined with the PCA features (in the HAT feature set).

4.2. Hypothesis Testing for Feature Significance

In order to reinforce the findings of the current study, the significance of the features
included in the feature sets that yielded the highest prediction performance of the GPR and
NNR is examined using hypothesis testing. In the present study, the ANOVA F-statistics
test was utilized to identify the significance of the features included in the HAT-2 and
AUT-Set-2 feature sets of P0 data as well as the features of HAT-1 and AUT-Set-3 features
of P1. In this test, the input features are used to model the response variable using a
linear regression model and determine the significance of the predicted model coefficients
through statistical metrics, namely the F-value and p-value. The null hypothesis of the
test, H0, assumes that there is no relationship between the response variable, SWH, and
the input features i.e., all dependent variable coefficients are zero. On the other hand,
the alternative hypothesis, H1, implies that the model is accurate if there is at least one
instance where any of the dependent variable coefficients are nonzero. The outcomes of
the ANOVA Test of the significance of the aforementioned four feature sets in predicting
the SWH are depicted in Table 12. The significance level is considered 0.05 for the p-value.
The values obtained for both the F-value and the p-value indicate that there is a significant
association between the response variable, SWH, and the input predictors for all feature
sets. Therefore, the Null hypothesis can be rejected, and the significance of the examined
autoencoder-derived features and hybrid features is confirmed.
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Table 12. Outcomes of ANOVA Test of Autoencoder-based features’ significance in predicting the
SWH using P0 and P1 data.

Position Feature Set Feature Symbol Test F-Value Test p-Value

P0
HAT-2

F1 27.9 8.19 × 10−7

F2 30.70119 4.08 × 10−8

F3 49.92715 3.46 × 10−12

AUT-Set-2
F1 11.57716 0.0007
F2 43.37607 8.15 × 10−11

P1

HAT-1
F1 7.9 0.004
F2 7.3 0.006

AUT-Set-3
F1 464.4652 4.75 × 10−82

F2 17.44876 3.27 × 10−5

F3 23.47258 1.5 × 10−6

The prediction performance of the SWH regression model trained on the feature
sets generated using the proposed deep-learning-based approach is further evaluated
against the state of the art. Numerous research studies have addressed the problem of
SWH prediction from satellite data from different perspectives and using various types
of satellite data. In order to have a meaningful benchmarking, only studies that tackled
the problem of SWH prediction using the IMOS Surface Waves Sub-Facility dataset are
considered for comparison. The IMOS Surface Waves Sub-Facility dataset is a recent
dataset that was published in 2019 and has received slight coverage in the literature. Only
a single recent study was found to use the IMOS dataset for the prediction of SWH. The
study by Quach et al. [35] investigated the use of deep learning to predict significant wave
height from a dataset created from collocations between the Sentinel-1SAR and altimeter
satellites’ observations from the IMOS dataset. Quach et al. integrated features from the
IMOS altimeter data with a number of CWAVE features that were derived from the SAR
image modulation spectra and developed a deep-learning-based regression model for SWH
prediction. The results of that study show an improved RMSE of the deep learning model
of 0.26. In our study, we employed the autoencoder deep learning network to generate
significant features from the altimeter observations for the prediction of SWH using GPR
and NNR. The proposed deep-learning-based feature generation method yielded average
RMSE values of 0.11069 and 0.21268 for the GPR and NNR models, respectively. Therefore,
the deep-learning-based SWH modeling approach proposed in the present study provides
improved prediction performance over the state of the art.

5. Conclusions

In this research, we introduced a framework to extract features from SAR mode
altimeter data using a hybrid deep-learning-based approach for the prediction of SWH.
The proposed approach is based on the proficiency of the autoencoder neural network
in representing input features in the latent space. The proposed framework is composed
of four phases: data preprocessing, feature sets formation, SWR modeling, and model
evaluation and testing. After the data were preprocessed, a number of basic feature sets
were created from the input data. The basic sets include the ALL-Set, PCC-Set, PCA-
Set, and AUT-Set-N. Multiple hybrid feature sets were further formed using various
combinations of the PCC, PCA, and AUT feature sets, as well as the HAT, and HCAT
sets. These sets were used for modeling SWH using the GPR and NNR. The regression
models were validated using a 5-cross validation scheme and tested on a holdout test
set. The prediction performance of the SWH models trained on the hybrid feature sets
are compared with that trained by the basic PCC, PCA, and autoencoder-driven feature
sets as well as all input features set. The results show that hybridizing the PCA and
AUT feature sets yielded improved prediction performance for the GPR models, while
pure autoencoder-derived features boasted the performance of the NNR models. The
significance of the autoencoder-based pure and hybrid feature sets was proven through
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hypothesis testing. The presented results reveal the significance of the autoencoder-derived
features in improving the performance of SWH prediction from altimeter data. In general,
the findings of this study reveal the superiority of the autoencoder deep learning network
in generating latent features that aid in improving SWH prediction performance over
traditional feature extraction methods.
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