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Abstract: Spaceborne microwave radiometer observations play vital roles in surface parameter
retrievals and data assimilation, but widespread radio-frequency interference (RFI) signals in the
C-band channel result in a lack of valuable data over large areas. Establishing repaired data based on
existing observation information is crucial. In this study, Advanced Microwave Scanning Radiometer
(AMSR)-2 C-band data affected by RFI were accurately repaired through the iterative principal
component analysis (PCA) method in 2016 over the U.S. land area. The standard deviation (STD) and
bias characteristics of the brightness temperature in the C-band vertical polarization channel were
compared and analyzed before and after the restoration to verify the assimilation application prospect
of the repaired data. Not only was the spatial continuity of the microwave imager observations
significantly improved following restoration; the STD and bias of the observation minus background
(OMB) of the restored data were basically consistent with those of the RFI-free data. The STD of OMB
exhibited obvious seasonal variations, which were approximately 4.0 K from January to May and
3.0 K from June to December, whereas the biases were near zero in winter but negative (approximately
−2.0 K) in summer. The surface type and terrain height also critically affected the STD and bias. The
STD decreased with increasing terrain height, whereas the bias exhibited the opposite trend. The
STD was largest in low-vegetation areas (4.0 K) but only approximately 2.0–3.0 K in pine forest and
brush areas. These results show that the restored data have a high prospect for retrieval application
and assimilation, and the STD and bias estimation results also provide a reference for land-based
AMSR-2 data assimilation.

Keywords: AMSR-2; radio frequency interference; PCA iterative restoration; community radiative
transfer model; bias correction

1. Introduction

A number of low-frequency microwave radiometers have been put into use (e.g.,
AMSR-2, Advanced Microwave Scanning Radiometer 2, etc.), which have offered oppor-
tunities for the derivation of more direct surface parameter estimations [1–5]. Modern
numerical weather predictions (NWPs) rely on assimilating these satellite observations and
retrievals to initialize the current state of the land surface accurately [6–11].

The continuous improvement of the assimilation effect has always been the goal of
AMSR-2 data assimilation research [12,13]. During the data assimilation process, appropri-
ate adjustment of the background field is determined by the observation error characteristics
of the observation data and the background field, as well as some physical mechanisms.
Due to the lack of true values, the STD of OMB is often used to characterize the observation
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error in data assimilation studies. Therefore, accurate STD estimations of OMB have an
essential impact on the effect of data assimilation [14–16].

Bias estimation also plays a crucial role in satellite data assimilation (DA), since
it is assumed that the differences between the background and observations satisfy an
unbiased Gaussian distribution. In DA theory, systematic bias between satellite-observed
and model-simulated radiances should be removed as a necessary condition for meeting
this requirement [17,18]. Furthermore, the corrected brightness temperatures are also
essential for other steps within DA, for example, cloud detection [19], which depends on
the observation-minus-background (OMB) departures [18]. The proper treatment of such
systematic biases is critical for the success of data assimilation systems [9,20–26].

Many studies have shown that both effective bias correction and STD estimation are
significant prerequisites for successful data assimilation [9,25], but the current estimation
methods mostly provide a uniform estimate over the ocean in consideration of the high
spatial consistency of the ocean surface. However, the biggest difference between land and
sea is the complex underlying surface characteristics of land.

In addition to large STDs caused by the artificial RFI, the variable underlying surface
types over land cause considerable error in the surface emissivity. Moreover, a change in
surface elevation will further complicate the simulation errors of brightness temperature
caused by the surface temperatures and surface emissivity. Therefore, the assimilation of
AMSR-2 data over land requires the targeted estimation of OMB standard deviations for
different vegetation types and terrain heights on the basis of the current accuracy of the
surface emissivity and surface temperature. Thus, the observation weight can be adjusted
adaptively in the actual assimilation process and the effective assimilation of the AMSR-2
data over land can be realized.

However, the research on bias correction and STD estimation for AMSR-2 data has
been restricted by RFI. AMSR2, which contains a low-frequency C-band (6.9-GHz and
7.3-GHz channels) and an X-band (10.7-GHz channel), is suitable for soil moisture monitor-
ing [27–29]. The optimal low-frequency channel for data assimilation and retrieval using
AMSR-2 is the 6.9-GHz channel, as this relatively low frequency responds to a deeper soil
layer and is less attenuated by the atmosphere and vegetation than other channels [30].
However, the 6.9-GHz channel is also prone to interference by RFI signals, and the strong
signal interference of RFI makes it impossible to effectively estimate the STD and bias of
data from this channel, which makes the application of the channel data very difficult.
Japan Aerospace Exploration Agency (JAXA) soil moisture products are mainly constructed
based on the results retrieved from the 10.7-GHz channel due to the wide range of radio
frequency interference (RFI) that occurs globally [28].

RFI refers to the radiation signal received by a satellite microwave radiometer that
is confused by active remote sensing signals with similar bands to those used in human
activities [31]. The strong signals emitted from these interfering sources conceal relatively
weak thermal radiation signals from the Earth–atmosphere system, thus leading to the
distortion of observations and causing significant increases in the brightness temperature
of the detectors at the low-frequency band [31,32]. Numerous studies have shown that RFI
is an extremely vital and nonnegligible factor in low-frequency bands (such as the C-band
and the X-band), causing an anomalous bias which affects the application of microwave
radiometer data [7,33,34].

An RFI filter has been used before data assimilation in a number of studies [7,9,35].
However, eliminating observational data from the low-frequency channel, which is affected
by interference, inevitably causes a large amount of data to be wasted, and may also lead
to a large range of observation data being lost.

To compensate for the loss of a large amount of observation data caused by RFI,
Shen et al. (2019) [36] proposed an RFI data restoration method based on principal compo-
nent analysis (PCA), making full use of the channel correlation and the spatial continuity
of observations.
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Most of the studies on AMSR-2 assimilation directly discard the data affected by RFI.
Although the restored data can fill a wide range of observational data gaps, the applicability
of these restored data in the assimilation process still requires further evaluation; specifically,
answering the question of whether this restoration method can retain the STD and bias
characteristics of the observational data is crucial for research on the follow-up of targeted
bias-corrections and observational weight settings in the assimilation process. Therefore, in
this paper, we used the established PCA iterative restoration method to repair RFI-affected
data and then evaluated the bias and STD characteristics before and after the restoration
process for different vegetation types and terrain heights. We hoped to provide more
accurate bias and STD estimation results for AMSR-2 data assimilations over land.

The paper is structured as follows. In Section 2, we briefly describe the AMSR2
radiance data and the community radiative transfer model (CRTM), and give a brief
introduction to the RFI detection and restoration method. In Section 3, we presents the
validation of the restoration method and then compare and analyze the bias characteristics
of the data before and after RFI restoration. Conclusions and discussions are summarized
in Section 4.

2. Materials and Methods
2.1. AMSR-2 Brightness Temperature Observations

AMSR-2, an instrument carried on GCOM-W1, is a 14-channel, dual-polarization
conically scanning passive microwave radiometer with 7 frequencies ranging from 6.9 to
89.0 GHz. This radiometer detects faint microwave emissions from the surface and atmo-
sphere of Earth. The AMSR2 radiance observations frequencies are 6.9, 7.3, 10.65, 18.7, 23.8,
36.5, and 89.0 GHz, as listed in Table 1 [37]. The low-frequency channels below 10.65 GHz
are usually used to retrieve various surface parameters, such as the soil moisture, vegetation
water content, and snow thickness, as they are window channels with strong vegetation-
and soil-penetrating abilities [2,3,5]. The surface incident angle of AMSR2 is maintained
at 55 degrees, as this angle is less affected by sea surface winds and produces a large
difference between the horizontal and vertical polarization results. The interval between
the two conical scans is 1.5 s. The satellite advances approximately 10 km along the running
track during this interval, and the width of one scanning line is approximately 1450 km.
This scanning process can cover 99% of the world in two days.

Table 1. AMSR2 characteristics and performance.

Channel Frequency
(GHz) Polarization Bandwidth

(MHz)
Resolution

(km)
Sensitivity

(K)

1/2 6.925 H/V 350 35 × 62 0.34
3/4 7.3 H/V 350 34 × 58 0.43
5/6 10.65 H/V 100 24 × 42 0.7
7/8 18.7 H/V 200 14 × 22 0.7

9/10 23.8 H/V 400 15 × 26 0.6
11/12 36.5 H/V 1000 7 × 12 0.7
13/14 89.0 H/V 3000 3 × 5 1.2

The study domain is the central and southeastern United States (30◦–40◦N, 260◦–285◦W)
where C-band AMSR-2 radiance data are seriously affected by RFI. This domain also
includes a variety of temperate land cover types with complex topography [38]. Performing
the experiments in this domain allowed us to test the impact of the PCA iterative restoration
method on changeable surface types and terrain.

To certify that this restoration method had good stability and prospects for data
assimilation, it was necessary to obtain a sufficiently vast data sample to conduct RFI
identification and restoration. Therefore, in this study we selected the AMSR-2 L1R-class
observed brightness temperature data covering the study domain for the one-year period
of 2016 (1 January to 31 December).
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2.2. Background—CRTM Simulations

Three fast radiative transfer models have been applied worldwide: the radiative
transfer for TOVS (RTTOV) [39], the community radiative transfer model (CRTM), and the
advanced radiative transfer model system (ARMS) [40]. In particular, the newly developed
ARMS model can be applied to the assimilation of data from the Fengyun satellites and
those sensors not included in existing radiative transfer models [40,41]. The CRTM was
developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA) to provide
fast and accurate satellite radiance simulations and Jacobian calculations at the top of the
atmosphere under all weather and surface conditions [42]. Only the CRTM model was
used in this study. It can be shown that the measured radiance in this case is a weighted
average of the atmospheric temperature profile.

Figure 1 showed the weighting functions calculated by the atmospheric profiles over
ocean (a), and at altitudes of 1000 (b), 2000 (c) and 3000 (d) meters over land, respectively.
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The weighted function K(p) can be calculated as follows:

K(p) = dτ/dln(p) (1)

here τ means the atmospheric transmittance, p is for the pressure [43].
The weighting functions were calculated based on the atmospheric profiles using

the CRTM. The profile information includes temperature, specific humidity and pressure
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profiles, as well as surface temperature and surface wind field information. It can be seen
that weighting functions change little for channels with frequencies less than 10.7 GHz,
but for other channels’ weighting functions, the differences between the ground and the
atmosphere gradually decrease with the increase of terrain height. The weighting functions
of the channels with different polarization modes at the same frequency were consistent [44].
The peaks of the weighting function for each channel was located near the surface, as the
microwave imager was mainly designed to improve our ability to detect surface parameters
through remote sensing.

The amount of radiation detected by the microwave imager is represented by a
weighted sum of surface radiation and atmospheric upward microwave radiation in dif-
ferent vertical layers near the ground; this value is mostly sensitive to the atmospheric
temperature at the height of the maximum weighting function. The horizontal polarization
channel and the vertical polarization channel with the same frequency have the same
weighting function.

On the lowest-frequency channel (i.e., 6.9 GHz), the atmosphere contributes the least
to the amount of observed radiation. The higher the frequency of the channel is, the wider
the weighting function is. The weighting functions of the low-frequency channels are
generally located inside the high-frequency channels, except for the 23.8- and 36.5-GHz
channels. Thus, the brightness temperatures observed between different channels are
highly correlated if the atmospheric contribution is significant [44].

2.3. Model Input—ECMWF Reanalysis Data

European Center for Medium-Range Weather Forecasting (ECMWF) hourly reanalysis
data, with a horizontal resolution of 0.25 × 0.25 degrees and 37 vertical model levels,
were used as the input for the CRTM. The input variables for CRTM include the three-
dimensional atmospheric temperature, water vapor mixing ratio, and air pressure, as well
as the two-dimensional surface variables of soil moisture, surface skin temperature, wind
speed, and wind direction.

Hourly ECMWF liquid water path (LWP) reanalysis data with a horizontal resolution
of 0.25◦ × 0.25◦ were used to identify data collected under clear-sky conditions.

2.4. OMB Calculation Method

In this study, we used the International Geosphere-Biosphere Programme (IGBP)
surface type dataset to identify the continental brightness temperature data. Among all
the AMSR-2 pixels labeled as “water” in terms of their surface type, further works were
carried out to eliminate the pixels within 50 km from coastlines to remove those mixed
pixels with water.

Although microwave radiation is able to penetrate some non-precipitating clouds,
it is basically unable to penetrate deep precipitation clouds. Even in penetrable clouds,
various particles affect microwave radiation through absorption, emission and scattering
effects [45,46]. To prevent effects associated with brightness temperature simulation uncer-
tainties in cloudy areas on the bias and STD estimation, in this study we only used data
obtained over continental areas under clear-sky conditions.

In order to acquire the simulated brightness temperature at AMSR-2-observed pixel
locations and times, polynomial interpolation and linear interpolation were performed
on the ECMWF analysis dataset in the horizontal and temporal dimensions, respectively.
We processed the hourly ECMWF liquid water path (LWP) data in the same way. The
brightness temperature data were considered “cloudy” data when the cloud water path
value was greater than 0.01 g/kg, thus allowing us to identify data collected under clear-sky
conditions. For the threshold, we referred to the study by Zou et al. (2017) [47]. The total
water and ice cloud contents are close to 0.01 kg m−2, which is used as the threshold to
detect the cloud in Zou et al. (2017) [47].

Due to the lack of true observed values, the observation errors in the brightness
temperature data are mostly estimated by obtaining the standard deviations of the OMB
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(observation-minus-background) values [48–51]. In satellite data assimilation, both the
observations (O) and model simulations (B) are assumed to be unbiased. Therefore, STDs
can be expressed as:

∆Di = Oi − Bi

σ =

√
∑N

i=1
(
∆Di − ∆D

)2

N − 1
(2)

where Oi and Bi are the observed and simulated brightness temperature values on the same
pixel, respectively, and ∆Di means the OMB value of the pixel. ∆D and σ represent the
mean value and the standard deviations of the OMB value, respectively. N represents the
counts of all the continental pixels under clear-sky conditions.

2.5. RFI Detection Method—Normalized Principal Component Analysis (NPCA)

The spatial correlations of natural-radiation-generated microwaves among different
AMSR-2 instrument observation channels are often very high, as natural surfaces usually
produce ultrawideband and smooth microwave radiation.

However, the brightness temperature of the low-frequency AMSR-2 channel increases
significantly and abnormally in cases where RFI signals exist, resulting in weakened
correlations between these RFI-affected channels and the other channels. The NPCA
method, which takes advantage of the aforementioned feature, can effectively identify RFI
signals through a PCA decomposition of the constructed interference coefficient matrix,
using the brightness temperature difference calculated between the low-frequency channel
and the high-frequency channel (low-high). On the other hand, the brightness temperature
of the high-frequency channel can be strikingly reduced under the scattering effect of some
natural targets (such as ice and snow), thus resulting in an inverse spectral difference
gradient in continental regions covered with ice and snow. Therefore, Zou et al. (2013) [52]
proposed an RFI detection method for NPCA analyses that has been shown to be effective
for identifying RFI in data collected over snow- and ice-covered surfaces; this proposed
method is suitable for identifying RFI over complex continental areas with mixed winter
snow and RFI signals or over non-scattering surfaces in summer.

2.6. RFI Restoration Method—Iterative PCA Method

To compensate for the loss of a large amount of observation data caused by RFI,
Shen et al. (2019) [36] proposed an RFI data restoration method based on principal compo-
nent analysis (PCA). PCA can be used to extract observation information at different spatial
scales into some independent PCA modes. The iterative PCA restoration method was
established to obtain the correct brightness temperature of the RFI-affected point according
to the correct observations around it.

For any observation, if the NPCA method recognizes that this observation has been
affected by RFI, then on the satellite orbit where the point is located, the observation data
from multiple channels for RFI-free points within the experience range of 350 km around
the target point can form a repair matrix containing the target point, but the brightness
temperature of the target point will be set to an initial value of 0.

PCA modes representing spatial features with different scales can be obtained through
PCA decomposition of the matrix. For any data matrix B, the PCA modes correspond math-
ematically to the eigenvectors of the covariance matrix of B. The order of the PCA modes is
determined based on the eigenvalues of the matrix corresponding to the eigenvectors. The
higher-ranked modes correspond to larger eigenvalues, and larger eigenvalues correspond
to spatial features with larger values of covariance. In relation to atmospheric variables, a
large value of covariance often corresponds to more energy, and the energy of a large-scale
weather system is generally much larger than that of a small-scale weather system. Thus,
the PCA modes of meteorological variables often correspond to the weather variability
features at different scales. More details can be found in Demšar et al. (2013) [53].
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The brightness temperature of the target point, determined by means of a large-scale
spatial structure, can be obtained by iteratively repeating the reconstruction process of
the first mode. The same iterative restoration process can be performed for the rest of
the PCA modes, and when all PCA modes are included, the final iterative repair results
are obtained.

The proposed restoration method was used to recover observations affected by RFI
with high precision [36]. The results of theoretical experiments and real data restoration ex-
periments proved that the accuracy and effectiveness of the new method were much better
than those of the Cressman method. Furthermore, the spatial continuity of observations in
the recovered data were very well preserved by the new method.

3. Results
3.1. C-Band Continental RFI Characteristics

The NPCA method, described in Section 2.5, was used for RFI detection on C-band
AMSR-2 data in this study. Figure 2 shows the brightness temperatures obtained by the
AMSR-2 instrument in the 6.9-GHz and 10.7-GHz vertical polarization channels (Here-
inafter referred to as 6.9-GHz-V and 10.7-GHz-V) over the area of the U.S. in the autumn
of 2016, as well as the spatial distribution of the RFI signals identified through NPCA
(Figure 2a–c). The brightness temperature of the 6.9-GHz channel was generally less than
that of the 10.7-GHz channel for most of the continent, because the dielectric constant
of water in soil and vegetation depends on this frequency, thus resulting in an increased
surface emissivity with an increasing frequency [30]. However, the presence of an RFI
signal at the 6.9-GHz frequency caused the brightness temperature of this frequency to
increase abnormally, thus resulting in a spectral difference with an opposite sign to that
expected. The brightness temperatures of the 6.9-GHz channel in the concentrated areas
of Virginia, North Carolina, Texas, and other states were significantly higher than the
brightness temperatures of the higher-frequency 10.7-GHz channel, which were far above
300 K, with notable horizontal spatial distribution discontinuities. In the identification
results obtained using the NPCA method, the larger the value was, the stronger the possi-
bility of RFI interference. As shown in Figure 2c, regions with abnormally high brightness
temperatures (shown in Figure 2a) were detected as having significant RFI signals.
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The NPCA method was used for the detection of RFI signals in the horizontal and
vertical AMSR-2 6.9-GHz channels over the study domain in 2016, and a daily variation
curve of the proportion of the 6.9-GHz-V and 6.9-GHz-H channel scanning points affected
by RFI for the land scanning points was obtained for the study domain (Figure 3). In
Figure 3, the red line represents the vertical channel and the blue line represents the
horizontal polarization channel. The figure shows that both the horizontal and vertical
channels in the study region encountered continuous RFI signals throughout the year. In
particular, the degree of interference in the vertical channel was obviously greater than that
in the horizontal channel. Thirty to forty percent of the data were not available for data
assimilation or retrieval applications because of RFI interference.
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Figure 3. Daily variation curves of the proportion of pixels affected by RFI in the study domain for
the 6.9-GHz-H (blue) and 6.9-GHz-V (red) channel in 2016.

3.2. RFI Restoration and Validation

Figure 4 shows the spatial distributions of the mean observed (a) and restored
(b) brightness temperatures of the 6.9-GHz-V channel and the mean observed brightness
temperatures of the 7.3-GHz-V (c) and 10-GHz-V (d) channels in autumn 2016. Comparing
Figure 4a,b, it can be seen that those abnormally high brightness temperatures caused by
RFI were well repaired. The overall geographic distribution of the brightness temperature
showed good spatial continuity after this restoration, and the spatial distribution was con-
sistent with the natural surface emission characteristics; in addition, the small-brightness
temperature characteristics were restored as well.

In addition to the existing AMSR-E channel, two more channels were added to the
AMSR-2 with frequencies near 6.9 GHz and 7.3 GHz. Anne et al. (2015) showed that the
RFI phenomenon in the 7.3 GHz observation channel was significantly reduced in the U.S.,
Japan, and India, where there was severe pollution in the 6.9 GHz channel. As can be seen
from Figure 4c, only a few regions showed abnormally high brightness temperatures over
300 K, such as northern West Virginia, central and eastern Alabama, and southern Kansas.
However, in the corresponding region of the 6.9-GHz-V channel, there were no abnormally
high brightness temperatures. The brightness temperatures of 6.9-GHz-V were generally
lower than those of 10.7-GHz-V, except for the RFI-affected region. The frequencies of the
6.9-GHz channel and the 7.3-GHz channel were very close, so the brightness temperatures
of the 7.3-GHz channel could be used qualitatively to verify the correctness of the repaired
brightness temperatures. It can be seen that the spatial structure of the restored brightness
temperature was similar to that of the 7.3-GHz channel. The low-value center in the
middle of the region was well reproduced, and the spatial structures of three brightness
temperature centers in the northeast of the United States, which were severely impacted by
RFI, were also well restored.
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Figure 5 shows the distribution of the brightness temperature difference between the
6.9-GHz-V channel and the two high-frequency channels, 7.3-GHz-V (a) and 10.7-GHz-V (c),
respectively. Figure 5b,d are the same as Figure 5a,c except for the restored brightness
temperatures of the 6.9-GHz-V channel. RFI interference led to an abnormal increase in
the brightness temperature values, resulting in the opposite spectral differences. Therefore,
the larger the positive value in the spectral difference, the more affected were the values
in the 6.9-GHz-V channel by RFI. As can be seen in Figure 5a,c, a large area of this region
was affected by RFI, and the differences were even greater than 10 K. As can be seen
in Figure 5b,d, this difference was basically within 5 K after the repair process. This
indicates that the abnormal brightness temperature was well corrected, and also proves the
effectiveness of the restoration method.

In consideration of the relatively high percentage of RFI signals in the 6.9-GHz-V
channel (the red curve in Figure 3), in this study, we focused on the observation bias and
STDs of the 6.9-GHz-V channel in the subsequent analysis.

3.3. Comparison of Simulated Brightness Temperature under Clear- and Cloudy-Sky Conditions
over Ocean

The hourly cloud liquid water paths based on ERA5 reanalysis data were used to
detect clear sky and cloudy data. In order to prove the accuracy of the cloud detection
process and the reliability of CRTM simulation, the ocean surface area within the study area
was selected for the comparison of OMB characteristics between clear-sky and cloudy areas.

Here, the monthly OMB standard deviations in clear-sky (blue line) and cloudy-sky
(red line) areas were calculated separately (Figure 6). The OMB standard deviation in the
cloudy area was approximately 6.0 K; this value was much larger than that obtained for the
clear-sky area, with an obvious monthly difference. The largest standard deviation, reaching
7.26 K, was observed in June, whereas the smallest value was obtained for December. This
may be due to the prevailing convective weather in summer, resulting in more deep clouds.
However, the simulation errors for the clear-sky area were primarily reduced, as the
standard deviation was maintained at around 0.9 K with a minimal standard deviation of
approximately 0.6 K from June to July. The stationary standard deviation in the clear sky
areas also proves the effectiveness of the cloud detection method.
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Figure 6. Monthly variations of OMB standard deviations (solid line) and bias (dotted line) for data
in clear-sky (blue line) and cloudy-sky (red line) conditions over ocean from the 6.9-GHz-V channel
in 2016.

It can be seen that there was also a large discrepancy between the monthly OMB
bias in clear-sky (blue dotted line) and cloudy-sky (red dotted line) areas over ocean. The
simulation was relatively accurate in clear-sky conditions, and the bias was basically below
1 K, with a minimum bias of zero in summer. The bias under cloudy conditions was
significantly larger than that for clear-sky areas on the whole, and the bias value was
basically around 3 K, with a maximum value of 3.8 K in September and October. The bias
changed slightly from January to June, and was stable around 3.7 K.

3.4. Standard Deviation over Land

Figure 7 depicts the averaged OMB values before and after the restoration for the
6.9-GHz-Vchannel within the selected domain in autumn 2016. It reveals that the RFI
area exhibited an obviously large bias without restoration (Figure 7a), basically exceeding
15.0 K and even exceeding 100.0 K at the maximum point. The simulation errors in the RFI-
affected area were significantly reduced following the repair process (Figure 7b), with errors
basically within 5.0 K, apart from some systematic deviations in high-terrain areas. Using
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the training data sets obtained under RFI-free conditions from AMSR-E, Wu et al. (2011) [54]
developed the linear relationship between the measurements obtained at 10.7 GHz and
those at 18.7 or 6.9 GHz. Then, the RFI-affected brightness temperatures were corrected
based on the RFI-free measurements at 18.7 or 10.7 GHz via this linear relationship. The RFI-
correction algorithm was able to produce brightness temperatures at AMSR-E frequencies
with a root mean square (RMS) error of no more than 1.5 K. In this study, we focused on
the 6.9-GHz-V channel of AMSR-2. The standard deviation of the OMB of this channel was
6.7 K, and it decreased to 4.0 K after restoration using the PCA iterative method.
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Figure 7. Averaged OMB before (a) and after (b) the restoration for the 6.9-GHz-V channel in
autumn 2016.

Although it is clear that the spatial continuity of the brightness temperature data was
improved through the restoration process, the impact of this restoration method on the
standard deviations still needs to be further clarified in order to apply this method in data
assimilation. Figure 8 shows the standard deviation and mean values of the OMB before
(magenta line) and after the restoration (red line) for RFI-affected data of the 6.9-GHz-V
channel. For comparison, the undisturbed data (blue line) are also shown here. The pink
and gray bars in Figure 8a represent the numbers of RFI-affected and RFI-free pixels,
respectively. The OMB standard deviation of the unpolluted data was approximately
4.0 K from January to May, whereas this value remained at approximately 3.0 K from
June to December. The standard deviation for RFI-interfered data was significantly higher
than that of the pollution-free data, with a value of approximately 8.0 K, with a minimal
OMB standard deviation of 6.4 K obtained in June. From this OMB standard deviation
comparison, it can be seen that the OMB STD values of RFI-affected data were significantly
reduced after the restoration. The OMB STD of the restored data in each month was basically
similar to that obtained from the RFI-free data; even monthly variation characteristics were
also effectively reproduced in these OMB STDs.

As seen from the bias variation shown in Figure 8b, the bias of the RFI-free data was
within the range of ±3.0 K. This varied obviously with the season, about 2 K in winter and
−2 K in summer. From winter to summer, the bias basically showed the characteristics
of a gradual decrease. The bias of RFI-affected data was significantly higher than that of
the RFI-free data. The high values reached 9 K, and the low values were above 3 K. It
also showed the same seasonal variation characteristics as the correct data. However, after
the restoration, the bias derived for each month was very close to that obtained from the
nonpolluted data, and the seasonal variation characteristics were effectively reproduced,
further confirming the rationality of the restoration method. The land surface temperature
had a strong impact on the simulated brightness temperatures. Some previous studies
have pointed out that there are obvious seasonal biases in the surface temperature of ERA5
LST, attributed to uncertainty in land surface variables such as the leaf area index and land
cover type, etc. [55]. This is a possible reason for the formation of seasonal differences in
OMB biases.
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3.5. Variation Characteristics of STDs with Terrain Height and Surface Type

In contrast with the marine domain, which has uniform underlying surface properties,
the underlying surfaces in land areas have two important characteristics: significant discrep-
ancies in topographic height and changeable surface types. The STDs and bias estimation
results obtained in land areas are thus inevitably affected by these two characteristics.

The biggest discrepancy between the assimilation of microwave imaging data over
the land surface and the ocean is the complexity of the land surface’s emissivity. In the
microwave range, the land emissivity model is complicated as the land emissivity of each
surface type depends on different parameters, such as soil moisture, topography, and the
presence and physical properties of vegetation or snow [56]. The surface emissivity error
may be significantly different for different land surface types, which will inevitably lead
to inconsistency in the brightness temperature simulation bias observed over different
land surface types. Therefore, it is necessary to estimate the STDs according to different
surface types for the assimilation of AMSR-2 data over land. In addition, the errors of the
surface temperature and wind field are much larger than those of variables in the upper
atmosphere, so it is particularly important to estimate the OMB bias and STD according
to the land cover type. After that, the effective bias correction and observation error
specification can be achieved in the assimilation, to effectively account for the observation
information of different vegetation types.

To increase the representative of the statistical results, the OMB values of the AMSR-2
6.9-GHz-V channel in the study domain were converted into grid data with a horizontal
resolution of 0.25◦ × 0.25◦. The spatial distributions of the standard deviations and bias
before and after the restoration for 2016 within the analyzed land area are show in Figure 9.
For comparison, the spatial distribution of terrain and vegetation types are also shown in
the figure.
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It can be seen from the topographical distribution shown in Figure 9a that the to-
pography in the study domain was complex, exhibiting a large gradient that was mainly
characterized by a distribution in which eastern areas were higher than western areas. The
elevation of the Appalachian Mountains in the eastern study domain was relatively high,
ranging from approximately 1000 to 1500 m. The elevations in the west Mississippi River
Plain and the south Gulf Coast Plain were lower in comparison. As seen from the surface-
type distribution (Figure 9b), the study domain mainly consisted of distributed pine trees,
brush forests, and a small area of low vegetation. As seen from the STD distribution of the
integral observed data in the 6.9-GHz-V channel (Figure 9c), which was abnormally large
(above 4.0 K), the whole study domain was seriously affected by RFI before the restoration
was applied. In the domain, the region with the largest STD—of approximately 7.0 K—was
found in the Mississippi River Plain.

After the restoration of the disturbed brightness temperature data, the standard
deviations characterizing this region were significantly reduced (Figure 9d). The standard
deviation in the Mississippi River Plain area was approximately 3.0 K; this value was
basically reduced to approximately 2.0 K in the other areas. The standard deviation in the
Appalachian Mountain region basically decreased to less than 1.0 K after the restoration;
this value was lower than that of the plain region because the low-frequency AMSR-2
observations are highly sensitive to soil moisture variations, which were relatively small
in the mountainous region, leading to the smaller STDs obtained for this area than those
obtained for the plains region. The observation bias was correspondingly large due to the
strong RFI effect, as seen from its distribution (Figure 9e), with the highest mean value
located in the Appalachian Mountains at approximately 8.0 K. The bias in the plain area
was relatively low, with values between −3 and 3.0 K. After the restoration, the biases
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in most areas decreased significantly, approaching close to 0.0 K, but a positive bias was
maintained in high-terrain areas, whereas the negative bias persisted in coastal and central
low terrain areas.

Figure 9 shows that the spatial distribution of bias and standard deviations was
very similar to that of vegetation types. In order to further clarify the impact of RFI
restoration on different vegetation types, Figure 10 presents the OMB mean values and
standard deviations before and after the restoration of RFI-affected data under different
vegetation types.
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Figure 10. Comparison of standard deviation (a) and mean values (b) of OMB before (red bar) and
after (blue bar) the restoration of RFI-affected data for the AMSR-2 6.9-GHz-V channel in 2016 over
brush, pine forest, and low vegetation within the selected domain.

It can be seen in Figure 10a that STDs were obviously reduced after RFI restoration
under all different surface types. Among these, the restoration effect of brush-covered
area was the most significant, with the STD decreasing from 8.0 K to about 3.6 K. Fur-
thermore, the STD decreased from 6.3 K to about 3.6 K within pine-forest-covered areas.
The STD of low-vegetation regions was the highest after restoration, around 4.8 K. This
is because increased vegetation cover and surface roughness reduce the sensitivity of mi-
crowave observations to soil moisture, leading to greater uncertainty in the background
simulation [30].

The bias of the restored data was also significantly lower than before. The bias of pine
and brush forest regions decreased from around 4.0 K to about 0.0 K. The bias was reduced
from 1 K to −2.0 K over low-vegetation area after the accurate repair process.

In addition to vegetation types, the rapidly changing topographic height is another im-
portant feature of the land surface that is different from the ocean surface. In order to further
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evaluate the characteristics of data errors over land, the bias and STDs are also presented
here for data under different terrain heights and different vegetation types (Figure 11). In
contrast with Figure 10, the statistics here include all RFI-affected and RFI-free data, so that
the statistical results can be directly applied to the actual data assimilation process.
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Figure 11. Variation curves of the OMB mean values (b,d,f) and standard deviations (a,c,e) character-
izing the 6.9-GHz-V AMSR-2 channel with terrain height in the U.S. in 2016. The red and blue lines
represent the pre- and post-repair results, respectively.

Figure 11 shows the variation characteristics of the STDs and bias obtained before and
after the restoration with varying terrain heights and surface types, with pink reticulated
bars indicating the amount of data processed. In this study, we analyzed three major
ground types that corresponded to large amounts of data, namely, pine forests, brush
regions, and low vegetation. The results revealed obvious differences in the influence
of RFI on the brightness temperatures corresponding to different vegetation types under
different terrain heights. Among these differences, in pine-forest- and brush-covered areas,
the restoration method had an obvious improvement effect on the STD and bias values at
different elevations. The STD even reached 8.0 K before the restoration, whereas this value
was maintained between 2.0 and 3.0 K following the restoration, decreasing gradually with
increasing terrain. The bias value obviously increased with increasing terrain height; this
trend was contrary to that of the STDs. The bias value increased rapidly with increasing
terrain height below 700 m. When the elevation reached heights above 700 m, the bias
was reduced from 8 K to basically below 4.0 K overall following the repair process. In the
area covered by low vegetation (Figure 11e,f), RFI was most serious at elevations located
below 500 m, where the STD even reached 12.0 K; this value decreased to approximately
4.0 K following the restoration. In the areas with elevations over 500 m, the STDs obtained
before and after the restoration were similar, both of which were approximately 4.0 K,
and these barely changed with regard to terrain variations. The maximum bias obtained
for elevations below 500 m before restoration was 6.0 K, and this value was gradually
stabilized from −4.0 K to −2.0 K following the restoration process.
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4. Discussion

The data obtained from microwave radiometer observations have important appli-
cation value, especially in the case of low-frequency-channel observations, which play
a crucial role in the surface parameter retrieval and data assimilation required in NWP;
however, the effects of large-range RFI signals in these low-frequency channels lead to a
large amount of observation data being wasted.

To obtain more effective observational data that are applicable to retrieval and as-
similation tasks, an iterative PCA method was proposed to repair the RFI-affected data.
Although it is clear that the spatial continuity of the brightness temperature data was
improved through the restoration, the question of whether this restoration method can
retain the STD and bias characteristics of the observational data is crucial for subsequent
targeted bias-correction and observational weight-setting research in data assimilation.

Based on AMSR-2 observations from 1 January 2016, to 31 December 2016, in this
study, we used the NPCA method to identify RFI-affected data on the C-band (6.9 GHz) in
the central and southeastern United States and then applied an iterative PCA method to
repair the corrupted data.

Finally, the STD and bias characteristics of the data obtained before and after the repair
task and of the pollution-free data collected from the 6.9-GHz-V channel were analyzed
in detail, and specifically, the variation characteristics of the STD and bias observed in
land areas with varying terrain heights and surface types were further examined, thus
providing a corresponding reference for subsequent data assimilation tasks involving
low-frequency-channel data from AMSR-2 in land areas.

The long-term restoration results obtained herein show that the applied restoration
method was not affected by the terrain height, vegetation type, or seasonal differences.
Therefore, the next step will involve assimilating the restored brightness temperatures into
numerical models to explore the impacts of the brightness temperature restoration process
on the data assimilation.

5. Conclusions

In this study, RFI-affected AMSR-2 C-band data regarding the U.S. land area in 2016
were accurately repaired through iterative principal component analysis (PCA). The STD
and bias characteristics of the brightness temperature data in the C-band vertical po-
larization channel were compared and analyzed before and after restoration to verify
the assimilation potential of the repaired data. The main conclusions of this work are
described below.

(1) The NPCA method was used to identify RFI signals in the observed brightness
temperature data representing the U.S., collected from the 6.9-GHz channel for 2016. The
results showed that severe RFI impacts persisted throughout the year in the U.S. The
interference sources were mainly distributed in areas containing cities, such as the states of
Virginia, North Carolina, and Texas. The amount of data suffering from RFI accounted for
approximately 40% of the total amount of analyzed data.

(2) Based on the iterative PCA method applied herein, the disturbed brightness tem-
peratures throughout the year were repaired. On the whole, the abnormally high brightness
temperatures corresponding to RFI areas were repaired with a high level of precision. The
overall brightness temperature distribution conformed to natural surface emission charac-
teristics, maintaining good spatial continuity following the repair process, with small-scale
features also being effectively recovered. At the same time, the applied restoration method
was not affected by seasonal changes in brightness temperature or by variations in terrain
or vegetation types and thus exhibited good stability and prospects for long-term RFI data
recovery.

(3) The STD and bias in RFI-affected areas were significantly reduced following the
restoration process; in addition, both of them were consistent with the corresponding
values obtained from the pollution-free data, indicating that the repaired data retained the
bias and STD characteristics of the observation instrument. Furthermore, in pine-forest-
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and brush-covered areas, the restoration method had an obvious improvement effect. Over
land, the STD decreased gradually with increasing terrain, but the trend of the bias was the
opposite. These findings will be useful for subsequent data assimilation applications.
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